SlideShare a Scribd company logo
In this section we will show how to integrate
rational functions, that is, functions of the form
P(x)
Q(x)
where P and Q are polynomials.
Integrals of Rational Functions
In this section we will show how to integrate
rational functions, that is, functions of the form
P(x)
Q(x)
where P and Q are polynomials.
Rational Decomposition Theorem
Given reduced P/Q where deg P < deg Q,
then P/Q = F1 + F2 + .. + Fn where
Fi = orA
(ax + b)k
Ax + B
(ax2 + bx + c)k
and that (ax + b)k or (ax2 + bx + c)k are
factors of Q(x).
Integrals of Rational Functions
Therefore finding the integrals of rational
functions is reduced to finding integrals of
orA
(ax + b)k
Ax + B
(ax2 + bx + c)k
Integrals of Rational Functions
Therefore finding the integrals of rational
functions is reduced to finding integrals of
orA
(ax + b)k
Ax + B
(ax2 + bx + c)k
Integrals of Rational Functions
The integrals ∫ are straight forward
with the substitution method by setting
u = ax + b.
dx
(ax + b)k
Therefore finding the integrals of rational
functions is reduced to finding integrals of
orA
(ax + b)k
Ax + B
(ax2 + bx + c)k
Integrals of Rational Functions
The integrals ∫ are straight forward
with the substitution method by setting
u = ax + b.
dx
(ax + b)k
To integrate ∫ dx, we need to
complete the square of the denominator.
Ax + B
(ax2 + bx + c)k
Integrals of Rational Functions
x
x2 + 6x + 10Example A. Find ∫ dx
Complete the square of x2 + 6x + 10 – it’s irreducible.
Integrals of Rational Functions
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x ) + 10
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
= (x + 3)2 + 1
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
= (x + 3)2 + 1
x
x2 + 6x + 10∫ dx
= ∫
x
(x + 3)2 + 1
dx
Hence
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
= (x + 3)2 + 1
x
x2 + 6x + 10∫ dx
Set u = x + 3
= ∫
x
(x + 3)2 + 1
dx
substitution
Hence
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
= (x + 3)2 + 1
x
x2 + 6x + 10∫ dx
Set u = x + 3
x = u – 3
dx = du= ∫
x
(x + 3)2 + 1
dx
substitution
Hence
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
= (x + 3)2 + 1
x
x2 + 6x + 10∫ dx
Set u = x + 3
x = u – 3
dx = du= ∫
x
(x + 3)2 + 1
dx
substitution
= ∫
u – 3
u2 + 1
du
Hence
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
= (x + 3)2 + 1
x
x2 + 6x + 10∫ dx
Set u = x + 3
x = u – 3
dx = du= ∫
x
(x + 3)2 + 1
dx
substitution
= ∫
u – 3
u2 + 1
du
= ∫
u
u2 + 1 du – 3 ∫
1
u2 + 1 du
Hence
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
= (x + 3)2 + 1
x
x2 + 6x + 10∫ dx
Set u = x + 3
x = u – 3
dx = du= ∫
x
(x + 3)2 + 1
dx
substitution
= ∫
u – 3
u2 + 1
du
= ∫
u
u2 + 1 du – 3 ∫
1
u2 + 1 du
Hence
Integrals of Rational Functions
Set w = u2 + 1
substitution
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
Set w = u2 + 1
= 2u
substitution
dw
du
Integrals of Rational Functions
= ∫
u
u2 + 1 du – 3 ∫
1
u2 + 1 du Set w = u2 + 1
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
Integrals of Rational Functions
= ∫
u
u2 + 1 du – 3 ∫
1
u2 + 1 du Set w = u2 + 1
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
= ∫
u
w
– 3 ∫
1
u2 + 1 du
dw
2u
Integrals of Rational Functions
= ∫
u
u2 + 1 du – 3 ∫
1
u2 + 1 du Set w = u2 + 1
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
= ∫
u
w
– 3 ∫
1
u2 + 1 du
dw
2u
= ½ ∫ 1
w – 3 tan-1(u) + cdw
Integrals of Rational Functions
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
= ∫
u
w
– 3 ∫
1
u2 + 1 du
dw
2u
= ½ ∫ 1
w – 3 tan-1(u) + cdw
= ½ Ln(w) – 3 tan-1(x + 3) + c
Integrals of Rational Functions
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
= ∫
u
w
– 3 ∫
1
u2 + 1 du
dw
2u
= ½ ∫ 1
w – 3 tan-1(u) + cdw
= ½ Ln(lwl) – 3 tan-1(x + 3) + c
= ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c
Integrals of Rational Functions
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
= ∫
u
w
– 3 ∫
1
u2 + 1 du
dw
2u
= ½ ∫ 1
w – 3 tan-1(u) + cdw
= ½ Ln(lwl) – 3 tan-1(x + 3) + c
= ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c
Integrals of Rational Functions
3x
x2 + 7x + 10Example: Find ∫ dx
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
= ∫
u
w
– 3 ∫
1
u2 + 1 du
dw
2u
= ½ ∫ 1
w – 3 tan-1(u) + cdw
= ½ Ln(lwl) – 3 tan-1(x + 3) + c
= ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c
Integrals of Rational Functions
Since x2 + 7x + 10 = (x + 2)(x + 5), we can
decompose the rational expression.
3x
x2 + 7x + 10Example: Find ∫ dx
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
= ∫
u
w
– 3 ∫
1
u2 + 1 du
dw
2u
= ½ ∫ 1
w – 3 tan-1(u) + cdw
= ½ Ln(lwl) – 3 tan-1(x + 3) + c
= ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c
Integrals of Rational Functions
3x
x2 + 7x + 10Example: Find ∫ dx
Since x2 + 7x + 10 = (x + 2)(x + 5), we can
decompose the rational expression.
Specifically 3x
(x + 2)(x + 5) =
A
(x + 2)
+ B
(x + 5)
Integrals of Rational Functions
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
