SlideShare a Scribd company logo
1 of 36
Download to read offline
Failure	
  of	
  slender	
  and	
  stocky	
  
columns	
  
Dr	
  Alessandro	
  Palmeri	
  
<A.Palmeri@lboro.ac.uk>	
  
Teaching	
  schedule	
  
Week Lecture 1 Staff Lecture 2 Staff Tutorial Staff
1 Beam Shear Stresses 1 A P Beam Shear Stresses 2 A P --- ---
2 Shear centres A P Basic Concepts J E-R Shear Centre A P
3 Principle of Virtual
forces
J E-R Indeterminate Structures J E-R Virtual Forces J E-R
4 The Compatibility
Method
J E-R Examples J E-R Virtual Forces J E-R
5 Examples J E-R Moment Distribution -
Basics
J E-R Comp. Method J E-R
6 The Hardy Cross
Method
J E-R Fixed End Moments J E-R Comp. Method J E-R
7 Examples J E-R Non Sway Frames J E-R Mom. Dist J E-R
8 Column Stability 1 A P Sway Frames J E-R Mom. Dist J E-R
9 Column Stability 2 A P Unsymmetric Bending 1 A P Colum Stability A P
10 Unsymmetric Bending 2 A P Complex Stress/Strain A P Unsymmetric
Bending
A P
11 Complex Stress/Strain A P Complex Stress/Strain A P Complex
Stress/Strain
A P
Christmas
Holiday
12 Revision
13
14 Exams
15
2	
  
Mo@va@ons	
  (1/5)	
  
•  Load-­‐carrying	
  structures	
  may	
  fail	
  in	
  a	
  variety	
  of	
  ways,	
  
depending	
  upon:	
  
–  Type	
  of	
  structure	
  (truss,	
  frame,	
  …)	
  
–  Condi@ons	
  of	
  support	
  (pinned,	
  fixed,	
  …)	
  
–  Loads	
  applied	
  (sta@c,	
  dynamic,	
  …)	
  
–  Materials	
  used	
  (briQle,	
  duc@le,	
  …)	
  
•  Failures	
  are	
  prevented	
  by	
  designing	
  structures	
  so	
  that	
  
maximum	
  stresses	
  (strength	
  criterion)	
  and	
  maximum	
  
displacements	
  (s,ffness	
  criterion)	
  remain	
  within	
  
admissible	
  limits	
  
3	
  
Mo@va@ons	
  (2/5)	
  
4	
  
•  For	
  the	
  fans	
  of	
  The	
  Big	
  Bang	
  Theory:	
  
–  Sheldon	
  and	
  Howard	
  have	
  got	
  this	
  seriously	
  wrong!	
  
•  You	
  can’t	
  use	
  the	
  Young’s	
  modulus	
  to	
  quan@fy	
  the	
  strength	
  
of	
  material,	
  but	
  its	
  s,ffness!	
  	
  
Mo@va@ons	
  	
  (3/5)	
  
•  S@ffness	
  and	
  strength	
  of	
  
materials	
  
–  In	
  the	
  stress-­‐strain	
  curve	
  
for	
  a	
  duc@le	
  material	
  
(e.g.	
  steel),	
  the	
  Young’s	
  
modulus	
  E	
  defines	
  the	
  
s@ffness,	
  while	
  the	
  yield	
  
stress	
  σy	
  represents	
  the	
  
strength	
  
5	
  
Mo@va@ons	
  	
  (4/5)	
  
•  S@ffness	
  criterion:	
  
	
  “Slender	
  Column”	
  
6	
  
•  Strength	
  criterion:	
  
“Short	
  Column”	
  
Mo@va@ons	
  	
  (5/5)	
  
7	
  
Coventry	
  Cathedral	
  
ç	
  Slender	
  column	
  
Detail	
  of	
  the	
  support	
  è	
  
Learning	
  Outcomes	
  
•  When	
  we	
  have	
  completed	
  this	
  unit	
  (2	
  lectures	
  
+	
  1	
  tutorial),	
  you	
  should	
  be	
  able	
  to:	
  
– Derive	
  the	
  Euler’s	
  cri@cal	
  load	
  for	
  slender	
  pinned-­‐
pinned	
  columns	
  in	
  compression	
  
– Predict	
  the	
  mode	
  of	
  failure	
  for	
  both	
  short	
  and	
  
slender	
  columns	
  in	
  compression	
  
8	
  
Further	
  reading	
  
•  R	
  C	
  Hibbeler,	
  “Mechanics	
  of	
  Materials”,	
  8th	
  
Ed,	
  Pren@ce	
  Hall	
  –	
  Chapter	
  13	
  on	
  “Buckling	
  
of	
  Column”	
  
•  T	
  H	
  G	
  Megson,	
  “Structural	
  and	
  Stress	
  
Analysis”,	
  2nd	
  Ed,	
  Elsevier	
  –	
  Chapter	
  21	
  on	
  
“Structural	
  Instability”	
  (eBook)	
  
9	
  
Short	
  and	
  Slender	
  Struts	
  
10	
  
•  Increasing	
  the	
  length	
  of	
  a	
  
strut	
  reduces	
  its	
  buckling	
  
load	
  
–  For	
  instance,	
  a	
  matchs,ck	
  
is	
  reasonably	
  strong	
  in	
  
compression	
  (lek),	
  but	
  a	
  
longer	
  s,ck,	
  with	
  the	
  
same	
  cross	
  sec@on	
  and	
  
the	
  same	
  material,	
  would	
  
be	
  weaker	
  and	
  buckles	
  in	
  
compression	
  (right)	
  
–  The	
  slenderness	
  of	
  a	
  strut	
  
plays	
  an	
  important	
  role	
  in	
  
its	
  mode	
  of	
  failure	
  in	
  
compression	
  
Buckling,	
  i.e.	
  Lateral	
  Instability	
  (1/2)	
  
11	
  
•  That	
  is,	
  if	
  a	
  column	
  is	
  
rela@vely	
  slender,	
  it	
  may	
  
deflect	
  laterally	
  when	
  
subjected	
  to	
  a	
  
compressive	
  force	
  P	
  
(Fig	
  (a))	
  and	
  fail	
  by	
  
bending	
  (Fig	
  (b)),	
  rather	
  
than	
  failing	
  by	
  direct	
  
compression	
  of	
  the	
  
material	
  
Buckling,	
  i.e.	
  Lateral	
  Instability	
  (2/2)	
  
12	
  
•  Pcrit	
  is	
  the	
  so-­‐called	
  cri,cal	
  buckling	
  load	
  
–  If	
  the	
  axial	
  load	
  P	
  is	
  less	
  than	
  Pcrit,	
  bending	
  is	
  caused	
  by	
  lateral	
  loads	
  only	
  
–  If	
  P	
  is	
  greater	
  than	
  Pcrit,	
  the	
  ruler	
  bends	
  even	
  without	
  lateral	
  loads	
  
