SlideShare a Scribd company logo
Relationships Between
Binomial Coefficients
Relationships Between
       Binomial Coefficients
Binomial Theorem
Relationships Between
        Binomial Coefficients
                               n
Binomial Theorem 1  x n 
                              n
                                 Ck x k
                              k 0
Relationships Between
        Binomial Coefficients
                               n
Binomial Theorem 1  x n 
                              n
                                 Ck x k
                              k 0

                             nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
Relationships Between
           Binomial Coefficients
                                  n
 Binomial Theorem 1  x n 
                               n
                                  Ck x k
                                 k 0

                                nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
e.g. (i) Find the values of;
    n
 a) nCk
   k 1
Relationships Between
              Binomial Coefficients
                                      n
 Binomial Theorem 1  x n 
                               n
                                  Ck x k
                                     k 0

                                    nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
e.g. (i) Find the values of;
    n                                  n
 a) Ck   n
                         1  x    nCk x k
                               n

   k 1                               k 0
Relationships Between
              Binomial Coefficients
                                        n
 Binomial Theorem 1  x n 
                               n
                                  Ck x k
                                       k 0

                                      nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
e.g. (i) Find the values of;
    n                                    n
 a) Ck   n
                           1  x    nCk x k
                                 n

   k 1                                 k 0
                                          n
              let x = 1;   1  1n   nCk 1k
                                        k 0
Relationships Between
              Binomial Coefficients
                                        n
 Binomial Theorem 1  x n 
                               n
                                  Ck x k
                                       k 0

                                      nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
e.g. (i) Find the values of;
    n                                    n
 a) Ck   n
                           1  x    nCk x k
                                 n

   k 1                                 k 0
                                          n
              let x = 1;   1  1n   nCk 1k
                                        k 0
                                        n
                               2 n   nCk
                                       k 0
Relationships Between
              Binomial Coefficients
                                        n
 Binomial Theorem 1  x n 
                               n
                                  Ck x k
                                       k 0

                                      nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
e.g. (i) Find the values of;
    n                                    n
 a) Ck   n
                           1  x    nCk x k
                                 n

   k 1                                 k 0
                                          n
              let x = 1;   1  1n   nCk 1k
                                        k 0
                                        n
                               2 n   nCk
                                       k 0
                                                n
                                2 n  n C0   n C k
                                               k 1
Relationships Between
              Binomial Coefficients
                                       n
 Binomial Theorem 1  x n 
                               n
                                  Ck x k
                                      k 0

                                     nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
e.g. (i) Find the values of;
    n                                   n
 a) Ck
                                                              n
          n
                           1  x    Ck x
                                n             n          k
                                                                   n
                                                                        C k  2 n  n C0
   k 1                                k 0                  k 1
                                         n
              let x = 1;   1  1n   nCk 1k
                                       k 0
                                       n
                               2 n   nCk
                                      k 0
                                                   n
                               2 n  n C0   n C k
                                                  k 1
Relationships Between
              Binomial Coefficients
                                       n
 Binomial Theorem 1  x n 
                               n
                                  Ck x k
                                      k 0

                                     nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
e.g. (i) Find the values of;
    n                                   n
 a) Ck
                                                              n
          n
                           1  x    Ck x
                                n             n          k
                                                                    n
                                                                         C k  2 n  n C0
   k 1                                k 0                  k 1
                                         n                      n
              let x = 1;   1  1n   nCk 1k                      n
                                                                         Ck  2 n  1
                                       k 0                   k 1
                                       n
                               2 n   nCk
                                      k 0
                                                   n
                               2 n  n C0   n C k
                                                  k 1
b) nC1  nC3  nC5  nC7  
b) nC1  nC3  nC5  nC7  
                            n
                 1  x    nCk x k
                       n

                           k 0
b) nC1  nC3  nC5  nC7  
                               n
                 1  x    nCk x k
                       n

                              k 0

                            nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  
b) nC1  nC3  nC5  nC7  
                                n
                  1  x    nCk x k
                        n

                               k 0

                             nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  

 let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                  n
b) nC1  nC3  nC5  nC7  
                                n
                  1  x    nCk x k
                        n

                               k 0

                             nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  

 let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                  n



                 2 n  nC0  nC1  nC2  nC3  nC4  nC5            1
b) nC1  nC3  nC5  nC7  
                                n
                  1  x    nCk x k
                        n

