SlideShare a Scribd company logo
Inequations & Inequalities
Inequations & Inequalities
1. Quadratic Inequations
 e.g. (i ) x 2  5 x  6  0
Inequations & Inequalities
1. Quadratic Inequations
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
Inequations & Inequalities
1. Quadratic Inequations            y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
                               –6       1   x
Inequations & Inequalities
1. Quadratic Inequations                        y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
                                         –6         1       x

                               Q: for what values of x is the
                                  parabola below the x axis?
Inequations & Inequalities
1. Quadratic Inequations                        y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
                                         –6         1       x

                               Q: for what values of x is the
                                  parabola below the x axis?
Inequations & Inequalities
1. Quadratic Inequations                        y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
            6  x  1                   –6         1       x

                               Q: for what values of x is the
                                  parabola below the x axis?
Inequations & Inequalities
1. Quadratic Inequations                        y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
             6  x  1                  –6         1       x

                               Q: for what values of x is the
   (ii )  x 2  3 x  4  0      parabola below the x axis?
Inequations & Inequalities
1. Quadratic Inequations                        y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
             6  x  1                  –6         1       x

                               Q: for what values of x is the
   (ii )  x 2  3 x  4  0      parabola below the x axis?
           x 2  3x  4  0
Inequations & Inequalities
1. Quadratic Inequations                            y
 e.g. (i ) x 2  5 x  6  0
         x  6  x  1  0
             6  x  1                   –6            1    x

                                Q: for what values of x is the
   (ii )  x 2  3 x  4  0       parabola below the x axis?
            x 2  3x  4  0
                                                    y
         x  4  x  1  0

                                               –4       1    x
Inequations & Inequalities
1. Quadratic Inequations                         y
 e.g. (i ) x 2  5 x  6  0
         x  6  x  1  0
             6  x  1                   –6         1       x

                                Q: for what values of x is the
   (ii )  x 2  3 x  4  0       parabola below the x axis?
            x 2  3x  4  0
                                                 y
         x  4  x  1  0

                                              –4    1        x
                                       Q: for what values of x is the
                                          parabola above the x axis?
Inequations & Inequalities
1. Quadratic Inequations                         y
 e.g. (i ) x 2  5 x  6  0
         x  6  x  1  0
             6  x  1                   –6         1       x

                                Q: for what values of x is the
   (ii )  x 2  3 x  4  0       parabola below the x axis?
            x 2  3x  4  0
                                                 y
         x  4  x  1  0

                                              –4    1        x
                                       Q: for what values of x is the
                                          parabola above the x axis?
Inequations & Inequalities
1. Quadratic Inequations                          y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
             6  x  1                    –6         1       x

                                 Q: for what values of x is the
   (ii )  x 2  3 x  4  0        parabola below the x axis?
            x 2  3x  4  0
                                                  y
         x  4  x  1  0
          x  4 or x  1
   Note: quadratic inequalities                –4    1        x
  always have solutions in the form     Q: for what values of x is the
  ? < x < ? OR x < ? or x > ?              parabola above the x axis?
Inequations & Inequalities
1. Quadratic Inequations                         y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
             6  x  1                   –6         1       x

                                Q: for what values of x is the
   (ii )  x 2  3 x  4  0       parabola below the x axis?
            x 2  3x  4  0
                                                 y
         x  4  x  1  0
          x  4 or x  1
                                              –4    1        x
                                       Q: for what values of x is the
                                          parabola above the x axis?
Inequations & Inequalities
1. Quadratic Inequations                          y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
             6  x  1                    –6         1       x

