4.5 Exponential & Logarithmic
Equations
Chapter 4 Inverse, Exponential, and Logarithmic
Functions
Concepts and Objectives
 Exponential and Logarithmic Equations
 Identify e and ln x.
 Set up and solve exponential and logarithmic
equations.
e
 Suppose that $1 is invested at 100% interest per year,
compounded n times per year.
 According to the formula, the compound amount at
the end of 1 year will be
 As n increases, the value of A gets closer to some fixed
number, which is called e.
 e is approximately 2.718281828.
1
1
n
A
n
 
 
 
 
Natural Logarithms
 Logarithms with base e are called natural logarithms,
since they often occur in the life sciences and economics
in natural situations that involve growth and decay.
 The base e logarithm of x is written ln x.
 Therefore, e and ln x are inverse functions.
ln
ln
x x
e e x
 
Exponential Equations
 Example: Solve . Round to the nearest
thousandth.
If x > 0, y > 0, a > 0, and a  1, then
x = y if and only if logax = logay
 

2 1 2
3 0.4
x x
Exponential Equations
 Example: Solve . Round to the nearest
thousandth.
If x > 0, y > 0, a > 0, and a  1, then
x = y if and only if logax = logay
 

2 1 2
3 0.4
x x
 

2 1 2
log3 log0.4
x x
Exponential Equations
 Example: Solve . Round to the nearest
thousandth.
If x > 0, y > 0, a > 0, and a  1, then
x = y if and only if logax = logay
 

2 1 2
3 0.4
x x
 

2 1 2
log3 log0.4
x x
   

 
2 1 2
log3 log0.4
x x
  
2 log3 log3 log0.4 2log0.4
x x
Exponential Equations
 Example: Solve . Round to the nearest
thousandth.
If x > 0, y > 0, a > 0, and a  1, then
x = y if and only if logax = logay
 

2 1 2
3 0.4
x x
 

2 1 2
log3 log0.4
x x
   

 
2 1 2
log3 log0.4
x x
Exponential Equations
 Example: Solve . Round to the nearest
thousandth.
If x > 0, y > 0, a > 0, and a  1, then
x = y if and only if logax = logay
 

2 1 2
3 0.4
x x
 

2 1 2
log3 log0.4
x x
   
  
2 1 log3 2 log0.4
x x
  
log0.
l 4
og3
2 log3 2log0.4
x x
  
log0.4
2 log3 2log g
0.4 lo 3
x x
Exponential Equations
 Example: Solve . Round to the nearest
thousandth.
If x > 0, y > 0, a > 0, and a  1, then
x = y if and only if logax = logay
 

2 1 2
3 0.4
x x
 

2 1 2
log3 log0.4
x x
   
  
2 1 log3 2 log0.4
x x
  
2 log3 log3 log0.4 2log0.4
x x
 
  
2log3 log0.4 2log0.4 log3
x
  
2 log3 log0.4 2log0.4 log3
x x
Exponential Equations
 Example: Solve . Round to the nearest
thousandth.
If x > 0, y > 0, a > 0, and a  1, then
x = y if and only if logax = logay
 

2 1 2
3 0.4
x x
 

2 1 2
log3 log0.4
x x
   
  
2 1 log3 2 log0.4
x x
  
2 log3 log3 log0.4 2log0.4
x x
 
  
2log3 log0.4 2log0.4 log3
x
  
2 log3 log0.4 2log0.4 log3
x x

  

2log0.4 log3
0.236
2log3 log0.4
x
Properties of Logs, Revisited
 You could also finish this as



2log0.4 log3
2log3 log0.4
x



2
2
log0.4 log3
log3 log0.4
 

 
 
 
log 0.16 3
9
log
0.4

log0.48
log22.5
This is an
exact answer.
Solving a Logarithmic Equation
 Example: Solve    
log 6 log 2 log
x x x
   
Solving a Logarithmic Equation
 Example: Solve    
log 6 log 2 log
x x x
   
6
log log
2
x
x
x



6
2
x
x
x



 
6 2
x x x
  
2
6 2
x x x
  
2
6 0
x x
  
  
3 2 0
x x
  
3, 2
x  
  
2
0 6
x x
If we plug in –3, x+2
is negative. We can’t
take the log of a
negative number, so
our answer is 2.
Solving a Base e Equation
 Example: Solve and round your answer to the
nearest thousandth.
2
200
x
e 
Solving a Base e Equation
 Example: Solve and round your answer to the
nearest thousandth.
2
200
x
e 
2
ln ln200
x
e 
2
ln200
x 
ln200
x  
2.302
x 
Solving a Base e Equation
 Example: Solve  
ln
ln ln 3 ln2
x
e x
  
Solving a Base e Equation
 Example: Solve  
ln
ln ln 3 ln2
x
e x
  
 
  
ln ln 3 ln2
x
x
 
  
ln
ln ln 3 ln2
x
x
e
ln ln2
3
x
x


2
3
x
x


2 6
x x
 
6 x

 
 
2 3
x x
Classwork
 4.5 Assignment (College Algebra)
 Page 464: 12-20 (even), page 442: 28, 30, 60-70
(even), page 429: 80-84 (even)
 4.5 Classwork Check
 Quiz 4.3

