Asynchronous Transfer Mode
         (ATM)



          Mathews Vergis
              TEL 660
    Winter trimester 2005 - 2006
Topics to be discussed:
•   Need for network convergence
•   Introduction to ATM
•   ATM Interfaces and Service categories
•   Basic ATM Concepts and Operation
•   ATM Cell Structure and Addressing
•   ATM Layers
Popular misconceptions even among
            Engineers
• The phasor was invented by Captain Kirk of
  Star Trek
• Armature reaction is a chemical reaction
• ATM stands for Automated Teller Machines
Need for Network
            Convergence
• PSTN sometimes used as a data network
  backbone – but since it is circuit switched
  (voice optimized) not very WAN efficient
• Delay sensitive traffic such as voice not
  possible on data networks since there is no
  guarantee of QoS
Types of Traffic and demand on a
      communication channel
Voice
• Its generation is asynchronous (a speaker may speak
  anytime)
• Its transmission must be synchronous (once the
  message starts, it must flow continuously as it is
  spoken)
• The bandwidth required for a voice conversation in
  digital communication is relatively small and constant
  (64K)
• The signals may contain a high degree of error and
  the information can still be retrieved correctly
Types of Traffic and demand on a
      communication channel
Video
• The generation is synchronous (continuous)
• Its transmission is synchronous. The
  bandwidth required is variable and it could
  range from under 64 Kbps to several Mbps in
  the same session.
• Error control should be tight - otherwise the
  wrong information on the monitor may trigger
  severe wrongful actions
Types of Traffic and demand on a
      communication channel
Data
• Its generation could be either asynchronous (text) or
  synchronous (telemetry)
• Its transmission in general can be asynchronous (data
  typically can wait patiently in buffers)
• The information is extremely error-sensitive, so
  extreme caution must be exercised in transmission
  and error control must be very tight.
How can we combine voice , data
    and video on the same link?
• Fixed and relatively short packets
• Delays associated with each packet are going
  to be short and fixed – predictable
  transmission
• If Voice and Video can be given priority
  handling – then mixing is possible without any
  diminishing in quality
Introduction
• ATM – Asynchronous Transfer Mode
• It is a high speed, connection – oriented
  switching and multiplexing technology
  capable of transmitting voice, video and data
  and interconnecting LAN’s
• ATM is asynchronous because information
  streams can be sent independently without the
  need of a common clock
History of ATM
• Developed in the early 80’s as a switching technology
  for Broadband Integrated Services Digital Network
• Anchorage Accord in 1996 declares availability of
  specs required to implement a multi-service ATM
  network
Market Segments of ATM
Features and Benefits of ATM
• Convergence of Voice , Video and Data on
  one network
• High speed switching at hardware level
• Bandwidth on demand
• Predefined and guaranteed QoS and CoS
• Superior Management features
• Scalability in network size and speed
• Ease of integration with other technologies
ATM Applications
ATM Fast Packet Standards and
             Services
• Handles traffic through fast
  – packet switching
  technique
• Must be able to handle both
  circuit and packet switching
• Must also be able to
  accommodate the different
  bit rates – variable (packet
  switching) and constant
  (circuit switching)
• Uses Cell relay technology
Important terms relevant to ATM
• Quality of Service (QoS) :A broadly used term that refers to
  the performance attributes of an end-to-end connection. A QoS
  definition for data would address attributes such as error rates,
  lost packet rates, throughput, and delay
• Class of Service (CoS) :It is a way of managing traffic in a
  network by grouping similar types of traffic together and
  treating each type as a class with its own level of service
  priority
• Fast Packet Switching :A packet switching technique that
  increases the throughput by eliminating overhead. Overhead
  reduction is accomplished by allocating flow control and error
  correction functions to either the user applications or the
  network nodes that interface with the user. Cell relay is an
  implementation of this.
Cells and Cell relay
• A Cell is a formatted packet that uses a fixed length
  data unit
• Cell relay is the process of moving these cells
  through switching elements
• Fixed size cells can be switched at a very high speed
  and add predictability to data transmissions
• Variable length frames produce unpredictable
  patterns and performances as the buffer time cannot
  be determined
• Cell tax – overhead imposed by ATM cells which can
  cut into amount of data that can be transferred
ATM Interfaces
• ATM is a connection            User to Network Interface (UNI) :
  oriented technique designed       Connection existing between the
                                    user equipment and ATM
  to transport both connection      equipment.
  and connection-less services   Network to Network Interface
• Operations at the boundary        (NNI) : Connection via which
  of a network are connection       traffic travels between ATM
  oriented                          devices in the same network.
