This document summarizes a presentation on testing hypotheses as mixture estimation and the challenges of Bayesian testing. The key points are:
1) Bayesian hypothesis testing faces challenges including the dependence on prior distributions, difficulties interpreting Bayes factors, and the inability to use improper priors in most situations.
2) Testing via mixtures is proposed as a paradigm shift that frames hypothesis testing as a model selection problem involving mixture models rather than distinct hypotheses.
3) Traditional Bayesian testing using Bayes factors and posterior probabilities depends strongly on prior distributions and choices that are difficult to justify, while not providing measures of uncertainty around decisions. Alternative approaches are needed to address these issues.