                                 Q: for what values of x is the
   (ii )  x 2  3 x  4  0        parabola below the x axis?
            x 2  3x  4  0
                                                  y
         x  4  x  1  0
          x  4 or x  1
   Note: quadratic inequalities                –4    1        x
  always have solutions in the form     Q: for what values of x is the
  ? < x < ? OR x < ? or x > ?              parabola above the x axis?
2. Inequalities with Pronumerals in the Denominator
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3
          x
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero
          x
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x
                 2) Solve the “equality”
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                1
                 2) Solve the “equality”     3
                                           x 1
                                           x
                                              3
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
                                                          0    1
                                                               3
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
                                                          0    1
                 4) Test regions                               3
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
                                                          0    1
                 4) Test regions                               3
               1
 Test x  1     3
              1
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
                                                          0    1
                 4) Test regions                               3
                                       1
               1                     1 3
 Test x  1     3         Test x  1
              1                     4
                                       4
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
                                                          0    1
                 4) Test regions                               3
                                       1
               1                     1 3
 Test x  1     3         Test x  1
              1                     4
                                       4
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
                                                             0    1
                 4) Test regions                                  3
                                       1
               1                     1 3                      1
 Test x  1     3         Test x  1              Test x  1   3
              1                     4                         1
                                       4
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
                                                             0    1
                 4) Test regions                                  3
                                       1
               1                     1 3                      1
 Test x  1     3         Test x  1              Test x  1   3
              1                     4                         1
                                       4
                                         1
                                0  x 
                                          3
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                 1
                   2) Solve the “equality”      3
                                              x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                               0    1
                   4) Test regions                                  3
                                         1
                1                      1 3                      1
 Test x  1       3         Test x  1              Test x  1   3
                1                     4                         1
                                         4
                                           1
                                  0  x 
          2                                 3
  (ii )       5
        x3
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                 1
                   2) Solve the “equality”      3
                                              x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                               0    1
                   4) Test regions                                  3
                                         1
                 1                     1 3                      1
 Test x  1       3         Test x  1              Test x  1   3
                1                     4                         1
                                         4
                                           1
                                  0  x 
          2                                 3
  (ii )       5
        x3
        x3 0
          x  3
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                 1
                   2) Solve the “equality”      3
                                              x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                               0    1
                   4) Test regions                                  3
                                         1
                 1                     1 3                      1
 Test x  1       3         Test x  1              Test x  1   3
                1                     4                         1
                                         4
                                           1
                                  0  x 
          2                                 3
  (ii )       5          2
        x3                   5
                        x3
        x3 0
          x  3
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                  1
                   2) Solve the “equality”       3
                                               x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                               0    1
                   4) Test regions                                  3
                                           1
                 1                       1 3                    1
 Test x  1       3          Test x  1             Test x  1   3
                1                       4                       1
                                           4
                                             1
                                   0  x 
          2                                  3
  (ii )       5          2
        x3                    5
                        x3
        x3 0               2  5 x  15
          x  3            5 x  13
                                    13
                              x
                                     5
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                  1
                   2) Solve the “equality”       3
                                               x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                               0     1
                   4) Test regions                                   3
                                           1
                 1                       1 3                     1
 Test x  1       3          Test x  1             Test x  1    3
                1                       4                        1
                                           4
                                             1
                                   0  x 
          2                                  3
  (ii )       5          2
        x3                    5
                        x3
        x3 0               2  5 x  15              –3      13
                                                             
          x  3            5 x  13                           5
                                    13
                              x
                                     5
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                  1
                   2) Solve the “equality”       3
                                               x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                               0     1
                   4) Test regions                                   3
                                           1
                 1                       1 3                     1
 Test x  1       3          Test x  1             Test x  1    3
                1                       4                        1
                                           4
                                             1
                                   0  x 
          2                                  3
  (ii )       5          2
        x3                    5
                        x3
        x3 0               2  5 x  15              –3      13
                                                             
          x  3            5 x  13                           5
                                    13
                              x
                                     5
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                  1
                   2) Solve the “equality”       3
                                               x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                               0     1
                   4) Test regions                                   3
                                           1
                 1                       1 3                     1
 Test x  1       3          Test x  1             Test x  1    3
                1                       4                        1
                                           4
                                             1
                                   0  x 
          2                                  3
  (ii )       5          2
        x3                    5
                        x3
        x3 0               2  5 x  15              –3      13
                                                             
          x  3            5 x  13                           5
                                    13
                              x
                                     5
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                  1
                   2) Solve the “equality”       3
                                               x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                                0      1
                   4) Test regions                                     3
                                           1
                 1                       1 3                      1
 Test x  1       3          Test x  1              Test x  1    3
                1                       4                         1
                                           4
                                             1
                                   0  x 
          2                                  3
  (ii )       5          2
        x3                    5
                        x3
        x3 0               2  5 x  15               –3      13
                                                              
          x  3            5 x  13                            5
                                                                     13
                              x
                                    13             x  3 or x  
                                     5                                5
3. Proving Inequalities
3. Proving Inequalities
(I) Start with a known result
3. Proving Inequalities
(I) Start with a known result
                                xz
   If x  y  y  z prove y 
                                 2
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2

(II) Move everything to the left
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2

(II) Move everything to the left
     Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2

(II) Move everything to the left
     Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2

     ab  a 2  b 2   2a 2b 2
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2

(II) Move everything to the left
     Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2

     ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2 
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2

(II) Move everything to the left
     Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2

     ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2 
                                ab  a  b 
                                                2
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2

(II) Move everything to the left
     Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2

     ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2 
                                ab  a  b 
                                                2


                                0
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2

(II) Move everything to the left
     Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2

     ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2 
                                ab  a  b 
                                                2


                                0
                   ab  a 2  b 2   2a 2b 2
(III) Squares are positive or zero
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
                                a  b  0
                                       2
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
                                 a  b  0
                                       2


                          a 2  2ab  b 2  0
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
                                 a  b  0
                                        2


                          a 2  2ab  b 2  0
                                  a 2  b 2  2ab
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
                                 a  b  0
                                        2


                          a 2  2ab  b 2  0
                                  a 2  b 2  2ab
                                  a 2  c 2  2ac
                                  b 2  c 2  2bc
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
                                 a  b  0
                                        2


                          a 2  2ab  b 2  0
                                  a 2  b 2  2ab
                                  a 2  c 2  2ac
                                  b 2  c 2  2bc
                        2a 2  2b 2  2c 2  2ab  2bc  2ac
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
                                 a  b  0
                                        2


                          a 2  2ab  b 2  0
                                  a 2  b 2  2ab
                                  a 2  c 2  2ac
                                  b 2  c 2  2bc
                        2a 2  2b 2  2c 2  2ab  2bc  2ac
                             a 2  b 2  c 2  ab  bc  ac
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
                                 a  b  0
                                        2


                          a 2  2ab  b 2  0
                                  a 2  b 2  2ab
                                  a 2  c 2  2ac
                                  b 2  c 2  2bc
                        2a 2  2b 2  2c 2  2ab  2bc  2ac
                             a 2  b 2  c 2  ab  bc  ac




 Exercise 3A; 4, 6ace, 7bdf, 8bdf, 9, 11, 12, 13ac, 15, 18bcd, 22, 24

More Related Content

What's hot

March 18
March 18March 18
March 18
khyps13
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5
Garden City
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
SIGIFREDO12222
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
math260
 
2.8 graphs of factorable polynomials t
2.8 graphs of factorable polynomials t2.8 graphs of factorable polynomials t
2.8 graphs of factorable polynomials t
math260
 
Derivadas
DerivadasDerivadas
Derivadas
DerivadasDerivadas
PRESENTACIÓN DEL INFORME MATEMÁTICA UPTAEB UNIDAD 1
PRESENTACIÓN DEL INFORME MATEMÁTICA UPTAEB UNIDAD 1PRESENTACIÓN DEL INFORME MATEMÁTICA UPTAEB UNIDAD 1
PRESENTACIÓN DEL INFORME MATEMÁTICA UPTAEB UNIDAD 1
GenesisAcosta7
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas y
math260
 
Mc ty-cubicequations-2009-1
Mc ty-cubicequations-2009-1Mc ty-cubicequations-2009-1
Mc ty-cubicequations-2009-1
Harsh Arora
 
3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions
math265
 
Em02 im
Em02 imEm02 im
Em02 im
nahomyitbarek
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
math260
 
fundamentals of 2D and 3D graphs
fundamentals of 2D and 3D graphsfundamentals of 2D and 3D graphs
fundamentals of 2D and 3D graphs
Arjuna Senanayake
 

What's hot (17)

March 18
March 18March 18
March 18
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
 
2.8 graphs of factorable polynomials t
2.8 graphs of factorable polynomials t2.8 graphs of factorable polynomials t
2.8 graphs of factorable polynomials t
 
Derivadas
DerivadasDerivadas
Derivadas
 
Derivadas
DerivadasDerivadas
Derivadas
 
PRESENTACIÓN DEL INFORME MATEMÁTICA UPTAEB UNIDAD 1
PRESENTACIÓN DEL INFORME MATEMÁTICA UPTAEB UNIDAD 1PRESENTACIÓN DEL INFORME MATEMÁTICA UPTAEB UNIDAD 1
PRESENTACIÓN DEL INFORME MATEMÁTICA UPTAEB UNIDAD 1
 
Mth 4101-2 b
Mth 4101-2 bMth 4101-2 b
Mth 4101-2 b
 
Mth 4101-2 a
Mth 4101-2 aMth 4101-2 a
Mth 4101-2 a
 
Mth 4101-2 c
Mth 4101-2 cMth 4101-2 c
Mth 4101-2 c
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas y
 
Mc ty-cubicequations-2009-1
Mc ty-cubicequations-2009-1Mc ty-cubicequations-2009-1
Mc ty-cubicequations-2009-1
 
3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions
 
Em02 im
Em02 imEm02 im
Em02 im
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
 
fundamentals of 2D and 3D graphs
fundamentals of 2D and 3D graphsfundamentals of 2D and 3D graphs
fundamentals of 2D and 3D graphs
 