Euler’s	
  Cri@cal	
  Load	
  for	
  
Pinned-­‐Pinned	
  Slender	
  Columns	
  
•  One	
  of	
  the	
  Learning	
  Outcomes	
  of	
  this	
  Unit	
  is	
  
for	
  you	
  to	
  become	
  able	
  to	
  mathema@cally	
  
derive	
  (and	
  remember	
  as	
  well)	
  the	
  expression	
  
of	
  the	
  cri@cal	
  load	
  Pcrit	
  for	
  pinned-­‐pinned	
  
slender	
  column	
  
•  Pcrit=PE	
  is	
  oken	
  called	
  Euler’s	
  buckling	
  load	
  
–  Aker	
  the	
  Swiss	
  mathema@cian	
  Leonhard	
  Euler	
  
(1707-­‐1783)	
  
!!
Pcrit
=
π2
EImin
L2
13	
  
Mathema@cal	
  Deriva@on:	
  
Bending	
  Equa@on	
  
•  What’s	
  the	
  equa@on	
  ruling	
  the	
  beam’s	
  downward	
  deflec@on,	
  uz(x),	
  for	
  a	
  
given	
  bending	
  moment	
  diagram,	
  My(x)?	
  
•  We	
  used	
  this	
  second-­‐order	
  differen@al	
  equa@on	
  in	
  part	
  A	
  to	
  calculate	
  the	
  
beam’s	
  deflec@on	
  under	
  transverse	
  loads…	
  
•  where,	
  as	
  usual:	
  
–  E=	
  Young’s	
  modulus	
  
–  Iyy=	
  Second	
  moment	
  of	
  area	
  about	
  the	
  horizontal	
  neutral	
  axis	
  
14	
  
EIyy
d2
uz (x)
dx2
= −My (x)
Mathema@cal	
  Deriva@on:	
  
Sign	
  Conven@on	
  
•  Do	
  you	
  remember	
  from	
  last	
  year?	
  
15	
  
Mathema@cal	
  Deriva@on:	
  
P-­‐Delta	
  (1/2)	
  
•  What’s	
  the	
  bending	
  moment	
  My	
  in	
  this	
  circumstance?	
  
	
  
•  We	
  don’t	
  have	
  transverse	
  loads	
  this	
  @me	
  
–  the	
  column	
  is	
  subjected	
  to	
  the	
  axial	
  load	
  P	
  only	
  
•  How	
  can	
  we	
  have	
  a	
  bending	
  moment?	
  
	
  
•  In	
  order	
  to	
  derive	
  the	
  expression	
  of	
  the	
  Euler’s	
  buckling	
  load,	
  we	
  
need	
  to	
  assume	
  that	
  
–  a	
  disturbance/imperfec@on	
  exists	
  in	
  the	
  column,	
  
–  therefore	
  the	
  buckling	
  occurs	
  
–  and	
  My	
  can	
  be	
  consistently	
  evaluated	
  by	
  using	
  the	
  equilibrium	
  
equa@ons	
  in	
  the	
  deformed	
  shape	
  
16	
  
Mathema@cal	
  Deriva@on:	
  
P-­‐Delta	
  (1/2)	
  
17	
  
Deformed	
  shape	
  
Equilibrium	
  condi@on	
  
P	
  
P	
   My=	
  P	
  uz	
  
EIyy	
  
z	
  
uz	
  
Mathema@cal	
  Deriva@on:	
  
Buckling	
  Equa@on	
  (1/2)	
  
•  Knowing	
  the	
  bending	
  moment	
  My	
  in	
  the	
  deformed	
  shape:	
  
•  we	
  can	
  subs@tute	
  it	
  within	
  the	
  deflec@on	
  equa@on:	
  
	
  
•  This	
  equa@on	
  can	
  be	
  rewriQen	
  as:	
  
•  Where	
  α	
  is	
  a	
  posi@ve	
  quan@ty,	
  given	
  by:	
  
	
  	
   18	
  
My = Puz
EIyy
d2
uz
dx2
= −Puz
d2
uz
dx2
+α2
uz = 0
α =
P
EIyy
Mathema@cal	
  Deriva@on:	
  
Buckling	
  Equa@on	
  (2/2)	
  
•  What	
  do	
  we	
  do	
  in	
  order	
  to	
  solve	
  an	
  ordinary	
  
differen@al	
  equa@on?	
  
	
  
•  First,	
  we	
  find	
  the	
  general	
  solu,on,	
  which	
  contains	
  as	
  
many	
  integra@on	
  constants	
  as	
  the	
  order	
  of	
  the	
  
differen@al	
  equa@on	
  (two,	
  in	
  this	
  case)	
  
	
  	
  
	
  
	
  	
  
19	
  
uz
= C1
cos(α x) + C2
sin(α x)
Mathema@cal	
  Deriva@on:	
  
Boundary	
  Condi@ons	
  (1/2)	
  
•  Second,	
  we	
  apply	
  the	
  boundary	
  condi,ons	
  (BCs)	
  to	
  get	
  the	
  values	
  of	
  the	
  
integra@ons	
  constants	
  for	
  the	
  par@cular	
  case	
  
–  For	
  two	
  unknown	
  constants,	
  C1	
  and	
  C2,	
  two	
  BCs	
  are	
  needed!	
  
	
  
•  For	
  a	
  pinned-­‐pinned	
  column,	
  the	
  BCs	
  read:	
  
•  uz=0	
  @	
  x=0	
  
(i.e.	
  the	
  transverse	
  transla@on	
  is	
  
prevented	
  at	
  the	
  lek-­‐hand	
  side	
  end)	
  
	
  
•  uz=0	
  @	
  x=L	
  
(i.e.	
  the	
  transverse	
  transla@on	
  is	
  
prevented	
  at	
  the	
  right-­‐hand	
  side	
  end	
  as	
  well)	
  
	
  	
  
	
  
20	
  
EIyy
z
Mathema@cal	
  Deriva@on:	
  
Boundary	
  Condi@ons	
  (2/2)	
  
21	
  
•  The	
  applica@on	
  of	
  the	
  first	
  BC	
  is	
  quite	
  straighrorward	
  
	
  	
  
uz
(x) = C1
cos(α x) + C2
sin(α x)
uz
= 0 @ x = 0 1 20 1 0C C⇒ = × + ×
1 0C⇒ =
General	
  solu5on	
  
Boundary	
  condi5on	
  
Mathema@cal	
  Deriva@on:	
  
Non-­‐Trivial	
  Solu@on	
  (1/3)	
  
22	
  
•  The	
  second	
  BC	
  does	
  require	
  more	
  effort	
  
•  Trivial	
  solu@on:	
  
–  It	
  would	
  follow	
  y=0	
  for	
  any	
  value	
  of	
  the	
  abscissa	
  x	
  
–  No	
  transverse	
  displacements	
  would	
  occur	
  (straight	
  column)	
  
–  This	
  solu@on	
  is	
  therefore	
  unacceptable	
  	
  
•  Non-­‐trivial	
  solu@on:	
  