                               k 0

                             nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  

 let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                  n



                 2 n  nC0  nC1  nC2  nC3  nC4  nC5            1
 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                   n
b) nC1  nC3  nC5  nC7  
                                n
                  1  x    nCk x k
                        n

                               k 0

                             nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  

 let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                  n



                 2 n  nC0  nC1  nC2  nC3  nC4  nC5            1
 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                   n



                  0 nC0  nC1  nC2  nC3  nC4  nC5               2 
b) nC1  nC3  nC5  nC7  
                                 n
                  1  x    nCk x k
                         n

                                k 0

                              nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  

 let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                  n



                 2 n  nC0  nC1  nC2  nC3  nC4  nC5             1
 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                   n



                  0 nC0  nC1  nC2  nC3  nC4  nC5                2 
 subtract (2) from (1)
b) nC1  nC3  nC5  nC7  
                                   n
                  1  x    nCk x k
                           n

                                  k 0

                                nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  

 let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                  n



                 2 n  nC0  nC1  nC2  nC3  nC4  nC5               1
 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                   n



                  0 nC0  nC1  nC2  nC3  nC4  nC5                  2 
 subtract (2) from (1)
                       2 n  2 n C1  2 n C3  2 n C5  
b) nC1  nC3  nC5  nC7  
                                   n
                  1  x    nCk x k
                           n

                                  k 0

                                nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  

 let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                  n



                 2 n  nC0  nC1  nC2  nC3  nC4  nC5               1
 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                   n



                  0 nC0  nC1  nC2  nC3  nC4  nC5                  2 
 subtract (2) from (1)
                       2 n  2 n C1  2 n C3  2 n C5  

                      2 n 1  nC1  nC3  nC5  
n
c)  k nCk
  k 1
n
c)  k nCk
  k 1                  n
             1  x    nCk x k
                   n

                       k 0
n
c)  k nCk
  k 1                       n
                1  x    nCk x k
                      n

                            k 0

 Differentiate both sides
n
c)  k nCk
  k 1                            n
                1  x    nCk x k
                      n

                                 k 0

 Differentiate both sides
                                        n
               n1  x            k nCk x k 1
                          n 1

                                      k 0
n
c)  k nCk
  k 1                            n
                1  x    nCk x k
                      n

                                 k 0

 Differentiate both sides
                                        n
               n1  x            k nCk x k 1
                          n 1

                                      k 0
                                       n
               n1  1            k nCk
                       n 1
let x = 1;
                                      k 0
n
c)  k nCk
  k 1                             n
                1  x    nCk x k
                       n

                                  k 0

 Differentiate both sides
                                         n
               n1  x             k nCk x k 1
                           n 1

                                       k 0
                                        n
               n1  1             k nCk
                       n 1
let x = 1;
                                       k 0
                                                  n
                  n 2           0  C0   k nCk
                          n 1               n

                                                 k 1
n
c)  k nCk
  k 1                              n
                1  x    nCk x k
                        n

                                   k 0

 Differentiate both sides
                                          n
               n1  x              k nCk x k 1
                            n 1

                                        k 0
                                         n
               n1  1              k nCk
                            n 1
let x = 1;
                                        k 0
                                                          n
                  n 2            0  C0   k nCk
                            n 1              n

                                                         k 1
                  n

                 k C               n 2 
                        n                         n 1
                              k
                 k 1
n
          1k nCk
d) 
  k 0     k 1
n
          1k nCk
d) 
           k 1                  n
                      1  x    nCk x k
  k 0                      n

                                k 0
n
          1k nCk
d) 
           k 1                  n
                      1  x    nCk x k
  k 0                      n

                                k 0
Integrate both sides
n
          1k nCk
d) 
           k 1                  n
                      1  x    nCk x k
  k 0                      n

                                k 0
Integrate both sides
             1  x n1         n
                                      x k 1
                          K   Ck n

                n 1           k 0   k 1
n
          1k nCk
d) 
           k 1                  n
                      1  x    nCk x k
  k 0                      n

                                k 0
 Integrate both sides
              1  x n1         n
                                             x k 1
                           K   nCk
                 n 1           k 0         k 1
              1  0n 1         n
                                             0 k 1
let x = 0;                 K   nCk
                 n 1           k 0         k 1
n
          1k nCk
d) 
           k 1                  n
                      1  x    nCk x k
  k 0                      n

