This document discusses several perspectives and solutions to Bayesian hypothesis testing. It outlines issues with Bayesian testing such as the dependence on prior distributions and difficulties interpreting Bayesian measures like posterior probabilities and Bayes factors. It discusses how Bayesian testing compares models rather than identifying a single true model. Several solutions to challenges are discussed, like using Bayes factors which eliminate the dependence on prior model probabilities but introduce other issues. The document also discusses testing under specific models like comparing a point null hypothesis to alternatives. Overall it presents both Bayesian and frequentist views on hypothesis testing and some of the open controversies in the field.