	
  	
  
uz
(x) = C1
cos(α x) + C2
sin(α x)
uz
= 0 @ x = L 20 sin( )C Lα⇒ =
sin( ) 0Lα⇒ = L nα π⇒ =
n
n
L
π
α α⇒ = =
2 0C⇒ =
Mathema@cal	
  Deriva@on:	
  
Non-­‐Trivial	
  Solu@on	
  (2/3)	
  
23	
  
•  Recalling	
  now	
  the	
  expression	
  of	
  the	
  parameter	
  a,	
  one	
  obtains:	
  
	

	

	
  
•  The	
  associated	
  modes	
  of	
  instability,	
  for	
  n=	
  1,	
  2,	
  3,	
  …,	
  are	
  
sinusoidal	
  func@ons,	
  having	
  a	
  total	
  number	
  n	
  of	
  peaks	
  and	
  
valleys	
  
	
  	
  
	
  	
  
P
EIyy
=
nπ
L
⇒
P
EIyy
=
n2
π2
L2
⇒ Pn
= n2
π2
EIyy
L2
n= 3
n= 2
n= 1
Mathema@cal	
  Deriva@on:	
  
Non-­‐Trivial	
  Solu@on	
  (3/3)	
  
24	
  
•  Larger	
  values	
  of	
  the	
  buckling	
  
load	
  are	
  associated	
  to	
  more	
  
complicated	
  modes	
  of	
  
instability	
  
•  Theore@cally,	
  these	
  modes	
  
could	
  be	
  achieved	
  if	
  roller	
  
supports	
  are	
  applied	
  at	
  the	
  
points	
  of	
  contraflexure	
  
•  However,	
  in	
  prac@ce,	
  the	
  
lower	
  value	
  P1	
  is	
  never	
  
exceeded	
  
Mathema@cal	
  Deriva@on:	
  
Euler’s	
  Buckling	
  Load	
  
•  The	
  actual	
  cri,cal	
  load,	
  i.e.	
  the	
  so-­‐called	
  Euler’s	
  buckling	
  load,	
  is	
  the	
  “engineering	
  
solu@on”,	
  which	
  is	
  the	
  minimum	
  among	
  the	
  mathema@cal	
  solu@ons	
  P1,	
  P2,	
  P3,	
  …,	
  
and	
  is	
  obtained	
  for	
  n=1	
  
•  Moreover,	
  in	
  order	
  to	
  be	
  truly	
  the	
  minimum,	
  you	
  must	
  use	
  the	
  minimum	
  value	
  of	
  
the	
  second	
  moment	
  of	
  area,	
  which	
  might	
  not	
  be	
  Iyy	
  
•  The	
  laQer	
  expression	
  is	
  very	
  important	
  in	
  Structural	
  Engineering	
  
–  You	
  are	
  requested	
  to	
  remember	
  it	
  
–  You	
  must	
  be	
  able	
  to	
  derive	
  this	
  expression	
  as	
  well	
  
25	
  
Pcrit
= PE
= P1
=
π2
EIyy
L2
2
min
E 2
EI
P
L
π
=
FEM-­‐Computed	
  Modes	
  of	
  Instability	
  
26	
  
•  Euler’s	
  buckling	
  load	
  
(PE=	
  P1=	
  181	
  kN)	
  
•  Higher	
  buckling	
  load	
  in	
  the	
  
orthogonal	
  direc@on	
  
•  (P4=	
  3,518	
  kN)	
  
XY X
Z
Y
Z
XY X
Z
Y
Z
4
min 330 cmI = = 4
max 6572 cmI
Horizontal	
  sway	
  
Ver0cal	
  deflec0on	
  
Effects	
  of	
  the	
  Boundary	
  Condi@ons	
  
(1/2)	
  
27	
  
The	
  more	
  the	
  column’s	
  ends	
  are	
  
restrained,	
  the	
  higher	
  is	
  the	
  
buckling	
  load	
  
Similar	
  sinusoidal	
  
shapes	
  are	
  
observed	
  for	
  
different	
  BCs	
  
Effects	
  of	
  the	
  Boundary	
  Condi@ons	
  
(2/2)	
  
28	
  
(a)  Pinned-­‐pinned	
  
(b)  Can@levered	
  
(c)  Fixed-­‐fixed	
  
(d)  Propped	
  
L0	
  is	
  the	
  distance	
  between	
  
two	
  consecu@ve	
  crosses	
  of	
  
the	
  horizontal	
  axis	
  
Effec@ve	
  Length	
  
•  It	
  is	
  useful	
  to	
  introduce	
  the	
  concept	
  of	
  equivalent	
  length,	
  Le=k	
  L	
  as	
  
the	
  length	
  of	
  a	
  pinned-­‐pinned	
  column	
  having	
  the	
  same	
  Euler’s	
  
cri@cal	
  load	
  
•  We	
  therefore	
  must	
  know	
  the	
  value	
  of	
  the	
  coefficient	
  k	
  for	
  different	
  
BCs	
  
29	
  
k=2	
  
k=1	
   k=0.7	
   k=0.5	
  
Can5levered	
  
Pinned-­‐	
  
pinned	
   Propped	
  
Fixed-­‐	
  
fixed	
  
2
min
E 2
e
EI
P
L
π
=
Stocky	
  Columns	
  (1/2)	
  
•  If	
  we	
  divide	
  the	
  Euler’s	
  cri@cal	
  load	
  PE	
  by	
  the	
  cross	
  sec@onal	
  area	
  A,	
  we	
  get	
  
the	
  so-­‐called	
  Euler’s	
  cri@cal	
  stress	
  σcrit:	
  
	
  	
  
•  This	
  is	
  the	
  maximum	
  normal	
  stress	
  which	
  is	
  allowable	
  to	
  prevent	
  buckling	
  
instability,	
  and	
  is	
  inversely	
  propor@onal	
  to	
  the	
  square	
  of	
  the	
  equivalent	
  	
  	
  	
  	
  
length	
  Le	
  
•  If	
  we	
  introduce	
  the	
  parameter	
  ρmin	
  as	
  the	
  minimum	
  radius	
  of	
  gyra@on	
  of	
  
the	
  cross	
  sec@on,	
  and	
  then	
  the	
  slenderness	
  ra@o	
  λ=Le/ρmin,	
  the	
  above	
  
equa@on	
  can	
  be	
  rewriQen	
  as:	
  
	
  	
  
30	
  
σcrit
=
π2
E Imin
A( )
Le
2
=
π2
E ρmin
2
Le
2
=
π2
E
Le
ρmin( )
2
=
π2
λ2
Eρmin
=
Imin
A
2
min
crit 2
e
EP EI
A AL
π
σ = =
Stocky	
  Columns	
  (2/2)	
  
31	
  
•  The	
  s@ffer	
  the	
  material,	
  i.e.	
  the	
  larger	
  the	
  Young’s	
  modulus	
  