                                k 0
 Integrate both sides
              1  x n1         n
                                             x k 1
                           K   nCk
                 n 1           k 0         k 1
              1  0n 1         n
                                             0 k 1
let x = 0;                 K   nCk
                 n 1           k 0         k 1
                                  1
                            K
                                n 1
n
          1k nCk
d) 
           k 1                  n
                      1  x    nCk x k
  k 0                      n

                                k 0
 Integrate both sides
              1  x n1  K  n nC x k 1
                 n 1
                                   k k 1
                                  k 0

              1  0n 1  K  n nC 0 k 1
let x = 0;
                 n 1
                                   k k 1
                                  k 0

                                    1
                             K
                                  n 1
                 1  1n 1  1  n nC  1k 1
                                    k k 1
let x = -1;
                      n 1         k 0
n
          1k nCk
d) 
           k 1                  n
                      1  x    nCk x k
  k 0                      n

                                k 0
 Integrate both sides
              1  x n1  K  n nC x k 1
                  n 1
                                    k k 1
                                   k 0

               1  0n 1  K  n nC 0 k 1
let x = 0;
                  n 1
                                    k k 1
                                   k 0

                                     1
                              K
                                   n 1
                  1  1n 1  1  n nC  1k 1
                                     k k 1
let x = -1;
                      n 1          k 0
               n
                        1k 1   1
              Ck k  1 n  1
             k 0
                  n
n
          1k nCk
d) 
           k 1                       n
                          1  x    nCk x k
  k 0                          n

                                    k 0
 Integrate both sides
              1  x n1  K  n nC x k 1
                  n 1
                                    k k 1
                                   k 0

               1  0n 1  K  n nC 0 k 1
let x = 0;
                  n 1
                                    k k 1
                                   k 0

                                     1
                              K
                                   n 1
                  1  1n 1  1  n nC  1k 1
                                     k k 1
let x = -1;
                      n 1          k 0
               n
                        1k 1   1
              Ck k  1 n  1
             k 0
                  n



                      n
                        1k  1
                   Ck
                   n

                  k 0         k 1        n 1
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x  1  x   1  x 
                               n        n          2n
   show that;
                     n  2n !
                n     2

                 k   n!2
               k 0 
                        
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                       n   2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                k 0
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                        n   2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                 k 0

               C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n
                n
                    0
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                       n   2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                k 0

           C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n
               n
                   0
  coefficient of x n in 1  x  1  x 
                                n        n
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                       n   2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                k 0

           C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n
               n
                   0
  coefficient of x n in 1  x  1  x 
                                n        n


       nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 

                    nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                       n      2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                k 0

           C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n
               n
                   0
  coefficient of x n in 1  x  1  x 
                                n        n


       nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 

                     nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 
     n  n  n
      x
     0  n 
                                n  n2  n  2  n  n1  n   n  n  n 
                                  x  x         x  x   x  
                                n  2  2      n  1  1   n   0 
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                       n   2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                k 0

           C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n
               n
                   0
  coefficient of x n in 1  x  1  x 
                                n        n


       nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 

                  nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 
     n  n  n  n   n  n1
      x    x          x
     0  n  1   n  1
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                       n   2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                k 0

           C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n
               n
                   0
  coefficient of x n in 1  x  1  x 
                                n        n


       nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 

                  nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 
     n  n  n  n   n  n1  n  2  n  n2
      x    x          x   x             x
     0  n  1   n  1              2  n  2
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                       n   2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                k 0

           C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n
               n
                   0
  coefficient of x n in 1  x  1  x 
                                n        n


       nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 

                  nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 
     n  n  n  n   n  n1  n  2  n  n2
      x    x          x   x             x
     0  n  1   n  1              2  n  2
                             n  n2  n  2  n  n1  n   n  n  n 
                                x  x              x  x   x  
                             n  2       2      n  1      1   n   0 
 n  n   n  n   n  n               n  n 
coefficient of x       
                 n
                                                         
                    0  n  1  n  1  2  n  2         n  0 
 n  n   n  n   n  n               n  n 
 coefficient of x       
                  n
                                                          
