Physics Helpline
L K Satapathy
3D Geometry Theory 1
Physics Helpline
L K Satapathy
( , , ) (cos , cos , cos )l m n   
Direction Cosines of a line :
Cosines of the angles made by a line with the positive direction of X , Y and Z
axes are known as the direction cosines of the line , denoted by ( l , m , n ).
If  ,  and  be the angles made by the line with coordinate axes , then
Relation between the direction cosines : 2 2 2
1l m n  
Also
2 2 2 2 2 2
sin sin sin (1 cos ) (1 cos ) (1 cos )            
2 2 2
3 (cos cos cos )     
2 2 2
3 ( ) 3 1 2l m n      
[ Refer Theory of vectors 3 ]
3 D Geometry Theory 1
Physics Helpline
L K Satapathy
Direction Ratios of a line :
Direction ratios are three real numbers ( a , b , c ) , which are proportional to the
direction cosines .
. . . (1)
l m n
a b c
  
2 2 2 2 2 2
2 2 2 2 2 2 2 2 2
1
(1)
l m n l m n
a b c a b c a b c
 
    
   
2 2 2
1l m n
a b c a b c
   
  
2 2 2 2 2 2 2 2 2
, ,
a b c
l m n
a b c a b c a b c
   
        
To find the Direction Cosines from Direction Ratios :
3 D Geometry Theory 1
Physics Helpline
L K Satapathy
Direction ratios of the line passing through the points
are given by
1 1 1 2 2 2( , , ) ( , , )x y z and x y z
2 1 2 1 2 1( , , ) ( , , )a b c x x y y z z   
2 1
2 2 2
2 1 2 1 2 1
( )
( ) ( ) ( )
x x
l
x x y y z z

 
     
2 1
2 2 2
2 1 2 1 2 1
( )
( ) ( ) ( )
y y
m
x x y y z z

 
     
2 1
2 2 2
2 1 2 1 2 1
( )
( ) ( ) ( )
z z
n
x x y y z z

 
     
 The Direction Cosines are
3 D Geometry Theory 1
Physics Helpline
L K Satapathy
Direction Cosines of the Coordinate axes :
(i) The x-axis makes angles 0 with x-axis and 90 with each of y and z-axes
(ii) The y-axis makes angles 0 with y-axis and 90 with each of x and z-axes
(iii) The z-axis makes angles 0 with z-axis and 90 with each of x and y-axes
( , , ) (cos , cos , cos )l m n   
( , , ) (cos , cos , cos )l m n   
(cos0 , cos90 , cos90 ) (1 , 0 , 0)o o o
 
(cos90 , cos0 , cos90 ) (0 , 1 , 0)o o o
 
 Direction Cosines are
 Direction Cosines are
( , , ) (cos , cos , cos )l m n   
(cos90 , cos90 , cos0 ) (0 , 0 , 1)o o o
 
 Direction Cosines are
3 D Geometry Theory 1
Physics Helpline
L K Satapathy
Example 1:
Show that the points A (2 , 3 , 4) , B (– 1 , – 2 , 1) and C (5 , 8 , 7) are collinear.
Ans:
Direction Ratios of AB = (– 1 – 2 , – 2 – 3 , 1 – 4 ) = (– 3 , – 5 , – 3)
Direction Ratios of BC = (5 + 1 , 8 + 2 , 7 – 1 ) = (6 , 10 , 6)
We observe that
3 5 3
6 10 6
  
 
 Direction ratios of AB and BC are proportional .  AB and BC are parallel .
And B is the common point of AB and BC .
 The points A , B and C are collinear .
3 D Geometry Theory 1
Physics Helpline
L K Satapathy
Example 2:
Find the direction cosines of the sides of the triangle , whose vertices are
Ans:
( 3 , 5 , – 4 ) , (– 1 , 1 , 2) and (– 5 , – 5 , – 2) .
Let A = ( 3 , 5 , – 4 ) , B = (– 1 , 1 , 2) and C = (– 5 , – 5 , – 2) .
Direction Ratios of AB = (– 1 – 3 , 1 – 5 , 2 + 4 ) = (– 4 , – 4 , 6)
Direction Cosines of AB
4 4 6
, ,
16 16 36 16 16 36 16 16 36
  
  
      
4 4 6 2 2 3
, , , ,
68 68 68 17 17 17
      
    
   
3 D Geometry Theory 1
Physics Helpline
L K Satapathy
Direction Ratios of BC = (– 5 + 1 , – 5 – 1 , – 2 – 2 ) = (– 4 , – 6 , – 4 )
Direction Cosines of BC
4 6 4
, ,
16 36 16 16 36 16 16 36 16
   
  
      
4 6 4 2 3 2
, , , ,
68 68 68 17 17 17
        
    
   
Direction Ratios of CA = (3 + 5 , 5 + 5 , – 4 + 2 ) = (8 , 10 , – 2 )
Direction Cosines of CA
8 10 2
, ,
64 100 4 64 100 4 64 100 4
 
  
      
8 10 2 4 5 1
, , , ,
168 168 168 42 42 42
   
    
  
3 D Geometry Theory 1
Physics Helpline
L K Satapathy
For More details:
www.physics-helpline.com
Subscribe our channel:
youtube.com/physics-helpline
Follow us on Facebook and Twitter:
facebook.com/physics-helpline
twitter.com/physics-helpline