Viewers also liked

11 x1 t03 03 symmetry (2012)
11 x1 t03 03 symmetry (2012)11 x1 t03 03 symmetry (2012)
11 x1 t03 03 symmetry (2012)
Nigel Simmons
 
X2 T05 08 Odd & Even Functions
X2 T05 08 Odd & Even FunctionsX2 T05 08 Odd & Even Functions
X2 T05 08 Odd & Even Functions
Nigel Simmons
 
12X1 T09 01 definitions and theory (2010)
12X1 T09 01 definitions and theory (2010)12X1 T09 01 definitions and theory (2010)
12X1 T09 01 definitions and theory (2010)
Nigel Simmons
 
11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)
Nigel Simmons
 
11 x1 t08 03 angle between two lines (2012)
11 x1 t08 03 angle between two lines (2012)11 x1 t08 03 angle between two lines (2012)
11 x1 t08 03 angle between two lines (2012)
Nigel Simmons
 
11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)
Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 

Viewers also liked (7)

11 x1 t03 03 symmetry (2012)
11 x1 t03 03 symmetry (2012)11 x1 t03 03 symmetry (2012)
11 x1 t03 03 symmetry (2012)
 
X2 T05 08 Odd & Even Functions
X2 T05 08 Odd & Even FunctionsX2 T05 08 Odd & Even Functions
X2 T05 08 Odd & Even Functions
 
12X1 T09 01 definitions and theory (2010)
12X1 T09 01 definitions and theory (2010)12X1 T09 01 definitions and theory (2010)
12X1 T09 01 definitions and theory (2010)
 
11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)
 
11 x1 t08 03 angle between two lines (2012)
11 x1 t08 03 angle between two lines (2012)11 x1 t08 03 angle between two lines (2012)
11 x1 t08 03 angle between two lines (2012)
 
11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

Similar to 11 x1 t03 01 inequations & inequalities (2013)

Area Under Curves Basic Concepts - JEE Main 2015
Area Under Curves Basic Concepts - JEE Main 2015 Area Under Curves Basic Concepts - JEE Main 2015
Area Under Curves Basic Concepts - JEE Main 2015
Ednexa
 
Graphs linear equations and functions
Graphs linear equations and functionsGraphs linear equations and functions
Graphs linear equations and functions
anwarsalamappt
 
Rational functions
Rational functionsRational functions
Rational functions
Tarun Gehlot
 
Vertical asymptotes to rational functions
Vertical asymptotes to rational functionsVertical asymptotes to rational functions
Vertical asymptotes to rational functions
Tarun Gehlot
 
Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
Sadia Zareen
 
Notes parabolas
Notes   parabolasNotes   parabolas
Notes parabolas
Lori Rapp
 
Polynomial functions modelllings
Polynomial functions modelllingsPolynomial functions modelllings
Polynomial functions modelllingsTarun Gehlot
 
Introduction to Artificial Intelligence
Introduction to Artificial IntelligenceIntroduction to Artificial Intelligence
Introduction to Artificial Intelligence
Manoj Harsule
 
Anderson M conics
Anderson M conicsAnderson M conics
Anderson M conics
MrJames Kcc
 
Polynomial- Maths project
Polynomial- Maths projectPolynomial- Maths project
Polynomial- Maths project
RITURAJ DAS
 
Solving inequalities that involve radical functions (Nov 28, 2013)
Solving inequalities that involve radical functions (Nov 28, 2013) Solving inequalities that involve radical functions (Nov 28, 2013)
Solving inequalities that involve radical functions (Nov 28, 2013)
Fei Ye YEW
 
0101: Graphing Quadratic Functions
0101: Graphing Quadratic Functions0101: Graphing Quadratic Functions
0101: Graphing Quadratic Functions
kijo13
 
Algebra 2: 5.1 Classn Notes
Algebra 2: 5.1 Classn NotesAlgebra 2: 5.1 Classn Notes
Algebra 2: 5.1 Classn Notes
mbpomme
 
Dec 14
Dec 14Dec 14
Dec 14
khyps13
 
sol page 104 #1,2,3.
sol page 104 #1,2,3.sol page 104 #1,2,3.
sol page 104 #1,2,3.
Garden City
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
Lily Maryati
 
Graphquadraticfcns2
Graphquadraticfcns2Graphquadraticfcns2
Graphquadraticfcns2
loptruonga2
 
Algebric Functions.pdf
Algebric Functions.pdfAlgebric Functions.pdf
Algebric Functions.pdf
MamadArip
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Matthew Leingang
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Mel Anthony Pepito
 

Similar to 11 x1 t03 01 inequations & inequalities (2013) (20)