E,	
  the	
  higher	
  is	
  σcrit:	
  
•  The	
  larger	
  the	
  slenderness	
  ra@o	
  λ,	
  the	
  lower	
  is	
  σcrit,	
  i.e.	
  very	
  
slender	
  columns	
  will	
  have	
  very	
  low	
  values	
  of	
  σcrit	
  
•  Conversely,	
  stocky	
  columns,	
  with	
  a	
  small	
  slenderness	
  ra@o	
  
λ,	
  will	
  not	
  experience	
  the	
  buckling	
  failure,	
  as	
  the	
  yielding	
  of	
  
the	
  material	
  is	
  likely	
  to	
  happen	
  first:	
  
2
crit 2
E
π
σ
λ
=
crit y Material’s yield stressfσ > =
Strength	
  and	
  S@ffness	
  Criteria	
  (1/2)	
  
•  “Strength”	
  criterion	
  
•  Stocky	
  columns	
  tend	
  to	
  
fail	
  because	
  the	
  elas@c	
  
limit	
  of	
  the	
  material	
  is	
  
reached	
  
•  The	
  safety	
  checks	
  is:	
  
	
  	
  
•  “S,ffness”	
  criterion	
  
•  Slender	
  columns	
  tend	
  
to	
  fail	
  because	
  the	
  
elas@c	
  configura@on	
  is	
  
unstable	
  
•  The	
  safety	
  check	
  is:	
  
	
  	
  
32	
  
2
min
E 2
e
EI
P P
L
π
< =y yP P f A< =
Both	
  must	
  be	
  sa0sfied
Strength	
  and	
  S@ffness	
  Criteria	
  (2/2)	
  
•  For	
  briQle	
  materials	
  
such	
  as	
  concrete,	
  the	
  
yielding	
  stress	
  fy	
  is	
  
replaced	
  with	
  the	
  
crushing	
  stress	
  fc	
  
•  The	
  safety	
  check	
  then	
  
reads:	
  
	
  	
  
33	
  
2
min
E 2
e
EI
P P
L
π
< =P < Pc
= fc
A
Both	
  must	
  be	
  sa0sfied
fc	
  
Strength	
  and	
  S@ffness	
  Criteria	
  
34	
  
•  The	
  Rankine’s	
  failure	
  load	
  
PR	
  combines	
  these	
  two	
  
different	
  criteria,	
  
therefore	
  taking	
  into	
  
account	
  both	
  material	
  
and	
  geometrical	
  
nonlineari@es	
  
•  PR=Py	
  for	
  λ=0	
  
•  PR	
  approaches	
  PE	
  as	
  λ	
  
goes	
  to	
  infinity	
  
0 100 200 300 400
0.0
0.5
1.0
1.5
2.0
l
PêPy
Py	
  
PE	
  PR	
  
PR
=
Py
PE
Py
+ PE
λ	
  
P/Py	
  
Rankine	
  (1820-­‐1872)	
  was	
  a	
  
Scoush	
  civil	
  engineer,	
  
physicist	
  and	
  mathema@cian	
  
Ul@mate	
  Normal	
  Stress	
  
35	
  
•  …	
  experimentally	
  derived	
  
(dots)	
  for	
  wide-­‐flange	
  
steel	
  columns	
  
•  …	
  as	
  a	
  func@on	
  of	
  the	
  
slenderness	
  λ=	
  k	
  L/ρmin	
  
λ	
  
Key	
  Learning	
  Points	
  
1.  Columns	
  in	
  compression	
  may	
  fail	
  because	
  
–  Insufficient	
  bending	
  s@ffness:	
  è	
  Lateral	
  buckling	
  
–  Insufficient	
  axial	
  capacity:	
  è	
  Yielding/Crushing	
  
2.  Euler’s	
  buckling	
  load	
  PE	
  depends	
  on:	
  
–  Minimum	
  second	
  moment	
  of	
  area,	
  Imin	
  
–  Length	
  of	
  the	
  column,	
  L	
  
–  Boundary	
  condi@ons	
  
3.  Interac@on	
  between	
  lateral	
  buckling	
  and	
  
axial	
  capacity	
  can	
  be	
  taken	
  into	
  account	
  
through	
  the	
  (approximate)	
  Rankine’s	
  
formula	
  
36	
  
è	
  Effec@ve	
  length,	
  Le	
  
PR
=
Py
PE
Py
+ PE
PE
=
π2
EImin
Le
2

More Related Content

What's hot

Design of slender columns as per IS 456-2000
Design of slender columns as per IS 456-2000Design of slender columns as per IS 456-2000
Design of slender columns as per IS 456-2000PraveenKumar Shanmugam
 
Isolated footing design
Isolated footing designIsolated footing design
Isolated footing designsrinu_anduri
 
COMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdfCOMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdfZeinab Awada
 
Structural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in BendingStructural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in BendingAlessandro Palmeri
 
Design of two way slab
Design of two way slabDesign of two way slab
Design of two way slabsarani_reza
 
determinate and indeterminate structures
determinate and indeterminate structuresdeterminate and indeterminate structures
determinate and indeterminate structuresvempatishiva
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution MethodBhavik A Shah
 
Column base plates_prof_thomas_murray
Column base plates_prof_thomas_murrayColumn base plates_prof_thomas_murray
Column base plates_prof_thomas_murrayAlberto Rosado
 
6. trusses
6. trusses6. trusses
6. trussesEkeeda
 
Bending stresses and shear stresses
Bending stresses and shear stressesBending stresses and shear stresses
Bending stresses and shear stressessumitt6_25730773
 
Module 1 Behaviour of RC beams in Shear and Torsion
Module 1   Behaviour of RC beams in Shear and TorsionModule 1   Behaviour of RC beams in Shear and Torsion
Module 1 Behaviour of RC beams in Shear and TorsionVVIETCIVIL
 
Introduction of Reinforced Concrete Design
Introduction of Reinforced Concrete DesignIntroduction of Reinforced Concrete Design
Introduction of Reinforced Concrete Designmaylene san luis
 

What's hot (20)

Deep beam aci # l 1
Deep beam  aci  # l 1 Deep beam  aci  # l 1
Deep beam aci # l 1
 
Design of slender columns as per IS 456-2000
Design of slender columns as per IS 456-2000Design of slender columns as per IS 456-2000
Design of slender columns as per IS 456-2000
 
7 losses in prestress
7 losses in prestress7 losses in prestress
7 losses in prestress
 
L25 ppt conjugate
L25 ppt conjugateL25 ppt conjugate
L25 ppt conjugate
 
Deep beams
Deep beams Deep beams
Deep beams
 
Isolated footing design
Isolated footing designIsolated footing design
Isolated footing design
 
COMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdfCOMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdf
 
Structural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in BendingStructural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in Bending
 
Design of two way slab
Design of two way slabDesign of two way slab
Design of two way slab
 
determinate and indeterminate structures
determinate and indeterminate structuresdeterminate and indeterminate structures
determinate and indeterminate structures
 