3D Geometry Theory 1

  • 1.
    Physics Helpline L KSatapathy 3D Geometry Theory 1
  • 2.
    Physics Helpline L KSatapathy ( , , ) (cos , cos , cos )l m n    Direction Cosines of a line : Cosines of the angles made by a line with the positive direction of X , Y and Z axes are known as the direction cosines of the line , denoted by ( l , m , n ). If  ,  and  be the angles made by the line with coordinate axes , then Relation between the direction cosines : 2 2 2 1l m n   Also 2 2 2 2 2 2 sin sin sin (1 cos ) (1 cos ) (1 cos )             2 2 2 3 (cos cos cos )      2 2 2 3 ( ) 3 1 2l m n       [ Refer Theory of vectors 3 ] 3 D Geometry Theory 1
  • 3.
    Physics Helpline L KSatapathy Direction Ratios of a line : Direction ratios are three real numbers ( a , b , c ) , which are proportional to the direction cosines . . . . (1) l m n a b c    2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 (1) l m n l m n a b c a b c a b c            2 2 2 1l m n a b c a b c        2 2 2 2 2 2 2 2 2 , , a b c l m n a b c a b c a b c              To find the Direction Cosines from Direction Ratios : 3 D Geometry Theory 1
  • 4.
    Physics Helpline L KSatapathy Direction ratios of the line passing through the points are given by 1 1 1 2 2 2( , , ) ( , , )x y z and x y z 2 1 2 1 2 1( , , ) ( , , )a b c x x y y z z    2 1 2 2 2 2 1 2 1 2 1 ( ) ( ) ( ) ( ) x x l x x y y z z          2 1 2 2 2 2 1 2 1 2 1 ( ) ( ) ( ) ( ) y y m x x y y z z          2 1 2 2 2 2 1 2 1 2 1 ( ) ( ) ( ) ( ) z z n x x y y z z           The Direction Cosines are 3 D Geometry Theory 1
  • 5.
    Physics Helpline L KSatapathy Direction Cosines of the Coordinate axes : (i) The x-axis makes angles 0 with x-axis and 90 with each of y and z-axes (ii) The y-axis makes angles 0 with y-axis and 90 with each of x and z-axes (iii) The z-axis makes angles 0 with z-axis and 90 with each of x and y-axes ( , , ) (cos , cos , cos )l m n    ( , , ) (cos , cos , cos )l m n    (cos0 , cos90 , cos90 ) (1 , 0 , 0)o o o   (cos90 , cos0 , cos90 ) (0 , 1 , 0)o o o    Direction Cosines are  Direction Cosines are ( , , ) (cos , cos , cos )l m n    (cos90 , cos90 , cos0 ) (0 , 0 , 1)o o o    Direction Cosines are 3 D Geometry Theory 1
  • 6.
    Physics Helpline L KSatapathy Example 1: Show that the points A (2 , 3 , 4) , B (– 1 , – 2 , 1) and C (5 , 8 , 7) are collinear. Ans: Direction Ratios of AB = (– 1 – 2 , – 2 – 3 , 1 – 4 ) = (– 3 , – 5 , – 3) Direction Ratios of BC = (5 + 1 , 8 + 2 , 7 – 1 ) = (6 , 10 , 6) We observe that 3 5 3 6 10 6       Direction ratios of AB and BC are proportional .  AB and BC are parallel . And B is the common point of AB and BC .  The points A , B and C are collinear . 3 D Geometry Theory 1
  • 7.
    Physics Helpline L KSatapathy Example 2: Find the direction cosines of the sides of the triangle , whose vertices are Ans: ( 3 , 5 , – 4 ) , (– 1 , 1 , 2) and (– 5 , – 5 , – 2) . Let A = ( 3 , 5 , – 4 ) , B = (– 1 , 1 , 2) and C = (– 5 , – 5 , – 2) . Direction Ratios of AB = (– 1 – 3 , 1 – 5 , 2 + 4 ) = (– 4 , – 4 , 6) Direction Cosines of AB 4 4 6 , , 16 16 36 16 16 36 16 16 36              4 4 6 2 2 3 , , , , 68 68 68 17 17 17                 3 D Geometry Theory 1
  • 8.
    Physics Helpline L KSatapathy Direction Ratios of BC = (– 5 + 1 , – 5 – 1 , – 2 – 2 ) = (– 4 , – 6 , – 4 ) Direction Cosines of BC 4 6 4 , , 16 36 16 16 36 16 16 36 16               4 6 4 2 3 2 , , , , 68 68 68 17 17 17                   Direction Ratios of CA = (3 + 5 , 5 + 5 , – 4 + 2 ) = (8 , 10 , – 2 ) Direction Cosines of CA 8 10 2 , , 64 100 4 64 100 4 64 100 4             8 10 2 4 5 1 , , , , 168 168 168 42 42 42             3 D Geometry Theory 1
  • 9.
    Physics Helpline L KSatapathy For More details: www.physics-helpline.com Subscribe our channel: youtube.com/physics-helpline Follow us on Facebook and Twitter: facebook.com/physics-helpline twitter.com/physics-helpline