3x = A(x + 5) + B(x + 2)
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B so B = 5
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B so B = 5
Evaluate at x = -2, we get -6 = 3A
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B so B = 5
Evaluate at x = -2, we get -6 = 3A so A = -2
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
Hence 3x
(x + 2)(x + 5) =
-2
(x + 2)
+ 5
(x + 5)
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B so B = 5
Evaluate at x = -2, we get -6 = 3A so A = -2
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
Hence x
(x + 2)(x + 5) =
-2
(x + 2)
+ 5
(x + 5)
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B so B = 5
Evaluate at x = -2, we get -6 = 3A so A = -2
3x
x2 + 7x + 10So ∫ dx
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
Hence x
(x + 2)(x + 5) =
-2
(x + 2)
+ 5
(x + 5)
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B so B = 5
Evaluate at x = -2, we get -6 = 3A so A = -2
3x
x2 + 7x + 10So ∫ dx
= ∫ dx
-2
(x + 2)
+ 5
(x + 5)
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
Hence x
(x + 2)(x + 5) =
-2
(x + 2)
+ 5
(x + 5)
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B so B = 5
Evaluate at x = -2, we get -6 = 3A so A = -2
3x
x2 + 7x + 10So ∫ dx
= -2Ln(lx + 2l) + 5Ln(lx + 5l) + c
= ∫ dx
-2
(x + 2)
+ 5
(x + 5)
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2xExample: Find ∫ dx
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
There is no x4-term,
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
There is no x4-term, hence Ax4 + x4 = 0,
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
There is no x4-term, hence Ax4 + x4 = 0, so A = -1
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
There is no x4-term, hence Ax4 + x4 = 0, so A = -1
There is no x3-term,
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
There is no x4-term, hence Ax4 + x4 = 0, so A = -1
There is no x3-term, hence Bx3 = 0,
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
There is no x4-term, hence Ax4 + x4 = 0, so A = -1
There is no x3-term, hence Bx3 = 0, so B = 0
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
There is no x4-term, hence Ax4 + x4 = 0, so A = -1
There is no x3-term, hence Bx3 = 0, so B = 0
So we've1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
There is no x-term in
1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
Integrals of Rational Functions
There is no x-term in
1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
Hence Dx = 0, or D = 0.
Integrals of Rational Functions
There is no x-term in
1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
Hence Dx = 0, or D = 0. So the expression is
1 = -x2
(x2 + 1)+Cx2 +1(x2 + 1)2
Integrals of Rational Functions
There is no x-term in
1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
Hence Dx = 0, or D = 0. So the expression is
1 = -x2
(x2 + 1)+Cx2 +1(x2 + 1)2
Expand this
Integrals of Rational Functions
There is no x-term in
1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
Hence Dx = 0, or D = 0. So the expression is
1 = -x2
(x2 + 1)+Cx2 +1(x2 + 1)2
Expand this
1 = -x4 – x2
Cx2 + x4 + 2x2 + 1+
Integrals of Rational Functions
There is no x-term in
1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
Hence Dx = 0, or D = 0. So the expression is
1 = -x2
(x2 + 1)+Cx2 +1(x2 + 1)2
Expand this
1 = -x4 – x2
Cx2 + x4 + 2x2 + 1+
Hence Cx2 + x2 = 0 or C = -1
Integrals of Rational Functions
There is no x-term in
1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
Hence Dx = 0, or D = 0. So the expression is
1 = -x2
(x2 + 1)+Cx2 +1(x2 + 1)2
Expand this
1 = -x4 – x2
Cx2 + x4 + 2x2 + 1+
Hence Cx2 + x2 = 0 or C = -1
Put it all together
1
(x2 + 1)2x =
-x
(x2 + 1)
+ -x
(x2 + 1)2 + 1
x
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
substitution
set u = x2 + 1
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
substitution
set u = x2 + 1
du
dx = 2x
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
substitution
set u = x2 + 1
du
dx = 2x
du
2xdx =
Integrals of Rational Functions
absolute value arguments for Ln: P -
22,36,61-64
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
substitution
set u = x2 + 1
du
dx = 2x
du
2xdx == ∫
-x
u
du
2x
+ ∫
-x
u2
du
2x
+ Ln(lxl)
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
substitution
set u = x2 + 1
du
dx = 2x
du
2xdx == ∫
-x
u
du
2x
+ ∫
-x
u2
du
2x
+ Ln(lxl)
= - ½ ∫
du
u + Ln(lxl)½ ∫
du
u2–
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
substitution
set u = x2 + 1
du
dx = 2x
du
2xdx == ∫
-x
u
du
2x
+ ∫
-x
u2
du
2x
+ Ln(x)
= - ½ ∫
du
u + Ln(x)½ ∫
du
u2–
= - ½ Ln(u) + ½ u-1 + Ln(x) + c
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
substitution
set u = x2 + 1
du
dx = 2x
du
2xdx == ∫
-x
u
du
2x
+ ∫
-x
u2
du
2x
+ Ln(x)
= - ½ ∫
du
u + Ln(x)½ ∫
du
u2–
= - ½ Ln(u) + ½ u-1 + Ln(x) + c
= - ½ Ln(x2 + 1) + + Ln(x) + c1
2(x2 + 1)