                                 Intercarrier Interface (ICI) : Used
• Within the network the            to send traffic across intermediate
  operation is connectionless       networks
                                 Data Exchange Interface (DXI) :
                                    Used to transmit packets rather
                                    than cells to the ATM interface
                                    when non – ATM equipment is
                                    used
ATM Service Categories
• Allow for traffic to be buffered and queued for later
  transmission
• Can permit loose timing and asynchronous operations between
  sender and receiver
Fundamental ATM Operations
             Concept
• A virtual or logical connection is established
• ATM forms a packet of fixed length – 53 octets ( 5
  octet header and 48 octet information field )
• Cells are placed in a queue, on reaching ATM switch
• Cells are then multiplexed asynchronously with other
  cells for transmission
• Switch adapts the incoming bit rate to match the
  transmit channel bit rate
• Switch inserts dummy cells to meet the aggregate bit
  stream rate of 155.52 Mbps
ATM Virtual paths and
                Channels
ATM Virtual Circuit Terminology
• Virtual Channel (VC) – provides
  a fixed pathway or route between
  2 points. Setup across an ATM
  network whenever data transfer
  begins.
• Virtual Path (VP) – groups of
  VC’s used to tell a switch how to
  forward an ATM cell through an
  ATM network
• Virtual Path Identifier (VPI) – in
  the ATM header used to identify
  route established in the ATM
  Switch
• Virtual Channel Identifier (VCI)
  - in the ATM header used to
  identify a channel within a VP
ATM Virtual paths (cont’d)
• Transmission path – physical
  media transporting the cells
• Virtual Channel Connection
  (VCC) – connection from source
  end user VCI to destination user
  VCI
• Virtual path Connection (VPC) –
  connection from source end user
  VPI to the destination end user
  VPI
• Operation : Cell is received
  across a link on a known VPI or
  VCI value - their values are
  remapped as necessary as all
  VCI’s and VPI’s are only
  significant to the local link
ATM VCI and VPI Swapping
•   Logical ID Swapping : This is the technique by which the Logical ID of
    one link is changed to another one as the cell passes through it. ATM
    switch changes the cell header VPI/VCI fields to reflect a new VPI and
    VCI for the outgoing cell. This can be done in one of 2 ways : VP is
    predefined in the switch or VP is set up dynamically when cell reaches
    the switch.
•   Forwarding process depends on 2 lookup tables within the switch:
       VP table – record of VP’s on each link
       VC table – maintain the output VP and VC to send the cell
•   Connection Admission Control (CAC) - procedure used to decide if a
    request for an ATM connection can be accepted based on the attributes
    of both the requested connection and the existing connections
VC and VP Swapping
ATM Cell Structure
ATM Cell Structure
ATM Addressing
• Uses addressing similar to
  numerical addressing for
  telephone numbers
• Uses E.164 addresses for public
  ATM (B- ISDN) networks
• Extended ATM addressing to
  include private networks –
  Overlay model – ATM layer maps
  network layer (IP) addresses to
  ATM addresses. Address format
  uses OSI network service access
  point (NSAP) addresses
• NSAP address – providing the
  logical point between the network
  and transport layers of the OSI
  model – the location of this point
  is identified by network service
  provider
ATM Address formats
• Currently 4 formats used for ATM networks
• The fields are divided into 2 sections: network and user
• Network prefixes : fields as needed by the network side of the
  UNI
• User prefixes : Fields as needed by the user side of the UNI
ATM address formats (cont’d)
ATM Routing Domains and Areas
ATM address – 20 byte string that has the following
  fields     :
• Country code
• Administrative authority
• Routing domain
• Area identifier
• End system identifier
• NSAP
• International code
• ISDN telephone number
ATM Routing Domains and Areas
• Authority and Format Identifier (AFI): This identifier is
  part of the network level address header. Value for 1st AFI field
  can be : DCC (hex 39),E.164 (hex 45), ICD (hex 47)
• Routing domains : used for traffic management and allocating
  bandwidth capacity. Defined in the lookup tables in the
  switch.
