General Expansion of
     Binomials
General Expansion of
              Binomials
    Ck is the coefficient of x k in 1  x 
n                                          k
General Expansion of
             Binomials
    Ck is the coefficient of x k in 1  x 
n                                         k


                                          n
                                   n
                                     Ck   
                                          k 
General Expansion of
             Binomials
    Ck is the coefficient of x k in 1  x 
n                                            k


                                          n
                                   n
                                     Ck   
                                          k 

                  1  x n  nC0  nC1 x  nC2 x 2   nCn x n
General Expansion of
             Binomials
    Ck is the coefficient of x k in 1  x 
n                                            k


                                          n
                                   n
                                     Ck   
                                          k 

                  1  x n  nC0  nC1 x  nC2 x 2   nCn x n
           which extends to;
           a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n
General Expansion of
             Binomials
    Ck is the coefficient of x k in 1  x 
n                                            k


                                          n
                                   n
                                     Ck   
                                          k 

                  1  x n  nC0  nC1 x  nC2 x 2   nCn x n
           which extends to;
           a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n

e.g .2  3 x 
              4
General Expansion of
             Binomials
    Ck is the coefficient of x k in 1  x 
n                                             k


                                          n
                                   n
                                     Ck   
                                          k 

                  1  x n  nC0  nC1 x  nC2 x 2   nCn x n
           which extends to;
           a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n

e.g .2  3 x   4C0 2 4  4C1 23 3 x  4C2 2 2 3 x   4C3 23 x   4C4 3 x 
               4                                       2              3            4
General Expansion of
             Binomials
    Ck is the coefficient of x k in 1  x 
n                                             k


                                          n
                                   n
                                     Ck   
                                          k 

                  1  x n  nC0  nC1 x  nC2 x 2   nCn x n
           which extends to;
           a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n

e.g .2  3 x   4C0 2 4  4C1 23 3 x  4C2 2 2 3 x   4C3 23 x   4C4 3 x 
               4                                       2              3            4



                 16  96 x  216 x 2  216 x 3  81x 4
Pascal’s Triangle Relationships
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk                  RHS  1 n1Ck 1   1 n1Ck 
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk                  RHS  1 n1Ck 1   1 n1Ck 
                                   n1Ck 1  n1Ck
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk                  RHS  1 n1Ck 1   1 n1Ck 
                                   n1Ck 1  n1Ck       n Ck  n1Ck 1  n1Ck
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk                  RHS  1 n1Ck 1   1 n1Ck 
                                   n1Ck 1  n1Ck       n Ck  n1Ck 1  n1Ck
2 nCk  nCnk where 1  k  n  1
 " Pascal' s triangle is symmetrical"
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk                  RHS  1 n1Ck 1   1 n1Ck 
                                   n1Ck 1  n1Ck       n Ck  n1Ck 1  n1Ck
2 nCk  nCnk where 1  k  n  1
 " Pascal' s triangle is symmetrical"

3 nC0  nCn  1
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk                  RHS  1 n1Ck 1   1 n1Ck 
                                   n1Ck 1  n1Ck       n Ck  n1Ck 1  n1Ck
2 nCk  nCnk where 1  k  n  1
 " Pascal' s triangle is symmetrical"                  Exercise 5B; 2ace, 5, 6ac,
                                                             10ac, 11, 14
3 nC0  nCn  1

12X1 T08 02 general binomial expansions

  • 1.
  • 2.
    General Expansion of Binomials Ck is the coefficient of x k in 1  x  n k
  • 3.
    General Expansion of Binomials Ck is the coefficient of x k in 1  x  n k n n Ck    k 
  • 4.
    General Expansion of Binomials Ck is the coefficient of x k in 1  x  n k n n Ck    k  1  x n  nC0  nC1 x  nC2 x 2   nCn x n
  • 5.
    General Expansion of Binomials Ck is the coefficient of x k in 1  x  n k n n Ck    k  1  x n  nC0  nC1 x  nC2 x 2   nCn x n which extends to; a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n
  • 6.
    General Expansion of Binomials Ck is the coefficient of x k in 1  x  n k n n Ck    k  1  x n  nC0  nC1 x  nC2 x 2   nCn x n which extends to; a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n e.g .2  3 x  4
  • 7.
    General Expansion of Binomials Ck is the coefficient of x k in 1  x  n k n n Ck    k  1  x n  nC0  nC1 x  nC2 x 2   nCn x n which extends to; a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n e.g .2  3 x   4C0 2 4  4C1 23 3 x  4C2 2 2 3 x   4C3 23 x   4C4 3 x  4 2 3 4
  • 8.
    General Expansion of Binomials Ck is the coefficient of x k in 1  x  n k n n Ck    k  1  x n  nC0  nC1 x  nC2 x 2   nCn x n which extends to; a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n e.g .2  3 x   4C0 2 4  4C1 23 3 x  4C2 2 2 3 x   4C3 23 x   4C4 3 x  4 2 3 4  16  96 x  216 x 2  216 x 3  81x 4
  • 9.
  • 10.
    Pascal’s Triangle Relationships 1nCk  n1Ck 1  n1Ck where 1  k  n  1
  • 11.
    Pascal’s Triangle Relationships 1nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1
  • 12.
    Pascal’s Triangle Relationships 1nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 
  • 13.
    Pascal’s Triangle Relationships 1nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k
  • 14.
    Pascal’s Triangle Relationships 1nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk
  • 15.
    Pascal’s Triangle Relationships 1nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk
  • 16.
    Pascal’s Triangle Relationships 1nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk RHS  1 n1Ck 1   1 n1Ck 
  • 17.
    Pascal’s Triangle Relationships 1nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk RHS  1 n1Ck 1   1 n1Ck   n1Ck 1  n1Ck
  • 18.
    Pascal’s Triangle Relationships 1nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk RHS  1 n1Ck 1   1 n1Ck   n1Ck 1  n1Ck n Ck  n1Ck 1  n1Ck
  • 19.
    Pascal’s Triangle Relationships 1nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk RHS  1 n1Ck 1   1 n1Ck   n1Ck 1  n1Ck n Ck  n1Ck 1  n1Ck 2 nCk  nCnk where 1  k  n  1 " Pascal' s triangle is symmetrical"
  • 20.
    Pascal’s Triangle Relationships 1nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk RHS  1 n1Ck 1   1 n1Ck   n1Ck 1  n1Ck n Ck  n1Ck 1  n1Ck 2 nCk  nCnk where 1  k  n  1 " Pascal' s triangle is symmetrical" 3 nC0  nCn  1
  • 21.
    Pascal’s Triangle Relationships 1nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk RHS  1 n1Ck 1   1 n1Ck   n1Ck 1  n1Ck n Ck  n1Ck 1  n1Ck 2 nCk  nCnk where 1  k  n  1 " Pascal' s triangle is symmetrical" Exercise 5B; 2ace, 5, 6ac, 10ac, 11, 14 3 nC0  nCn  1