More Related Content

What's hot

11 the inverse trigonometric functions x
11 the inverse trigonometric functions x11 the inverse trigonometric functions x
11 the inverse trigonometric functions x
math266
 
1 review on derivatives
1 review on derivatives1 review on derivatives
1 review on derivatives
math266
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiationmath265
 
14 formulas from integration by parts x
14 formulas from integration by parts x14 formulas from integration by parts x
14 formulas from integration by parts x
math266
 
4.3 related rates
4.3 related rates4.3 related rates
4.3 related ratesmath265
 
8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces x
math266
 
23 improper integrals send-x
23 improper integrals send-x23 improper integrals send-x
23 improper integrals send-x
math266
 
21 properties of division and roots x
21 properties of division and roots x21 properties of division and roots x
21 properties of division and roots x
math260
 
13 integration by parts x
13 integration by parts x13 integration by parts x
13 integration by parts x
math266
 
2.7 chain rule short cuts
2.7 chain rule short cuts2.7 chain rule short cuts
2.7 chain rule short cutsmath265
 
28 mac laurin expansions x
28 mac laurin expansions x28 mac laurin expansions x
28 mac laurin expansions x
math266
 
12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x
math266
 
27 power series x
27 power series x27 power series x
27 power series x
math266
 
12 graphs of second degree functions x
12 graphs of second degree functions x12 graphs of second degree functions x
12 graphs of second degree functions x
math260
 