• End System Identifier (ESI) : identifies an end system
  ( computer or LAN) within an area
• Selector Field not used by the ATM network
• Purpose of the ATM address format is identify ATM devices
  in an ATM network
ATM Routing Domains and Areas
ATM Layers
• ATM architecture uses a logical reference
  model to describe its functions
• ATM functions correspond to physical layer
  and part of the Data Link layer of the OSI
  model
• On its own ATM has function at layers 1and 2
  of the OSI model, but today TCP/IP is routed
  over ATM networks which means it can also
  function at layers 3 and 4 of the OSI model.
ATM reference model




• The ATM reference model constructed as 3 planes
  which span all the layers :
     • Control – generates and manages the signaling requests
     • User – manages the transfer of data
     • Management – contains 2 parts:
         – Layer management : manages layer specific functions
         – Plane management : manages and co – ordinates functions related to
           the whole system
ATM and OSI model
ATM Adaptation layer
• Has 2 sublayers:
  – Convergence Sublayer ( CS )
     • Determines the Class of service (CoS) for the incoming
       traffic
     • Provides a specific AAL service at an AAL network
       service access point (NSAP)
  – Segmentation and Reassembly Sublayer (SAR)
     • Segments higher – level user data into 48 – byte cells
       plus necessary overhead at the sending node and
       reassembles cells at the receiving node
AAL Types and Class of Service
              (CoS)
• Depending on data type, the AAL protocol provides 5 AAL
  types to accommodate a particular service class
• AAL 5 is the most popular AAL type
   – For IP, LAN frames , signaling messages, frame relay , video
ATM Layer
• Performs the framing , multiplexing /
  demultiplexing of cells and also does the
  switching
• Generates cell headers on transmitting node –
  based on information from higher layers
• Generic flow control
• VCI /VPI translation
• Extracts cell headers on a receiving node and
  passes cell payload to higher layers
Physical Layer
• Transports ATM cells on a communications channel
  and defines mechanical specifications ( connectors
  etc.)
• 2 sublayers:
   – Transmission Convergence sublayer
      • Maps cells into the physical layer frame format on transmit and
        delineates ATM cells in the received bit stream
      • Generates HEC on transmit
      • Generates idle cells for cell rate decoupling or speed matching
   – Physical medium sublayer
      • Medium dependent function like bit transfer, bit alignment
References:
• http://www.techfest.com/networking/atm/atm.htm
• http://www.dit.upm.es/snh/arhelp/glossaries/atmf/gloss-a.html
• http://www.rhyshaden.com/atm.htm
• http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/at
  m.htm
• Trivedi, Carol, “Wide Area Networks”; EMCParadigm 2004

Atm intro

  • 1.
    Asynchronous Transfer Mode (ATM) Mathews Vergis TEL 660 Winter trimester 2005 - 2006
  • 2.
    Topics to bediscussed: • Need for network convergence • Introduction to ATM • ATM Interfaces and Service categories • Basic ATM Concepts and Operation • ATM Cell Structure and Addressing • ATM Layers
  • 3.
    Popular misconceptions evenamong Engineers • The phasor was invented by Captain Kirk of Star Trek • Armature reaction is a chemical reaction • ATM stands for Automated Teller Machines
  • 4.
    Need for Network Convergence • PSTN sometimes used as a data network backbone – but since it is circuit switched (voice optimized) not very WAN efficient • Delay sensitive traffic such as voice not possible on data networks since there is no guarantee of QoS
  • 5.
    Types of Trafficand demand on a communication channel Voice • Its generation is asynchronous (a speaker may speak anytime) • Its transmission must be synchronous (once the message starts, it must flow continuously as it is spoken) • The bandwidth required for a voice conversation in digital communication is relatively small and constant (64K) • The signals may contain a high degree of error and the information can still be retrieved correctly
  • 6.
    Types of Trafficand demand on a communication channel Video • The generation is synchronous (continuous) • Its transmission is synchronous. The bandwidth required is variable and it could range from under 64 Kbps to several Mbps in the same session. • Error control should be tight - otherwise the wrong information on the monitor may trigger severe wrongful actions
  • 7.
    Types of Trafficand demand on a communication channel Data • Its generation could be either asynchronous (text) or synchronous (telemetry) • Its transmission in general can be asynchronous (data typically can wait patiently in buffers) • The information is extremely error-sensitive, so extreme caution must be exercised in transmission and error control must be very tight.
  • 8.