Matrix methods
Matrix methodsMatrix methods
Matrix methods
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution Method
 
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
 
Column base plates_prof_thomas_murray
Column base plates_prof_thomas_murrayColumn base plates_prof_thomas_murray
Column base plates_prof_thomas_murray
 
6. trusses
6. trusses6. trusses
6. trusses
 
Deep beams
Deep beamsDeep beams
Deep beams
 
Bending stresses and shear stresses
Bending stresses and shear stressesBending stresses and shear stresses
Bending stresses and shear stresses
 
Module 1 Behaviour of RC beams in Shear and Torsion
Module 1   Behaviour of RC beams in Shear and TorsionModule 1   Behaviour of RC beams in Shear and Torsion
Module 1 Behaviour of RC beams in Shear and Torsion
 
Introduction of Reinforced Concrete Design
Introduction of Reinforced Concrete DesignIntroduction of Reinforced Concrete Design
Introduction of Reinforced Concrete Design
 
Beam design
Beam designBeam design
Beam design
 

Viewers also liked

Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Alessandro Palmeri
 
Structural Mechanics: Shear stress in Beams (1st-Year)
Structural Mechanics: Shear stress in Beams (1st-Year)Structural Mechanics: Shear stress in Beams (1st-Year)
Structural Mechanics: Shear stress in Beams (1st-Year)Alessandro Palmeri
 
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Alessandro Palmeri
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures? Alessandro Palmeri
 
Spectrum-Compliant Accelerograms through Harmonic Wavelet Transform
Spectrum-Compliant Accelerograms through Harmonic Wavelet TransformSpectrum-Compliant Accelerograms through Harmonic Wavelet Transform
Spectrum-Compliant Accelerograms through Harmonic Wavelet TransformAlessandro Palmeri
 
Unsymmetrical bending.ppt
Unsymmetrical bending.pptUnsymmetrical bending.ppt
Unsymmetrical bending.pptVenkatesh Ca
 
Toward overcoming the concept of effective stiffness and damping in the dynam...
Toward overcoming the concept of effective stiffness and damping in the dynam...Toward overcoming the concept of effective stiffness and damping in the dynam...
Toward overcoming the concept of effective stiffness and damping in the dynam...Alessandro Palmeri
 
BIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGNBIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGNshawon_sb
 
Unsymmetrical bending and shear centre
Unsymmetrical bending and shear centreUnsymmetrical bending and shear centre
Unsymmetrical bending and shear centreYatin Singh
 
Steel design pre 1
Steel design   pre 1Steel design   pre 1
Steel design pre 15006
 
Sd i-module4- rajesh sir
Sd i-module4- rajesh sirSd i-module4- rajesh sir
Sd i-module4- rajesh sirSHAMJITH KM
 

Viewers also liked (20)

Complex stresses (2nd year)
Complex stresses (2nd year)Complex stresses (2nd year)
Complex stresses (2nd year)
 
Complex strains (2nd year)
Complex strains (2nd year)Complex strains (2nd year)
Complex strains (2nd year)
 
Shear stresses (2nd year)
Shear stresses (2nd year)Shear stresses (2nd year)
Shear stresses (2nd year)
 
Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)
 
Structural Mechanics: Shear stress in Beams (1st-Year)
Structural Mechanics: Shear stress in Beams (1st-Year)Structural Mechanics: Shear stress in Beams (1st-Year)
Structural Mechanics: Shear stress in Beams (1st-Year)
 
SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4
 
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
 
SDEE: Lecture 6
SDEE: Lecture 6SDEE: Lecture 6
SDEE: Lecture 6
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
 
Reinforced column design
Reinforced column design Reinforced column design
Reinforced column design
 
SDEE: Lectures 1 and 2
SDEE: Lectures 1 and 2SDEE: Lectures 1 and 2
SDEE: Lectures 1 and 2
 
SDEE: Lecture 1
SDEE: Lecture 1SDEE: Lecture 1
SDEE: Lecture 1
 
Spectrum-Compliant Accelerograms through Harmonic Wavelet Transform
Spectrum-Compliant Accelerograms through Harmonic Wavelet TransformSpectrum-Compliant Accelerograms through Harmonic Wavelet Transform
Spectrum-Compliant Accelerograms through Harmonic Wavelet Transform
 
Unsymmetrical bending.ppt
Unsymmetrical bending.pptUnsymmetrical bending.ppt
Unsymmetrical bending.ppt
 
Toward overcoming the concept of effective stiffness and damping in the dynam...
Toward overcoming the concept of effective stiffness and damping in the dynam...Toward overcoming the concept of effective stiffness and damping in the dynam...
Toward overcoming the concept of effective stiffness and damping in the dynam...
 
Wind Actions According To EC1
Wind Actions According To  EC1Wind Actions According To  EC1
Wind Actions According To EC1
 
BIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGNBIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGN
 
Unsymmetrical bending and shear centre
Unsymmetrical bending and shear centreUnsymmetrical bending and shear centre
Unsymmetrical bending and shear centre
 
Steel design pre 1
Steel design   pre 1Steel design   pre 1
Steel design pre 1
 
Sd i-module4- rajesh sir
Sd i-module4- rajesh sirSd i-module4- rajesh sir
Sd i-module4- rajesh sir
 

Similar to Failure of slender and stocky columns (2nd year)

Stability _ Introduction.pdf
Stability _ Introduction.pdfStability _ Introduction.pdf
Stability _ Introduction.pdfYasirkhan777565
 
A study on _ buckling
A study on _ bucklingA study on _ buckling
A study on _ bucklingKishan Sharma
 
Compression_members1.ppt
Compression_members1.pptCompression_members1.ppt
Compression_members1.pptRijuDasgupta
 
Ch. 07_Columns and Struts.pdf .
Ch. 07_Columns and Struts.pdf               .Ch. 07_Columns and Struts.pdf               .
Ch. 07_Columns and Struts.pdf .happycocoman
 
Eccentrically loaded welded group
Eccentrically loaded welded groupEccentrically loaded welded group
Eccentrically loaded welded groupAtlas Zhang
 
Column and Strut .ppt
Column and Strut .pptColumn and Strut .ppt
Column and Strut .pptssuser77fe26
 
Column Direct Load.ppt
 Column Direct Load.ppt Column Direct Load.ppt
Column Direct Load.pptSafwanRawi1
 
Chapter 11: Stability of Equilibrium: Columns
Chapter 11: Stability of Equilibrium: ColumnsChapter 11: Stability of Equilibrium: Columns
Chapter 11: Stability of Equilibrium: ColumnsMonark Sutariya
 
Bending of Curved Beams.ppt
Bending of Curved Beams.pptBending of Curved Beams.ppt
Bending of Curved Beams.pptSamiaTariq16
 