1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalitiesmath265
 
9 work x
9 work x9 work x
9 work x
math266
 
6 volumes of solids of revolution ii x
6 volumes of solids of revolution ii x6 volumes of solids of revolution ii x
6 volumes of solids of revolution ii x
math266
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
math260
 
5.2 the substitution methods
5.2 the substitution methods5.2 the substitution methods
5.2 the substitution methodsmath265
 
10.5 more on language of functions x
10.5 more on language of functions x10.5 more on language of functions x
10.5 more on language of functions x
math260
 

What's hot (20)

11 the inverse trigonometric functions x
11 the inverse trigonometric functions x11 the inverse trigonometric functions x
11 the inverse trigonometric functions x
 
1 review on derivatives
1 review on derivatives1 review on derivatives
1 review on derivatives
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation
 
14 formulas from integration by parts x
14 formulas from integration by parts x14 formulas from integration by parts x
14 formulas from integration by parts x
 
4.3 related rates
4.3 related rates4.3 related rates
4.3 related rates
 
8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces x
 
23 improper integrals send-x
23 improper integrals send-x23 improper integrals send-x
23 improper integrals send-x
 
21 properties of division and roots x
21 properties of division and roots x21 properties of division and roots x
21 properties of division and roots x
 
13 integration by parts x
13 integration by parts x13 integration by parts x
13 integration by parts x
 
2.7 chain rule short cuts
2.7 chain rule short cuts2.7 chain rule short cuts
2.7 chain rule short cuts
 
28 mac laurin expansions x
28 mac laurin expansions x28 mac laurin expansions x
28 mac laurin expansions x
 
12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x
 
27 power series x
27 power series x27 power series x
27 power series x
 
12 graphs of second degree functions x
12 graphs of second degree functions x12 graphs of second degree functions x
12 graphs of second degree functions x
 
1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities
 
9 work x
9 work x9 work x
9 work x
 
6 volumes of solids of revolution ii x
6 volumes of solids of revolution ii x6 volumes of solids of revolution ii x
6 volumes of solids of revolution ii x
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
 
5.2 the substitution methods
5.2 the substitution methods5.2 the substitution methods
5.2 the substitution methods
 
10.5 more on language of functions x
10.5 more on language of functions x10.5 more on language of functions x
10.5 more on language of functions x
 

Similar to 17 integrals of rational functions x

Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods Assignment
Saidatina Khadijah
 
Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
Edrian Gustin Camacho
 
Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationtutulk
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
Pume Ananda
 
Derivatives
DerivativesDerivatives
Derivatives
Nisarg Amin
 
Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Vine Gonzales
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
dionesioable
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function PresentationRyanWatt
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integration
Kamel Attar
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
Mervin Dayrit
 
3. DERIVATIVE BY INCREMENT IN CALULUS 01
3. DERIVATIVE BY INCREMENT IN CALULUS 013. DERIVATIVE BY INCREMENT IN CALULUS 01
3. DERIVATIVE BY INCREMENT IN CALULUS 01
oliverosmarcial24
 
Polynomial math
Polynomial mathPolynomial math
Polynomial math
Neil MacIntosh
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
Tarun Gehlot
 
QUADRATIC EQUATIONS WITH MATHS PROPER VERIFY
QUADRATIC EQUATIONS WITH MATHS PROPER VERIFYQUADRATIC EQUATIONS WITH MATHS PROPER VERIFY
QUADRATIC EQUATIONS WITH MATHS PROPER VERIFY
ssuser2e348b
 
EPCA_MODULE-2.pptx
EPCA_MODULE-2.pptxEPCA_MODULE-2.pptx
EPCA_MODULE-2.pptx
BenCorejadoAgarcio
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integralesjoseluisroyo
 

Similar to 17 integrals of rational functions x (20)

Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods Assignment
 
Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
 
Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integration
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Derivatives
DerivativesDerivatives
Derivatives
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
 
Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integration
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
 
3. DERIVATIVE BY INCREMENT IN CALULUS 01
3. DERIVATIVE BY INCREMENT IN CALULUS 013. DERIVATIVE BY INCREMENT IN CALULUS 01
3. DERIVATIVE BY INCREMENT IN CALULUS 01
 