                     0  n  1  n  1  2  n  2         n  0 
    n  n 
But          
    k  n  k 
 n  n   n  n   n  n               n  n 
 coefficient of x       
                   n
                                                           
                      0  n  1  n  1  2  n  2         n  0 
    n  n 
But          
    k  n  k          2       2       2             2
                      n n n                   n
                              
                      0  1   2               n
 n  n   n  n   n  n               n  n 
 coefficient of x       
                   n
                                                           
                      0  n  1  n  1  2  n  2         n  0 
    n  n 
But          
    k  n  k          2       2       2             2
                      n n n                   n
                              
                      0  1   2               n
                                      2
                           n
                              n
                         
                         k 0  k 
 n  n   n  n   n  n               n  n 
 coefficient of x       
                   n
                                                           
                      0  n  1  n  1  2  n  2         n  0 
    n  n 
But          
    k  n  k          2       2       2             2
                      n n n                   n
                              
                      0  1   2               n
                                      2
                           n
                              n
                         
                         k 0  k 


coefficient of x n in 1  x 
                                2n
 n  n   n  n   n  n               n  n 
 coefficient of x       
                   n
                                                           
                      0  n  1  n  1  2  n  2         n  0 
    n  n 
But          
    k  n  k          2       2       2             2
                      n n n                   n
                              
                      0  1   2               n
                                      2
                           n
                              n
                         
                         k 0  k 


coefficient of x n in 1  x 
                                2n



               2n   2n   2n  2   2n  n    2n  2 n
1  x 
       2n
                 x   x     x     x
              0   1   2         n         2n 
 n  n   n  n   n  n               n  n 
 coefficient of x       
                   n
                                                           
                      0  n  1  n  1  2  n  2         n  0 
    n  n 
But          
    k  n  k          2       2       2             2
                      n n n                   n
                              
                      0  1   2               n
                                      2
                           n
                              n
                         
                         k 0  k 


coefficient of x n in 1  x 
                                2n



               2n   2n   2n  2   2n  n    2n  2 n
1  x 
       2n
                 x   x     x     x
              0   1   2         n         2n 
 n  n   n  n   n  n               n  n 
 coefficient of x       
                   n
                                                           
                      0  n  1  n  1  2  n  2         n  0 
    n  n 
But          
    k  n  k          2       2       2             2
                      n n n                   n
                              
                      0  1   2               n
                                       2
                            n
                               n
                          
                          k 0  k 


coefficient of x n in 1  x 
                                 2n



               2n   2n   2n  2   2n  n    2n  2 n
1  x 
       2n
                 x   x     x     x
              0   1   2         n         2n 

                      2n 
  coefficient of x   
                    n

                     n
Now
      1  x n 1  x n  1  x 2 n
Now
      1  x n 1  x n  1  x 2 n
                       2
               n
                  n   2n 
                
            k 0  k  n
Now
      1  x n 1  x n  1  x 2 n
                       2
               n
                  n   2n 
                
            k 0  k  n
                               2n !
                           
                               n!n!
Now
      1  x n 1  x n  1  x 2 n
                       2
               n
                  n   2n 
                
            k 0  k  n
                               2n !
                           
                               n!n!
                             2n !
                           
                             n!2
Now
      1  x n 1  x n  1  x 2 n
                       2
               n
                  n   2n 
                
            k 0  k  n

                           
                               2n !      Exercise 5F;
                               n!n!       4, 5, 6, 8, 10,15
                             2n !
                           
                             n!2        + worksheets

More Related Content

Similar to 12X1 T08 05 binomial coefficients (2011)

12 x1 t08 02 general binomial expansions (2012)
12 x1 t08 02 general binomial expansions (2012)12 x1 t08 02 general binomial expansions (2012)
12 x1 t08 02 general binomial expansions (2012)Nigel Simmons
 
Roots of unity_cool_app
Roots of unity_cool_appRoots of unity_cool_app
Roots of unity_cool_app
dineshkrithi
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14Sanyam Singh
 
fauvel_igarss.pdf
fauvel_igarss.pdffauvel_igarss.pdf
fauvel_igarss.pdfgrssieee
 
Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Septiko Aji
 
Proof of Kraft-McMillan theorem
Proof of Kraft-McMillan theoremProof of Kraft-McMillan theorem
Proof of Kraft-McMillan theorem
Vu Hung Nguyen
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanics
RakeshPatil2528
 
icml2004 tutorial on spectral clustering part II
icml2004 tutorial on spectral clustering part IIicml2004 tutorial on spectral clustering part II
icml2004 tutorial on spectral clustering part IIzukun
 
Lesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayLesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and Decay
Matthew Leingang
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeNamit Kotiya
 
Nonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo methodNonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo method
SSA KPI
 
12 x1 t08 05 binomial coefficients (2013)
12 x1 t08 05 binomial coefficients (2013)12 x1 t08 05 binomial coefficients (2013)
12 x1 t08 05 binomial coefficients (2013)Nigel Simmons
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16derry92
 
Quantum Computation and Algorithms
Quantum Computation and Algorithms Quantum Computation and Algorithms
Quantum Computation and Algorithms
Reza Rahimi
 
Summation Series
Summation SeriesSummation Series
Summation Series
MenglinLiu1
 

Similar to 12X1 T08 05 binomial coefficients (2011) (20)

12 x1 t08 02 general binomial expansions (2012)
12 x1 t08 02 general binomial expansions (2012)12 x1 t08 02 general binomial expansions (2012)
12 x1 t08 02 general binomial expansions (2012)
 
Roots of unity_cool_app
Roots of unity_cool_appRoots of unity_cool_app
Roots of unity_cool_app
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
 
fauvel_igarss.pdf
fauvel_igarss.pdffauvel_igarss.pdf
fauvel_igarss.pdf
 
Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)
 
Proof of Kraft-McMillan theorem
Proof of Kraft-McMillan theoremProof of Kraft-McMillan theorem
Proof of Kraft-McMillan theorem
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanics
 
icml2004 tutorial on spectral clustering part II
icml2004 tutorial on spectral clustering part IIicml2004 tutorial on spectral clustering part II
icml2004 tutorial on spectral clustering part II
 
Lesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayLesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and Decay
 
Cepstral coefficients
Cepstral coefficientsCepstral coefficients
Cepstral coefficients
 
Fisicaimpulsivaingles
FisicaimpulsivainglesFisicaimpulsivaingles
Fisicaimpulsivaingles
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulae
 
Nonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo methodNonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo method
 
12 x1 t08 05 binomial coefficients (2013)
12 x1 t08 05 binomial coefficients (2013)12 x1 t08 05 binomial coefficients (2013)
12 x1 t08 05 binomial coefficients (2013)
 
0004
00040004
0004
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
Quantum Computation and Algorithms
Quantum Computation and Algorithms Quantum Computation and Algorithms
Quantum Computation and Algorithms
 
Summation Series
Summation SeriesSummation Series
Summation Series
 
09 trial melaka_s2
09 trial melaka_s209 trial melaka_s2
09 trial melaka_s2
 

More from Nigel Simmons

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 

Recently uploaded

The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
Marketing internship report file for MBA
Marketing internship report file for MBAMarketing internship report file for MBA
Marketing internship report file for MBA
gb193092
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
DhatriParmar
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
Advantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO PerspectiveAdvantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO Perspective
Krisztián Száraz
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 

Recently uploaded (20)

The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
Marketing internship report file for MBA
Marketing internship report file for MBAMarketing internship report file for MBA
Marketing internship report file for MBA
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
Advantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO PerspectiveAdvantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO Perspective
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 

12X1 T08 05 binomial coefficients (2011)