    How can wecombine voice , data and video on the same link? • Fixed and relatively short packets • Delays associated with each packet are going to be short and fixed – predictable transmission • If Voice and Video can be given priority handling – then mixing is possible without any diminishing in quality
  • 9.
    Introduction • ATM –Asynchronous Transfer Mode • It is a high speed, connection – oriented switching and multiplexing technology capable of transmitting voice, video and data and interconnecting LAN’s • ATM is asynchronous because information streams can be sent independently without the need of a common clock
  • 10.
    History of ATM •Developed in the early 80’s as a switching technology for Broadband Integrated Services Digital Network • Anchorage Accord in 1996 declares availability of specs required to implement a multi-service ATM network
  • 11.
  • 12.
    Features and Benefitsof ATM • Convergence of Voice , Video and Data on one network • High speed switching at hardware level • Bandwidth on demand • Predefined and guaranteed QoS and CoS • Superior Management features • Scalability in network size and speed • Ease of integration with other technologies
  • 13.
  • 14.
    ATM Fast PacketStandards and Services • Handles traffic through fast – packet switching technique • Must be able to handle both circuit and packet switching • Must also be able to accommodate the different bit rates – variable (packet switching) and constant (circuit switching) • Uses Cell relay technology
  • 15.
    Important terms relevantto ATM • Quality of Service (QoS) :A broadly used term that refers to the performance attributes of an end-to-end connection. A QoS definition for data would address attributes such as error rates, lost packet rates, throughput, and delay • Class of Service (CoS) :It is a way of managing traffic in a network by grouping similar types of traffic together and treating each type as a class with its own level of service priority • Fast Packet Switching :A packet switching technique that increases the throughput by eliminating overhead. Overhead reduction is accomplished by allocating flow control and error correction functions to either the user applications or the network nodes that interface with the user. Cell relay is an implementation of this.
  • 16.
    Cells and Cellrelay • A Cell is a formatted packet that uses a fixed length data unit • Cell relay is the process of moving these cells through switching elements • Fixed size cells can be switched at a very high speed and add predictability to data transmissions • Variable length frames produce unpredictable patterns and performances as the buffer time cannot be determined • Cell tax – overhead imposed by ATM cells which can cut into amount of data that can be transferred
  • 17.
    ATM Interfaces • ATMis a connection User to Network Interface (UNI) : oriented technique designed Connection existing between the user equipment and ATM to transport both connection equipment. and connection-less services Network to Network Interface • Operations at the boundary (NNI) : Connection via which of a network are connection traffic travels between ATM oriented devices in the same network. Intercarrier Interface (ICI) : Used • Within the network the to send traffic across intermediate operation is connectionless networks Data Exchange Interface (DXI) : Used to transmit packets rather than cells to the ATM interface when non – ATM equipment is used
  • 19.
    ATM Service Categories •Allow for traffic to be buffered and queued for later transmission • Can permit loose timing and asynchronous operations between sender and receiver
  • 20.
    Fundamental ATM Operations Concept • A virtual or logical connection is established • ATM forms a packet of fixed length – 53 octets ( 5 octet header and 48 octet information field ) • Cells are placed in a queue, on reaching ATM switch • Cells are then multiplexed asynchronously with other cells for transmission • Switch adapts the incoming bit rate to match the transmit channel bit rate • Switch inserts dummy cells to meet the aggregate bit stream rate of 155.52 Mbps
  • 21.
    ATM Virtual pathsand Channels ATM Virtual Circuit Terminology • Virtual Channel (VC) – provides a fixed pathway or route between 2 points. Setup across an ATM network whenever data transfer begins. • Virtual Path (VP) – groups of VC’s used to tell a switch how to forward an ATM cell through an ATM network • Virtual Path Identifier (VPI) – in the ATM header used to identify route established in the ATM Switch • Virtual Channel Identifier (VCI) - in the ATM header used to identify a channel within a VP
  • 22.
    ATM Virtual paths(cont’d) • Transmission path – physical media transporting the cells • Virtual Channel Connection (VCC) – connection from source end user VCI to destination user VCI • Virtual path Connection (VPC) – connection from source end user VPI to the destination end user VPI • Operation : Cell is received across a link on a known VPI or VCI value - their values are remapped as necessary as all VCI’s and VPI’s are only significant to the local link
  • 23.