Polynomial math
Polynomial mathPolynomial math
Polynomial math
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
 
QUADRATIC EQUATIONS WITH MATHS PROPER VERIFY
QUADRATIC EQUATIONS WITH MATHS PROPER VERIFYQUADRATIC EQUATIONS WITH MATHS PROPER VERIFY
QUADRATIC EQUATIONS WITH MATHS PROPER VERIFY
 
EPCA_MODULE-2.pptx
EPCA_MODULE-2.pptxEPCA_MODULE-2.pptx
EPCA_MODULE-2.pptx
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Integration
IntegrationIntegration
Integration
 

More from math266

10 b review-cross-sectional formula
10 b review-cross-sectional formula10 b review-cross-sectional formula
10 b review-cross-sectional formula
math266
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions y
math266
 
267 1 3 d coordinate system-n
267 1 3 d coordinate system-n267 1 3 d coordinate system-n
267 1 3 d coordinate system-n
math266
 
X2.8 l'hopital rule ii
X2.8 l'hopital rule iiX2.8 l'hopital rule ii
X2.8 l'hopital rule ii
math266
 
X2.7 l'hopital rule i
X2.7 l'hopital rule iX2.7 l'hopital rule i
X2.7 l'hopital rule i
math266
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations x
math266
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates
math266
 
36 area in polar coordinate
36 area in polar coordinate36 area in polar coordinate
36 area in polar coordinate
math266
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equations
math266
 
32 approximation, differentiation and integration of power series x
32 approximation, differentiation and integration of power series x32 approximation, differentiation and integration of power series x
32 approximation, differentiation and integration of power series x
math266
 
31 mac taylor remainder theorem-x
31 mac taylor remainder theorem-x31 mac taylor remainder theorem-x
31 mac taylor remainder theorem-x
math266
 
30 computation techniques for mac laurin expansions x
30 computation techniques for  mac laurin expansions x30 computation techniques for  mac laurin expansions x
30 computation techniques for mac laurin expansions x
math266
 
L'hopital rule ii
L'hopital rule iiL'hopital rule ii
L'hopital rule ii
math266
 
L'Hopital's rule i
L'Hopital's rule iL'Hopital's rule i
L'Hopital's rule i
math266
 
29 taylor expansions x
29 taylor expansions x29 taylor expansions x
29 taylor expansions x
math266
 
26 alternating series and conditional convergence x
26 alternating series and conditional convergence x26 alternating series and conditional convergence x
26 alternating series and conditional convergence x
math266
 
25 the ratio, root, and ratio comparison test x
25 the ratio, root, and ratio  comparison test x25 the ratio, root, and ratio  comparison test x
25 the ratio, root, and ratio comparison test x
math266
 
24 the harmonic series and the integral test x
24 the harmonic series and the integral test x24 the harmonic series and the integral test x
24 the harmonic series and the integral test x
math266
 
21 monotone sequences x
21 monotone sequences x21 monotone sequences x
21 monotone sequences x
math266
 
20 sequences x
20 sequences x20 sequences x
20 sequences x
math266
 

More from math266 (20)

10 b review-cross-sectional formula
10 b review-cross-sectional formula10 b review-cross-sectional formula
10 b review-cross-sectional formula
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions y
 
267 1 3 d coordinate system-n
267 1 3 d coordinate system-n267 1 3 d coordinate system-n
267 1 3 d coordinate system-n
 
X2.8 l'hopital rule ii
X2.8 l'hopital rule iiX2.8 l'hopital rule ii
X2.8 l'hopital rule ii
 
X2.7 l'hopital rule i
X2.7 l'hopital rule iX2.7 l'hopital rule i
X2.7 l'hopital rule i
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations x
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates
 
36 area in polar coordinate
36 area in polar coordinate36 area in polar coordinate
36 area in polar coordinate
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equations
 
32 approximation, differentiation and integration of power series x
32 approximation, differentiation and integration of power series x32 approximation, differentiation and integration of power series x
32 approximation, differentiation and integration of power series x
 
31 mac taylor remainder theorem-x
31 mac taylor remainder theorem-x31 mac taylor remainder theorem-x
31 mac taylor remainder theorem-x
 
