This document provides an introduction to linear regression analysis. It discusses how regression finds the best fitting straight line to describe the relationship between two variables. The regression line minimizes the residuals, or errors, between the predicted Y values from the line and the actual data points. The accuracy of predictions from the regression model can be evaluated using the correlation coefficient (r) and the standard error of estimate. Multiple linear regression extends this process to model relationships between a dependent variable Y and two or more independent variables (X1, X2, etc).