    ATM VCI andVPI Swapping • Logical ID Swapping : This is the technique by which the Logical ID of one link is changed to another one as the cell passes through it. ATM switch changes the cell header VPI/VCI fields to reflect a new VPI and VCI for the outgoing cell. This can be done in one of 2 ways : VP is predefined in the switch or VP is set up dynamically when cell reaches the switch. • Forwarding process depends on 2 lookup tables within the switch: VP table – record of VP’s on each link VC table – maintain the output VP and VC to send the cell • Connection Admission Control (CAC) - procedure used to decide if a request for an ATM connection can be accepted based on the attributes of both the requested connection and the existing connections
  • 24.
    VC and VPSwapping
  • 25.
  • 26.
  • 27.
    ATM Addressing • Usesaddressing similar to numerical addressing for telephone numbers • Uses E.164 addresses for public ATM (B- ISDN) networks • Extended ATM addressing to include private networks – Overlay model – ATM layer maps network layer (IP) addresses to ATM addresses. Address format uses OSI network service access point (NSAP) addresses • NSAP address – providing the logical point between the network and transport layers of the OSI model – the location of this point is identified by network service provider
  • 28.
    ATM Address formats •Currently 4 formats used for ATM networks • The fields are divided into 2 sections: network and user • Network prefixes : fields as needed by the network side of the UNI • User prefixes : Fields as needed by the user side of the UNI
  • 29.
  • 30.
    ATM Routing Domainsand Areas ATM address – 20 byte string that has the following fields : • Country code • Administrative authority • Routing domain • Area identifier • End system identifier • NSAP • International code • ISDN telephone number
  • 31.
    ATM Routing Domainsand Areas • Authority and Format Identifier (AFI): This identifier is part of the network level address header. Value for 1st AFI field can be : DCC (hex 39),E.164 (hex 45), ICD (hex 47) • Routing domains : used for traffic management and allocating bandwidth capacity. Defined in the lookup tables in the switch. • End System Identifier (ESI) : identifies an end system ( computer or LAN) within an area • Selector Field not used by the ATM network • Purpose of the ATM address format is identify ATM devices in an ATM network
  • 32.
  • 33.
    ATM Layers • ATMarchitecture uses a logical reference model to describe its functions • ATM functions correspond to physical layer and part of the Data Link layer of the OSI model • On its own ATM has function at layers 1and 2 of the OSI model, but today TCP/IP is routed over ATM networks which means it can also function at layers 3 and 4 of the OSI model.
  • 34.
    ATM reference model •The ATM reference model constructed as 3 planes which span all the layers : • Control – generates and manages the signaling requests • User – manages the transfer of data • Management – contains 2 parts: – Layer management : manages layer specific functions – Plane management : manages and co – ordinates functions related to the whole system
  • 35.
  • 36.
    ATM Adaptation layer •Has 2 sublayers: – Convergence Sublayer ( CS ) • Determines the Class of service (CoS) for the incoming traffic • Provides a specific AAL service at an AAL network service access point (NSAP) – Segmentation and Reassembly Sublayer (SAR) • Segments higher – level user data into 48 – byte cells plus necessary overhead at the sending node and reassembles cells at the receiving node
  • 37.
    AAL Types andClass of Service (CoS) • Depending on data type, the AAL protocol provides 5 AAL types to accommodate a particular service class • AAL 5 is the most popular AAL type – For IP, LAN frames , signaling messages, frame relay , video
  • 38.
    ATM Layer • Performsthe framing , multiplexing / demultiplexing of cells and also does the switching • Generates cell headers on transmitting node – based on information from higher layers • Generic flow control • VCI /VPI translation • Extracts cell headers on a receiving node and passes cell payload to higher layers
  • 39.
    Physical Layer • TransportsATM cells on a communications channel and defines mechanical specifications ( connectors etc.) • 2 sublayers: – Transmission Convergence sublayer • Maps cells into the physical layer frame format on transmit and delineates ATM cells in the received bit stream • Generates HEC on transmit • Generates idle cells for cell rate decoupling or speed matching – Physical medium sublayer • Medium dependent function like bit transfer, bit alignment
  • 40.
    References: • http://www.techfest.com/networking/atm/atm.htm • http://www.dit.upm.es/snh/arhelp/glossaries/atmf/gloss-a.html •http://www.rhyshaden.com/atm.htm • http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/at m.htm • Trivedi, Carol, “Wide Area Networks”; EMCParadigm 2004