30 computation techniques for mac laurin expansions x
30 computation techniques for  mac laurin expansions x30 computation techniques for  mac laurin expansions x
30 computation techniques for mac laurin expansions x
 
L'hopital rule ii
L'hopital rule iiL'hopital rule ii
L'hopital rule ii
 
L'Hopital's rule i
L'Hopital's rule iL'Hopital's rule i
L'Hopital's rule i
 
29 taylor expansions x
29 taylor expansions x29 taylor expansions x
29 taylor expansions x
 
26 alternating series and conditional convergence x
26 alternating series and conditional convergence x26 alternating series and conditional convergence x
26 alternating series and conditional convergence x
 
25 the ratio, root, and ratio comparison test x
25 the ratio, root, and ratio  comparison test x25 the ratio, root, and ratio  comparison test x
25 the ratio, root, and ratio comparison test x
 
24 the harmonic series and the integral test x
24 the harmonic series and the integral test x24 the harmonic series and the integral test x
24 the harmonic series and the integral test x
 
21 monotone sequences x
21 monotone sequences x21 monotone sequences x
21 monotone sequences x
 
20 sequences x
20 sequences x20 sequences x
20 sequences x
 

Recently uploaded

How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
CarlosHernanMontoyab2
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 

Recently uploaded (20)