Topic3_Displacement Method of Analysis Frames Sideway.pptx
Topic3_Displacement Method of Analysis Frames Sideway.pptxTopic3_Displacement Method of Analysis Frames Sideway.pptx
Topic3_Displacement Method of Analysis Frames Sideway.pptxMary Joanne Aniñon
 
Lecture 6. Instability of members 2021_MP_new.pdf
Lecture 6. Instability of  members 2021_MP_new.pdfLecture 6. Instability of  members 2021_MP_new.pdf
Lecture 6. Instability of members 2021_MP_new.pdfmichelepalermo6
 
11-Introduction to Axially Compression Members (Steel Structural Design & Pro...
11-Introduction to Axially Compression Members (Steel Structural Design & Pro...11-Introduction to Axially Compression Members (Steel Structural Design & Pro...
11-Introduction to Axially Compression Members (Steel Structural Design & Pro...Hossam Shafiq II
 

Similar to Failure of slender and stocky columns (2nd year) (20)

Columns
ColumnsColumns
Columns
 
Stability _ Introduction.pdf
Stability _ Introduction.pdfStability _ Introduction.pdf
Stability _ Introduction.pdf
 
13.1 13.3
13.1 13.313.1 13.3
13.1 13.3
 
A study on _ buckling
A study on _ bucklingA study on _ buckling
A study on _ buckling
 
Compression_members1.ppt
Compression_members1.pptCompression_members1.ppt
Compression_members1.ppt
 
Ch. 07_Columns and Struts.pdf .
Ch. 07_Columns and Struts.pdf               .Ch. 07_Columns and Struts.pdf               .
Ch. 07_Columns and Struts.pdf .
 
Eccentrically loaded welded group
Eccentrically loaded welded groupEccentrically loaded welded group
Eccentrically loaded welded group
 
Column and Strut .ppt
Column and Strut .pptColumn and Strut .ppt
Column and Strut .ppt
 
Column Direct Load.ppt
 Column Direct Load.ppt Column Direct Load.ppt
Column Direct Load.ppt
 
Chapter 11: Stability of Equilibrium: Columns
Chapter 11: Stability of Equilibrium: ColumnsChapter 11: Stability of Equilibrium: Columns
Chapter 11: Stability of Equilibrium: Columns
 
Buckling and tension.pptx
Buckling and tension.pptxBuckling and tension.pptx
Buckling and tension.pptx
 
Lec8 buckling v2_1
Lec8 buckling v2_1Lec8 buckling v2_1
Lec8 buckling v2_1
 
Beams And Columns
Beams And ColumnsBeams And Columns
Beams And Columns
 
SA-I_Column & Strut
SA-I_Column & StrutSA-I_Column & Strut
SA-I_Column & Strut
 
Bending of Curved Beams.ppt
Bending of Curved Beams.pptBending of Curved Beams.ppt
Bending of Curved Beams.ppt
 
Topic3_Displacement Method of Analysis Frames Sideway.pptx
Topic3_Displacement Method of Analysis Frames Sideway.pptxTopic3_Displacement Method of Analysis Frames Sideway.pptx
Topic3_Displacement Method of Analysis Frames Sideway.pptx
 
Lecture 6. Instability of members 2021_MP_new.pdf
Lecture 6. Instability of  members 2021_MP_new.pdfLecture 6. Instability of  members 2021_MP_new.pdf
Lecture 6. Instability of members 2021_MP_new.pdf
 
Structures and Materials- Section 8 Statically Indeterminate Structures
Structures and Materials- Section 8 Statically Indeterminate StructuresStructures and Materials- Section 8 Statically Indeterminate Structures
Structures and Materials- Section 8 Statically Indeterminate Structures
 
11-Introduction to Axially Compression Members (Steel Structural Design & Pro...
11-Introduction to Axially Compression Members (Steel Structural Design & Pro...11-Introduction to Axially Compression Members (Steel Structural Design & Pro...
11-Introduction to Axially Compression Members (Steel Structural Design & Pro...
 
Part 3 Beams(1).pdf
Part 3 Beams(1).pdfPart 3 Beams(1).pdf
Part 3 Beams(1).pdf
 

Recently uploaded

URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 

Recently uploaded (20)

Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 

Failure of slender and stocky columns (2nd year)