  • 2. Relationships Between Binomial Coefficients Binomial Theorem
  • 3. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0
  • 4. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
  • 5. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n e.g. (i) Find the values of; n a) nCk k 1
  • 6. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n e.g. (i) Find the values of; n n a) Ck n 1  x    nCk x k n k 1 k 0
  • 7. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n e.g. (i) Find the values of; n n a) Ck n 1  x    nCk x k n k 1 k 0 n let x = 1; 1  1n   nCk 1k k 0
  • 8. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n e.g. (i) Find the values of; n n a) Ck n 1  x    nCk x k n k 1 k 0 n let x = 1; 1  1n   nCk 1k k 0 n 2 n   nCk k 0
  • 9. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n e.g. (i) Find the values of; n n a) Ck n 1  x    nCk x k n k 1 k 0 n let x = 1; 1  1n   nCk 1k k 0 n 2 n   nCk k 0 n 2 n  n C0   n C k k 1
  • 10. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n e.g. (i) Find the values of; n n a) Ck n n 1  x    Ck x n n k  n C k  2 n  n C0 k 1 k 0 k 1 n let x = 1; 1  1n   nCk 1k k 0 n 2 n   nCk k 0 n 2 n  n C0   n C k k 1
  • 11. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n e.g. (i) Find the values of; n n a) Ck n n 1  x    Ck x n n k  n C k  2 n  n C0 k 1 k 0 k 1 n n let x = 1; 1  1n   nCk 1k  n Ck  2 n  1 k 0 k 1 n 2 n   nCk k 0 n 2 n  n C0   n C k k 1
  • 12. b) nC1  nC3  nC5  nC7  
  • 13. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0
  • 14. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  
  • 15. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5   let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n
  • 16. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5   let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 2 n  nC0  nC1  nC2  nC3  nC4  nC5   1
  • 17. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5   let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 2 n  nC0  nC1  nC2  nC3  nC4  nC5   1 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n
  • 18. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5   let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 2 n  nC0  nC1  nC2  nC3  nC4  nC5   1 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 0 nC0  nC1  nC2  nC3  nC4  nC5   2 
  • 19. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5   let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 2 n  nC0  nC1  nC2  nC3  nC4  nC5   1 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 0 nC0  nC1  nC2  nC3  nC4  nC5   2  subtract (2) from (1)
  • 20. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5   let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 2 n  nC0  nC1  nC2  nC3  nC4  nC5   1 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 0 nC0  nC1  nC2  nC3  nC4  nC5   2  subtract (2) from (1) 2 n  2 n C1  2 n C3  2 n C5  
  • 21. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5   let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 2 n  nC0  nC1  nC2  nC3  nC4  nC5   1 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 0 nC0  nC1  nC2  nC3  nC4  nC5   2  subtract (2) from (1) 2 n  2 n C1  2 n C3  2 n C5   2 n 1  nC1  nC3  nC5  
  • 22. n c)  k nCk k 1
  • 23. n c)  k nCk k 1 n 1  x    nCk x k n k 0
  • 24. n c)  k nCk k 1 n 1  x    nCk x k n k 0 Differentiate both sides
  • 25. n c)  k nCk k 1 n 1  x    nCk x k n k 0 Differentiate both sides n n1  x    k nCk x k 1 n 1 k 0
  • 26. n c)  k nCk k 1 n 1  x    nCk x k n k 0 Differentiate both sides n n1  x    k nCk x k 1 n 1 k 0 n n1  1   k nCk n 1 let x = 1; k 0
  • 27. n c)  k nCk k 1 n 1  x    nCk x k n k 0 Differentiate both sides n n1  x    k nCk x k 1 n 1 k 0 n n1  1   k nCk n 1 let x = 1; k 0 n n 2  0  C0   k nCk n 1 n k 1
  • 28. n c)  k nCk k 1 n 1  x    nCk x k n k 0 Differentiate both sides n n1  x    k nCk x k 1 n 1 k 0 n n1  1   k nCk n 1 let x = 1; k 0 n n 2  0  C0   k nCk n 1 n k 1 n k C  n 2  n n 1 k k 1
  • 29. n  1k nCk d)  k 0 k 1
  • 30. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0
  • 31. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0 Integrate both sides
  • 32. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0 Integrate both sides 1  x n1 n x k 1  K   Ck n n 1 k 0 k 1
  • 33. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0 Integrate both sides 1  x n1 n x k 1  K   nCk n 1 k 0 k 1 1  0n 1 n 0 k 1 let x = 0;  K   nCk n 1 k 0 k 1
  • 34. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0 Integrate both sides 1  x n1 n x k 1  K   nCk n 1 k 0 k 1 1  0n 1 n 0 k 1 let x = 0;  K   nCk n 1 k 0 k 1 1 K n 1
  • 35. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0 Integrate both sides 1  x n1  K  n nC x k 1 n 1  k k 1 k 0 1  0n 1  K  n nC 0 k 1 let x = 0; n 1  k k 1 k 0 1 K n 1 1  1n 1  1  n nC  1k 1  k k 1 let x = -1; n 1 k 0