4.5 Exponential and Logarithmic Equations

  • 1.
    4.5 Exponential &Logarithmic Equations Chapter 4 Inverse, Exponential, and Logarithmic Functions
  • 2.
    Concepts and Objectives Exponential and Logarithmic Equations  Identify e and ln x.  Set up and solve exponential and logarithmic equations.
  • 3.
    e  Suppose that$1 is invested at 100% interest per year, compounded n times per year.  According to the formula, the compound amount at the end of 1 year will be  As n increases, the value of A gets closer to some fixed number, which is called e.  e is approximately 2.718281828. 1 1 n A n        
  • 4.
    Natural Logarithms  Logarithmswith base e are called natural logarithms, since they often occur in the life sciences and economics in natural situations that involve growth and decay.  The base e logarithm of x is written ln x.  Therefore, e and ln x are inverse functions. ln ln x x e e x  
  • 5.
    Exponential Equations  Example:Solve . Round to the nearest thousandth. If x > 0, y > 0, a > 0, and a  1, then x = y if and only if logax = logay    2 1 2 3 0.4 x x
  • 6.
    Exponential Equations  Example:Solve . Round to the nearest thousandth. If x > 0, y > 0, a > 0, and a  1, then x = y if and only if logax = logay    2 1 2 3 0.4 x x    2 1 2 log3 log0.4 x x
  • 7.
    Exponential Equations  Example:Solve . Round to the nearest thousandth. If x > 0, y > 0, a > 0, and a  1, then x = y if and only if logax = logay    2 1 2 3 0.4 x x    2 1 2 log3 log0.4 x x        2 1 2 log3 log0.4 x x
  • 8.
       2log3 log3 log0.4 2log0.4 x x Exponential Equations  Example: Solve . Round to the nearest thousandth. If x > 0, y > 0, a > 0, and a  1, then x = y if and only if logax = logay    2 1 2 3 0.4 x x    2 1 2 log3 log0.4 x x        2 1 2 log3 log0.4 x x
  • 9.
    Exponential Equations  Example:Solve . Round to the nearest thousandth. If x > 0, y > 0, a > 0, and a  1, then x = y if and only if logax = logay    2 1 2 3 0.4 x x    2 1 2 log3 log0.4 x x        2 1 log3 2 log0.4 x x    log0. l 4 og3 2 log3 2log0.4 x x    log0.4 2 log3 2log g 0.4 lo 3 x x
  • 10.
    Exponential Equations  Example:Solve . Round to the nearest thousandth. If x > 0, y > 0, a > 0, and a  1, then x = y if and only if logax = logay    2 1 2 3 0.4 x x    2 1 2 log3 log0.4 x x        2 1 log3 2 log0.4 x x    2 log3 log3 log0.4 2log0.4 x x      2log3 log0.4 2log0.4 log3 x    2 log3 log0.4 2log0.4 log3 x x
  • 11.
    Exponential Equations  Example:Solve . Round to the nearest thousandth. If x > 0, y > 0, a > 0, and a  1, then x = y if and only if logax = logay    2 1 2 3 0.4 x x    2 1 2 log3 log0.4 x x        2 1 log3 2 log0.4 x x    2 log3 log3 log0.4 2log0.4 x x      2log3 log0.4 2log0.4 log3 x    2 log3 log0.4 2log0.4 log3 x x      2log0.4 log3 0.236 2log3 log0.4 x
  • 12.
    Properties of Logs,Revisited  You could also finish this as    2log0.4 log3 2log3 log0.4 x    2 2 log0.4 log3 log3 log0.4          log 0.16 3 9 log 0.4  log0.48 log22.5 This is an exact answer.
  • 13.
    Solving a LogarithmicEquation  Example: Solve     log 6 log 2 log x x x    
  • 14.
    Solving a LogarithmicEquation  Example: Solve     log 6 log 2 log x x x     6 log log 2 x x x    6 2 x x x      6 2 x x x    2 6 2 x x x    2 6 0 x x       3 2 0 x x    3, 2 x      2 0 6 x x If we plug in –3, x+2 is negative. We can’t take the log of a negative number, so our answer is 2.
  • 15.
    Solving a Basee Equation  Example: Solve and round your answer to the nearest thousandth. 2 200 x e 
  • 16.
    Solving a Basee Equation  Example: Solve and round your answer to the nearest thousandth. 2 200 x e  2 ln ln200 x e  2 ln200 x  ln200 x   2.302 x 
  • 17.
    Solving a Basee Equation  Example: Solve   ln ln ln 3 ln2 x e x   
  • 18.
    Solving a Basee Equation  Example: Solve   ln ln ln 3 ln2 x e x         ln ln 3 ln2 x x      ln ln ln 3 ln2 x x e ln ln2 3 x x   2 3 x x   2 6 x x   6 x      2 3 x x
  • 19.
    Classwork  4.5 Assignment(College Algebra)  Page 464: 12-20 (even), page 442: 28, 30, 60-70 (even), page 429: 80-84 (even)  4.5 Classwork Check  Quiz 4.3