  • 1. Failure  of  slender  and  stocky   columns   Dr  Alessandro  Palmeri   <A.Palmeri@lboro.ac.uk>  
  • 2. Teaching  schedule   Week Lecture 1 Staff Lecture 2 Staff Tutorial Staff 1 Beam Shear Stresses 1 A P Beam Shear Stresses 2 A P --- --- 2 Shear centres A P Basic Concepts J E-R Shear Centre A P 3 Principle of Virtual forces J E-R Indeterminate Structures J E-R Virtual Forces J E-R 4 The Compatibility Method J E-R Examples J E-R Virtual Forces J E-R 5 Examples J E-R Moment Distribution - Basics J E-R Comp. Method J E-R 6 The Hardy Cross Method J E-R Fixed End Moments J E-R Comp. Method J E-R 7 Examples J E-R Non Sway Frames J E-R Mom. Dist J E-R 8 Column Stability 1 A P Sway Frames J E-R Mom. Dist J E-R 9 Column Stability 2 A P Unsymmetric Bending 1 A P Colum Stability A P 10 Unsymmetric Bending 2 A P Complex Stress/Strain A P Unsymmetric Bending A P 11 Complex Stress/Strain A P Complex Stress/Strain A P Complex Stress/Strain A P Christmas Holiday 12 Revision 13 14 Exams 15 2  
  • 3. Mo@va@ons  (1/5)   •  Load-­‐carrying  structures  may  fail  in  a  variety  of  ways,   depending  upon:   –  Type  of  structure  (truss,  frame,  …)   –  Condi@ons  of  support  (pinned,  fixed,  …)   –  Loads  applied  (sta@c,  dynamic,  …)   –  Materials  used  (briQle,  duc@le,  …)   •  Failures  are  prevented  by  designing  structures  so  that   maximum  stresses  (strength  criterion)  and  maximum   displacements  (s,ffness  criterion)  remain  within   admissible  limits   3  
  • 4. Mo@va@ons  (2/5)   4   •  For  the  fans  of  The  Big  Bang  Theory:   –  Sheldon  and  Howard  have  got  this  seriously  wrong!   •  You  can’t  use  the  Young’s  modulus  to  quan@fy  the  strength   of  material,  but  its  s,ffness!    
  • 5. Mo@va@ons    (3/5)   •  S@ffness  and  strength  of   materials   –  In  the  stress-­‐strain  curve   for  a  duc@le  material   (e.g.  steel),  the  Young’s   modulus  E  defines  the   s@ffness,  while  the  yield   stress  σy  represents  the   strength   5  
  • 6. Mo@va@ons    (4/5)   •  S@ffness  criterion:    “Slender  Column”   6   •  Strength  criterion:   “Short  Column”  
  • 7. Mo@va@ons    (5/5)   7   Coventry  Cathedral   ç  Slender  column   Detail  of  the  support  è  
  • 8. Learning  Outcomes   •  When  we  have  completed  this  unit  (2  lectures   +  1  tutorial),  you  should  be  able  to:   – Derive  the  Euler’s  cri@cal  load  for  slender  pinned-­‐ pinned  columns  in  compression   – Predict  the  mode  of  failure  for  both  short  and   slender  columns  in  compression   8  
  • 9. Further  reading   •  R  C  Hibbeler,  “Mechanics  of  Materials”,  8th   Ed,  Pren@ce  Hall  –  Chapter  13  on  “Buckling   of  Column”   •  T  H  G  Megson,  “Structural  and  Stress   Analysis”,  2nd  Ed,  Elsevier  –  Chapter  21  on   “Structural  Instability”  (eBook)   9  
  • 10. Short  and  Slender  Struts   10   •  Increasing  the  length  of  a   strut  reduces  its  buckling   load   –  For  instance,  a  matchs,ck   is  reasonably  strong  in   compression  (lek),  but  a   longer  s,ck,  with  the   same  cross  sec@on  and   the  same  material,  would   be  weaker  and  buckles  in   compression  (right)   –  The  slenderness  of  a  strut   plays  an  important  role  in   its  mode  of  failure  in   compression  
  • 11. Buckling,  i.e.  Lateral  Instability  (1/2)   11   •  That  is,  if  a  column  is   rela@vely  slender,  it  may   deflect  laterally  when   subjected  to  a   compressive  force  P   (Fig  (a))  and  fail  by   bending  (Fig  (b)),  rather   than  failing  by  direct   compression  of  the   material  
  • 12. Buckling,  i.e.  Lateral  Instability  (2/2)   12   •  Pcrit  is  the  so-­‐called  cri,cal  buckling  load   –  If  the  axial  load  P  is  less  than  Pcrit,  bending  is  caused  by  lateral  loads  only   –  If  P  is  greater  than  Pcrit,  the  ruler  bends  even  without  lateral  loads  
  • 13. Euler’s  Cri@cal  Load  for   Pinned-­‐Pinned  Slender  Columns   •  One  of  the  Learning  Outcomes  of  this  Unit  is   for  you  to  become  able  to  mathema@cally   derive  (and  remember  as  well)  the  expression   of  the  cri@cal  load  Pcrit  for  pinned-­‐pinned   slender  column   •  Pcrit=PE  is  oken  called  Euler’s  buckling  load   –  Aker  the  Swiss  mathema@cian  Leonhard  Euler   (1707-­‐1783)   !! Pcrit = π2 EImin L2 13  
  • 14. Mathema@cal  Deriva@on:   Bending  Equa@on   •  What’s  the  equa@on  ruling  the  beam’s  downward  deflec@on,  uz(x),  for  a   given  bending  moment  diagram,  My(x)?   •  We  used  this  second-­‐order  differen@al  equa@on  in  part  A  to  calculate  the   beam’s  deflec@on  under  transverse  loads…   •  where,  as  usual:   –  E=  Young’s  modulus   –  Iyy=  Second  moment  of  area  about  the  horizontal  neutral  axis   14   EIyy d2 uz (x) dx2 = −My (x)
  • 15. Mathema@cal  Deriva@on:   Sign  Conven@on   •  Do  you  remember  from  last  year?   15  
  • 16. Mathema@cal  Deriva@on:   P-­‐Delta  (1/2)   •  What’s  the  bending  moment  My  in  this  circumstance?     •  We  don’t  have  transverse  loads  this  @me   –  the  column  is  subjected  to  the  axial  load  P  only   •  How  can  we  have  a  bending  moment?     •  In  order  to  derive  the  expression  of  the  Euler’s  buckling  load,  we   need  to  assume  that   –  a  disturbance/imperfec@on  exists  in  the  column,   –  therefore  the  buckling  occurs   –  and  My  can  be  consistently  evaluated  by  using  the  equilibrium   equa@ons  in  the  deformed  shape   16  
  • 17. Mathema@cal  Deriva@on:   P-­‐Delta  (1/2)   17   Deformed  shape   Equilibrium  condi@on   P   P   My=  P  uz   EIyy   z   uz  
  • 18. Mathema@cal  Deriva@on:   Buckling  Equa@on  (1/2)   •  Knowing  the  bending  moment  My  in  the  deformed  shape:   •  we  can  subs@tute  it  within  the  deflec@on  equa@on:     •  This  equa@on  can  be  rewriQen  as:   •  Where  α  is  a  posi@ve  quan@ty,  given  by:       18   My = Puz EIyy d2 uz dx2 = −Puz d2 uz dx2 +α2 uz = 0 α = P EIyy
  • 19. Mathema@cal  Deriva@on:   Buckling  Equa@on  (2/2)   •  What  do  we  do  in  order  to  solve  an  ordinary   differen@al  equa@on?     •  First,  we  find  the  general  solu,on,  which  contains  as   many  integra@on  constants  as  the  order  of  the   differen@al  equa@on  (two,  in  this  case)             19   uz = C1 cos(α x) + C2 sin(α x)
  • 20. Mathema@cal  Deriva@on:   Boundary  Condi@ons  (1/2)   •  Second,  we  apply  the  boundary  condi,ons  (BCs)  to  get  the  values  of  the   integra@ons  constants  for  the  par@cular  case   –  For  two  unknown  constants,  C1  and  C2,  two  BCs  are  needed!     •  For  a  pinned-­‐pinned  column,  the  BCs  read:   •  uz=0  @  x=0   (i.e.  the  transverse  transla@on  is   prevented  at  the  lek-­‐hand  side  end)     •  uz=0  @  x=L   (i.e.  the  transverse  transla@on  is   prevented  at  the  right-­‐hand  side  end  as  well)         20   EIyy z