  • 36. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0 Integrate both sides 1  x n1  K  n nC x k 1 n 1  k k 1 k 0 1  0n 1  K  n nC 0 k 1 let x = 0; n 1  k k 1 k 0 1 K n 1 1  1n 1  1  n nC  1k 1  k k 1 let x = -1; n 1 k 0 n  1k 1   1  Ck k  1 n  1 k 0 n
  • 37. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0 Integrate both sides 1  x n1  K  n nC x k 1 n 1  k k 1 k 0 1  0n 1  K  n nC 0 k 1 let x = 0; n 1  k k 1 k 0 1 K n 1 1  1n 1  1  n nC  1k 1  k k 1 let x = -1; n 1 k 0 n  1k 1   1  Ck k  1 n  1 k 0 n n  1k  1  Ck n k 0 k 1 n 1
  • 38. ii  By equating the coefficients of x n on both sides of the identity; 1  x  1  x   1  x  n n 2n show that;  n  2n ! n 2   k   n!2 k 0  
  • 39. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0
  • 40. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0  C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n n 0
  • 41. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0  C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n n 0 coefficient of x n in 1  x  1  x  n n
  • 42. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0  C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n n 0 coefficient of x n in 1  x  1  x  n n  nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n    nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 
  • 43. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0  C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n n 0 coefficient of x n in 1  x  1  x  n n  nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n    nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n   n  n  n     x  0  n   n  n2  n  2  n  n1  n   n  n  n    x  x   x  x   x    n  2 2  n  1 1   n   0 
  • 44. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0  C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n n 0 coefficient of x n in 1  x  1  x  n n  nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n    nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n   n  n  n  n   n  n1     x    x x  0  n  1   n  1
  • 45. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0  C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n n 0 coefficient of x n in 1  x  1  x  n n  nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n    nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n   n  n  n  n   n  n1  n  2  n  n2     x    x x   x  x  0  n  1   n  1  2  n  2
  • 46. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0  C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n n 0 coefficient of x n in 1  x  1  x  n n  nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n    nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n   n  n  n  n   n  n1  n  2  n  n2     x    x x   x  x  0  n  1   n  1  2  n  2  n  n2  n  2  n  n1  n   n  n  n    x  x   x  x   x    n  2 2  n  1 1   n   0 
  • 47.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0 
  • 48.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0  n  n  But      k  n  k 
  • 49.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0  n  n  But      k  n  k  2 2 2 2  n n n  n              0  1   2  n
  • 50.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0  n  n  But      k  n  k  2 2 2 2  n n n  n              0  1   2  n 2 n n    k 0  k 
  • 51.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0  n  n  But      k  n  k  2 2 2 2  n n n  n              0  1   2  n 2 n n    k 0  k  coefficient of x n in 1  x  2n
  • 52.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0  n  n  But      k  n  k  2 2 2 2  n n n  n              0  1   2  n 2 n n    k 0  k  coefficient of x n in 1  x  2n  2n   2n   2n  2  2n  n  2n  2 n 1  x  2n      x   x     x     x 0   1   2  n  2n 
  • 53.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0  n  n  But      k  n  k  2 2 2 2  n n n  n              0  1   2  n 2 n n    k 0  k  coefficient of x n in 1  x  2n  2n   2n   2n  2  2n  n  2n  2 n 1  x  2n      x   x     x     x 0   1   2  n  2n 
  • 54.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0  n  n  But      k  n  k  2 2 2 2  n n n  n              0  1   2  n 2 n n    k 0  k  coefficient of x n in 1  x  2n  2n   2n   2n  2  2n  n  2n  2 n 1  x  2n      x   x     x     x 0   1   2  n  2n   2n  coefficient of x    n n
  • 55. Now 1  x n 1  x n  1  x 2 n
  • 56. Now 1  x n 1  x n  1  x 2 n 2 n  n   2n        k 0  k  n
  • 57. Now 1  x n 1  x n  1  x 2 n 2 n  n   2n        k 0  k  n 2n !  n!n!
  • 58. Now 1  x n 1  x n  1  x 2 n 2 n  n   2n        k 0  k  n 2n !  n!n! 2n !  n!2
  • 59. Now 1  x n 1  x n  1  x 2 n 2 n  n   2n        k 0  k  n  2n ! Exercise 5F; n!n! 4, 5, 6, 8, 10,15 2n !  n!2 + worksheets