This document provides an overview of simple linear regression. It defines regression as determining the statistical relationship between variables where changes in one variable depend on changes in another. Regression analysis is used for prediction and exploring relationships between dependent and independent variables. The key aspects covered include:
- Dependent variables change due to independent variables.
- Lines of regression show the relationship between the variables.
- The method of least squares is used to determine the line of best fit that minimizes the error between predicted and actual values.
- Linear regression models take the form of y = a + bx and are used for tasks like prediction and determining impact of independent variables.