  • 21. Mathema@cal  Deriva@on:   Boundary  Condi@ons  (2/2)   21   •  The  applica@on  of  the  first  BC  is  quite  straighrorward       uz (x) = C1 cos(α x) + C2 sin(α x) uz = 0 @ x = 0 1 20 1 0C C⇒ = × + × 1 0C⇒ = General  solu5on   Boundary  condi5on  
  • 22. Mathema@cal  Deriva@on:   Non-­‐Trivial  Solu@on  (1/3)   22   •  The  second  BC  does  require  more  effort   •  Trivial  solu@on:   –  It  would  follow  y=0  for  any  value  of  the  abscissa  x   –  No  transverse  displacements  would  occur  (straight  column)   –  This  solu@on  is  therefore  unacceptable     •  Non-­‐trivial  solu@on:       uz (x) = C1 cos(α x) + C2 sin(α x) uz = 0 @ x = L 20 sin( )C Lα⇒ = sin( ) 0Lα⇒ = L nα π⇒ = n n L π α α⇒ = = 2 0C⇒ =
  • 23. Mathema@cal  Deriva@on:   Non-­‐Trivial  Solu@on  (2/3)   23   •  Recalling  now  the  expression  of  the  parameter  a,  one  obtains:     •  The  associated  modes  of  instability,  for  n=  1,  2,  3,  …,  are   sinusoidal  func@ons,  having  a  total  number  n  of  peaks  and   valleys           P EIyy = nπ L ⇒ P EIyy = n2 π2 L2 ⇒ Pn = n2 π2 EIyy L2 n= 3 n= 2 n= 1
  • 24. Mathema@cal  Deriva@on:   Non-­‐Trivial  Solu@on  (3/3)   24   •  Larger  values  of  the  buckling   load  are  associated  to  more   complicated  modes  of   instability   •  Theore@cally,  these  modes   could  be  achieved  if  roller   supports  are  applied  at  the   points  of  contraflexure   •  However,  in  prac@ce,  the   lower  value  P1  is  never   exceeded  
  • 25. Mathema@cal  Deriva@on:   Euler’s  Buckling  Load   •  The  actual  cri,cal  load,  i.e.  the  so-­‐called  Euler’s  buckling  load,  is  the  “engineering   solu@on”,  which  is  the  minimum  among  the  mathema@cal  solu@ons  P1,  P2,  P3,  …,   and  is  obtained  for  n=1   •  Moreover,  in  order  to  be  truly  the  minimum,  you  must  use  the  minimum  value  of   the  second  moment  of  area,  which  might  not  be  Iyy   •  The  laQer  expression  is  very  important  in  Structural  Engineering   –  You  are  requested  to  remember  it   –  You  must  be  able  to  derive  this  expression  as  well   25   Pcrit = PE = P1 = π2 EIyy L2 2 min E 2 EI P L π =
  • 26. FEM-­‐Computed  Modes  of  Instability   26   •  Euler’s  buckling  load   (PE=  P1=  181  kN)   •  Higher  buckling  load  in  the   orthogonal  direc@on   •  (P4=  3,518  kN)   XY X Z Y Z XY X Z Y Z 4 min 330 cmI = = 4 max 6572 cmI Horizontal  sway   Ver0cal  deflec0on  
  • 27. Effects  of  the  Boundary  Condi@ons   (1/2)   27   The  more  the  column’s  ends  are   restrained,  the  higher  is  the   buckling  load   Similar  sinusoidal   shapes  are   observed  for   different  BCs  
  • 28. Effects  of  the  Boundary  Condi@ons   (2/2)   28   (a)  Pinned-­‐pinned   (b)  Can@levered   (c)  Fixed-­‐fixed   (d)  Propped   L0  is  the  distance  between   two  consecu@ve  crosses  of   the  horizontal  axis  
  • 29. Effec@ve  Length   •  It  is  useful  to  introduce  the  concept  of  equivalent  length,  Le=k  L  as   the  length  of  a  pinned-­‐pinned  column  having  the  same  Euler’s   cri@cal  load   •  We  therefore  must  know  the  value  of  the  coefficient  k  for  different   BCs   29   k=2   k=1   k=0.7   k=0.5   Can5levered   Pinned-­‐   pinned   Propped   Fixed-­‐   fixed   2 min E 2 e EI P L π =
  • 30. Stocky  Columns  (1/2)   •  If  we  divide  the  Euler’s  cri@cal  load  PE  by  the  cross  sec@onal  area  A,  we  get   the  so-­‐called  Euler’s  cri@cal  stress  σcrit:       •  This  is  the  maximum  normal  stress  which  is  allowable  to  prevent  buckling   instability,  and  is  inversely  propor@onal  to  the  square  of  the  equivalent           length  Le   •  If  we  introduce  the  parameter  ρmin  as  the  minimum  radius  of  gyra@on  of   the  cross  sec@on,  and  then  the  slenderness  ra@o  λ=Le/ρmin,  the  above   equa@on  can  be  rewriQen  as:       30   σcrit = π2 E Imin A( ) Le 2 = π2 E ρmin 2 Le 2 = π2 E Le ρmin( ) 2 = π2 λ2 Eρmin = Imin A 2 min crit 2 e EP EI A AL π σ = =
  • 31. Stocky  Columns  (2/2)   31   •  The  s@ffer  the  material,  i.e.  the  larger  the  Young’s  modulus   E,  the  higher  is  σcrit:   •  The  larger  the  slenderness  ra@o  λ,  the  lower  is  σcrit,  i.e.  very   slender  columns  will  have  very  low  values  of  σcrit   •  Conversely,  stocky  columns,  with  a  small  slenderness  ra@o   λ,  will  not  experience  the  buckling  failure,  as  the  yielding  of   the  material  is  likely  to  happen  first:   2 crit 2 E π σ λ = crit y Material’s yield stressfσ > =
  • 32. Strength  and  S@ffness  Criteria  (1/2)   •  “Strength”  criterion   •  Stocky  columns  tend  to   fail  because  the  elas@c   limit  of  the  material  is   reached   •  The  safety  checks  is:       •  “S,ffness”  criterion   •  Slender  columns  tend   to  fail  because  the   elas@c  configura@on  is   unstable   •  The  safety  check  is:       32   2 min E 2 e EI P P L π < =y yP P f A< = Both  must  be  sa0sfied
  • 33. Strength  and  S@ffness  Criteria  (2/2)   •  For  briQle  materials   such  as  concrete,  the   yielding  stress  fy  is   replaced  with  the   crushing  stress  fc   •  The  safety  check  then   reads:       33   2 min E 2 e EI P P L π < =P < Pc = fc A Both  must  be  sa0sfied fc  
  • 34. Strength  and  S@ffness  Criteria   34   •  The  Rankine’s  failure  load   PR  combines  these  two   different  criteria,   therefore  taking  into   account  both  material   and  geometrical   nonlineari@es   •  PR=Py  for  λ=0   •  PR  approaches  PE  as  λ   goes  to  infinity   0 100 200 300 400 0.0 0.5 1.0 1.5 2.0 l PêPy Py   PE  PR   PR = Py PE Py + PE λ   P/Py   Rankine  (1820-­‐1872)  was  a   Scoush  civil  engineer,   physicist  and  mathema@cian  
  • 35. Ul@mate  Normal  Stress   35   •  …  experimentally  derived   (dots)  for  wide-­‐flange   steel  columns   •  …  as  a  func@on  of  the   slenderness  λ=  k  L/ρmin   λ  
  • 36. Key  Learning  Points   1.  Columns  in  compression  may  fail  because   –  Insufficient  bending  s@ffness:  è  Lateral  buckling   –  Insufficient  axial  capacity:  è  Yielding/Crushing   2.  Euler’s  buckling  load  PE  depends  on:   –  Minimum  second  moment  of  area,  Imin   –  Length  of  the  column,  L   –  Boundary  condi@ons   3.  Interac@on  between  lateral  buckling  and   axial  capacity  can  be  taken  into  account   through  the  (approximate)  Rankine’s   formula   36   è  Effec@ve  length,  Le   PR = Py PE Py + PE PE = π2 EImin Le 2