How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 

17 integrals of rational functions x

  • 1. In this section we will show how to integrate rational functions, that is, functions of the form P(x) Q(x) where P and Q are polynomials. Integrals of Rational Functions
  • 2. In this section we will show how to integrate rational functions, that is, functions of the form P(x) Q(x) where P and Q are polynomials. Rational Decomposition Theorem Given reduced P/Q where deg P < deg Q, then P/Q = F1 + F2 + .. + Fn where Fi = orA (ax + b)k Ax + B (ax2 + bx + c)k and that (ax + b)k or (ax2 + bx + c)k are factors of Q(x). Integrals of Rational Functions
  • 3. Therefore finding the integrals of rational functions is reduced to finding integrals of orA (ax + b)k Ax + B (ax2 + bx + c)k Integrals of Rational Functions
  • 4. Therefore finding the integrals of rational functions is reduced to finding integrals of orA (ax + b)k Ax + B (ax2 + bx + c)k Integrals of Rational Functions The integrals ∫ are straight forward with the substitution method by setting u = ax + b. dx (ax + b)k
  • 5. Therefore finding the integrals of rational functions is reduced to finding integrals of orA (ax + b)k Ax + B (ax2 + bx + c)k Integrals of Rational Functions The integrals ∫ are straight forward with the substitution method by setting u = ax + b. dx (ax + b)k To integrate ∫ dx, we need to complete the square of the denominator. Ax + B (ax2 + bx + c)k
  • 6. Integrals of Rational Functions x x2 + 6x + 10Example A. Find ∫ dx
  • 7. Complete the square of x2 + 6x + 10 – it’s irreducible. Integrals of Rational Functions x x2 + 6x + 10Example A. Find ∫ dx
  • 8. x2 + 6x + 10 = (x2 + 6x ) + 10 Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 9. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 10. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 = (x + 3)2 + 1 Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 11. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 = (x + 3)2 + 1 x x2 + 6x + 10∫ dx = ∫ x (x + 3)2 + 1 dx Hence Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 12. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 = (x + 3)2 + 1 x x2 + 6x + 10∫ dx Set u = x + 3 = ∫ x (x + 3)2 + 1 dx substitution Hence Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 13. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 = (x + 3)2 + 1 x x2 + 6x + 10∫ dx Set u = x + 3 x = u – 3 dx = du= ∫ x (x + 3)2 + 1 dx substitution Hence Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 14. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 = (x + 3)2 + 1 x x2 + 6x + 10∫ dx Set u = x + 3 x = u – 3 dx = du= ∫ x (x + 3)2 + 1 dx substitution = ∫ u – 3 u2 + 1 du Hence Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 15. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 = (x + 3)2 + 1 x x2 + 6x + 10∫ dx Set u = x + 3 x = u – 3 dx = du= ∫ x (x + 3)2 + 1 dx substitution = ∫ u – 3 u2 + 1 du = ∫ u u2 + 1 du – 3 ∫ 1 u2 + 1 du Hence Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 16. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 = (x + 3)2 + 1 x x2 + 6x + 10∫ dx Set u = x + 3 x = u – 3 dx = du= ∫ x (x + 3)2 + 1 dx substitution = ∫ u – 3 u2 + 1 du = ∫ u u2 + 1 du – 3 ∫ 1 u2 + 1 du Hence Integrals of Rational Functions Set w = u2 + 1 substitution Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 17. Set w = u2 + 1 = 2u substitution dw du Integrals of Rational Functions = ∫ u u2 + 1 du – 3 ∫ 1 u2 + 1 du Set w = u2 + 1
  • 18. Set w = u2 + 1 = 2u substitution dw du du = dw 2u Integrals of Rational Functions = ∫ u u2 + 1 du – 3 ∫ 1 u2 + 1 du Set w = u2 + 1
  • 19. Set w = u2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u2 + 1 du dw 2u Integrals of Rational Functions = ∫ u u2 + 1 du – 3 ∫ 1 u2 + 1 du Set w = u2 + 1
  • 20. Set w = u2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan-1(u) + cdw Integrals of Rational Functions
  • 21. Set w = u2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan-1(u) + cdw = ½ Ln(w) – 3 tan-1(x + 3) + c Integrals of Rational Functions
  • 22. Set w = u2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan-1(u) + cdw = ½ Ln(lwl) – 3 tan-1(x + 3) + c = ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c Integrals of Rational Functions
  • 23. Set w = u2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan-1(u) + cdw = ½ Ln(lwl) – 3 tan-1(x + 3) + c = ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c Integrals of Rational Functions 3x x2 + 7x + 10Example: Find ∫ dx
  • 24. Set w = u2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan-1(u) + cdw = ½ Ln(lwl) – 3 tan-1(x + 3) + c = ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c Integrals of Rational Functions Since x2 + 7x + 10 = (x + 2)(x + 5), we can decompose the rational expression. 3x x2 + 7x + 10Example: Find ∫ dx
  • 25. Set w = u2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan-1(u) + cdw = ½ Ln(lwl) – 3 tan-1(x + 3) + c = ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c Integrals of Rational Functions 3x x2 + 7x + 10Example: Find ∫ dx Since x2 + 7x + 10 = (x + 2)(x + 5), we can decompose the rational expression. Specifically 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 26. Integrals of Rational Functions Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 27. Integrals of Rational Functions 3x = A(x + 5) + B(x + 2) Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 28. Integrals of Rational Functions 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 29. Integrals of Rational Functions 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 30. Integrals of Rational Functions 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 31. Integrals of Rational Functions 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A so A = -2 Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 32. Integrals of Rational Functions Hence 3x (x + 2)(x + 5) = -2 (x + 2) + 5 (x + 5) 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A so A = -2 Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 33. Integrals of Rational Functions Hence x (x + 2)(x + 5) = -2 (x + 2) + 5 (x + 5) 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A so A = -2 3x x2 + 7x + 10So ∫ dx Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 34. Integrals of Rational Functions Hence x (x + 2)(x + 5) = -2 (x + 2) + 5 (x + 5) 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A so A = -2 3x x2 + 7x + 10So ∫ dx = ∫ dx -2 (x + 2) + 5 (x + 5) Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 35. Integrals of Rational Functions Hence x (x + 2)(x + 5) = -2 (x + 2) + 5 (x + 5) 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A so A = -2 3x x2 + 7x + 10So ∫ dx = -2Ln(lx + 2l) + 5Ln(lx + 5l) + c = ∫ dx -2 (x + 2) + 5 (x + 5) Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 36. Integrals of Rational Functions 1 (x2 + 1)2xExample: Find ∫ dx
  • 37. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x 1 (x2 + 1)2xExample: Find ∫ dx
  • 38. Integrals of Rational Functions 1 (x2 + 1)2xExample: Find ∫ dx 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators
  • 39. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 1 (x2 + 1)2xExample: Find ∫ dx
  • 40. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E 1 (x2 + 1)2xExample: Find ∫ dx
  • 41. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 1 (x2 + 1)2xExample: Find ∫ dx
  • 42. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 There is no x4-term, 1 (x2 + 1)2xExample: Find ∫ dx
  • 43. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 There is no x4-term, hence Ax4 + x4 = 0, 1 (x2 + 1)2xExample: Find ∫ dx
  • 44. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 There is no x4-term, hence Ax4 + x4 = 0, so A = -1 1 (x2 + 1)2xExample: Find ∫ dx
  • 45. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 There is no x4-term, hence Ax4 + x4 = 0, so A = -1 There is no x3-term, 1 (x2 + 1)2xExample: Find ∫ dx
  • 46. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 There is no x4-term, hence Ax4 + x4 = 0, so A = -1 There is no x3-term, hence Bx3 = 0, 1 (x2 + 1)2xExample: Find ∫ dx
  • 47. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 There is no x4-term, hence Ax4 + x4 = 0, so A = -1 There is no x3-term, hence Bx3 = 0, so B = 0 1 (x2 + 1)2xExample: Find ∫ dx
  • 48. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 There is no x4-term, hence Ax4 + x4 = 0, so A = -1 There is no x3-term, hence Bx3 = 0, so B = 0 So we've1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 1 (x2 + 1)2xExample: Find ∫ dx
  • 49. Integrals of Rational Functions There is no x-term in 1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
  • 50. Integrals of Rational Functions There is no x-term in 1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 Hence Dx = 0, or D = 0.
  • 51. Integrals of Rational Functions There is no x-term in 1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 Hence Dx = 0, or D = 0. So the expression is 1 = -x2 (x2 + 1)+Cx2 +1(x2 + 1)2
  • 52. Integrals of Rational Functions There is no x-term in 1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 Hence Dx = 0, or D = 0. So the expression is 1 = -x2 (x2 + 1)+Cx2 +1(x2 + 1)2 Expand this
  • 53. Integrals of Rational Functions There is no x-term in 1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 Hence Dx = 0, or D = 0. So the expression is 1 = -x2 (x2 + 1)+Cx2 +1(x2 + 1)2 Expand this 1 = -x4 – x2 Cx2 + x4 + 2x2 + 1+
  • 54. Integrals of Rational Functions There is no x-term in 1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 Hence Dx = 0, or D = 0. So the expression is 1 = -x2 (x2 + 1)+Cx2 +1(x2 + 1)2 Expand this 1 = -x4 – x2 Cx2 + x4 + 2x2 + 1+ Hence Cx2 + x2 = 0 or C = -1
  • 55. Integrals of Rational Functions There is no x-term in 1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 Hence Dx = 0, or D = 0. So the expression is 1 = -x2 (x2 + 1)+Cx2 +1(x2 + 1)2 Expand this 1 = -x4 – x2 Cx2 + x4 + 2x2 + 1+ Hence Cx2 + x2 = 0 or C = -1 Put it all together 1 (x2 + 1)2x = -x (x2 + 1) + -x (x2 + 1)2 + 1 x
  • 56. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫
  • 57. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫ substitution set u = x2 + 1
  • 58. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫ substitution set u = x2 + 1 du dx = 2x
  • 59. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫ substitution set u = x2 + 1 du dx = 2x du 2xdx =
  • 60. Integrals of Rational Functions absolute value arguments for Ln: P - 22,36,61-64
  • 61. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫ substitution set u = x2 + 1 du dx = 2x du 2xdx == ∫ -x u du 2x + ∫ -x u2 du 2x + Ln(lxl)
  • 62. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫ substitution set u = x2 + 1 du dx = 2x du 2xdx == ∫ -x u du 2x + ∫ -x u2 du 2x + Ln(lxl) = - ½ ∫ du u + Ln(lxl)½ ∫ du u2–
  • 63. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫ substitution set u = x2 + 1 du dx = 2x du 2xdx == ∫ -x u du 2x + ∫ -x u2 du 2x + Ln(x) = - ½ ∫ du u + Ln(x)½ ∫ du u2– = - ½ Ln(u) + ½ u-1 + Ln(x) + c
  • 64. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫ substitution set u = x2 + 1 du dx = 2x du 2xdx == ∫ -x u du 2x + ∫ -x u2 du 2x + Ln(x) = - ½ ∫ du u + Ln(x)½ ∫ du u2– = - ½ Ln(u) + ½ u-1 + Ln(x) + c = - ½ Ln(x2 + 1) + + Ln(x) + c1 2(x2 + 1)