Area Under Curves Basic Concepts - JEE Main 2015
Area Under Curves Basic Concepts - JEE Main 2015 Area Under Curves Basic Concepts - JEE Main 2015
Area Under Curves Basic Concepts - JEE Main 2015
 
Graphs linear equations and functions
Graphs linear equations and functionsGraphs linear equations and functions
Graphs linear equations and functions
 
Rational functions
Rational functionsRational functions
Rational functions
 
Vertical asymptotes to rational functions
Vertical asymptotes to rational functionsVertical asymptotes to rational functions
Vertical asymptotes to rational functions
 
Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
 
Notes parabolas
Notes   parabolasNotes   parabolas
Notes parabolas
 
Polynomial functions modelllings
Polynomial functions modelllingsPolynomial functions modelllings
Polynomial functions modelllings
 
Introduction to Artificial Intelligence
Introduction to Artificial IntelligenceIntroduction to Artificial Intelligence
Introduction to Artificial Intelligence
 
Anderson M conics
Anderson M conicsAnderson M conics
Anderson M conics
 
Polynomial- Maths project
Polynomial- Maths projectPolynomial- Maths project
Polynomial- Maths project
 
Solving inequalities that involve radical functions (Nov 28, 2013)
Solving inequalities that involve radical functions (Nov 28, 2013) Solving inequalities that involve radical functions (Nov 28, 2013)
Solving inequalities that involve radical functions (Nov 28, 2013)
 
0101: Graphing Quadratic Functions
0101: Graphing Quadratic Functions0101: Graphing Quadratic Functions
0101: Graphing Quadratic Functions
 
Algebra 2: 5.1 Classn Notes
Algebra 2: 5.1 Classn NotesAlgebra 2: 5.1 Classn Notes
Algebra 2: 5.1 Classn Notes
 
Dec 14
Dec 14Dec 14
Dec 14
 
sol page 104 #1,2,3.
sol page 104 #1,2,3.sol page 104 #1,2,3.
sol page 104 #1,2,3.
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
 
Graphquadraticfcns2
Graphquadraticfcns2Graphquadraticfcns2
Graphquadraticfcns2
 
Algebric Functions.pdf
Algebric Functions.pdfAlgebric Functions.pdf
Algebric Functions.pdf
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
 

More from Nigel Simmons

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.
deepaannamalai16
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
TechSoup
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching AptitudeUGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
S. Raj Kumar
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
TechSoup
 
Stack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 MicroprocessorStack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 Microprocessor
JomonJoseph58
 
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptxBIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
RidwanHassanYusuf
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
Nutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour TrainingNutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour Training
melliereed
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Fajar Baskoro
 
Pharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brubPharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brub
danielkiash986
 
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDFLifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
Vivekanand Anglo Vedic Academy
 
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
National Information Standards Organization (NISO)
 
How to deliver Powerpoint Presentations.pptx
How to deliver Powerpoint  Presentations.pptxHow to deliver Powerpoint  Presentations.pptx
How to deliver Powerpoint Presentations.pptx
HajraNaeem15
 
Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47
MysoreMuleSoftMeetup
 
Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"
National Information Standards Organization (NISO)
 
math operations ued in python and all used
math operations ued in python and all usedmath operations ued in python and all used
math operations ued in python and all used
ssuser13ffe4
 
Electric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger HuntElectric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger Hunt
RamseyBerglund
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 

Recently uploaded (20)

HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching AptitudeUGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
 
Stack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 MicroprocessorStack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 Microprocessor
 
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptxBIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
Nutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour TrainingNutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour Training
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
 
Pharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brubPharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brub
 
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDFLifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
 
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
 
How to deliver Powerpoint Presentations.pptx
How to deliver Powerpoint  Presentations.pptxHow to deliver Powerpoint  Presentations.pptx
How to deliver Powerpoint Presentations.pptx
 
Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47
 
Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"
 
math operations ued in python and all used
math operations ued in python and all usedmath operations ued in python and all used
math operations ued in python and all used
 
Electric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger HuntElectric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger Hunt
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 

11 x1 t03 01 inequations & inequalities (2013)

  • 2. Inequations & Inequalities 1. Quadratic Inequations e.g. (i ) x 2  5 x  6  0
  • 3. Inequations & Inequalities 1. Quadratic Inequations e.g. (i ) x 2  5 x  6  0  x  6  x  1  0
  • 4. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 –6 1 x
  • 5. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 –6 1 x Q: for what values of x is the parabola below the x axis?
  • 6. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 –6 1 x Q: for what values of x is the parabola below the x axis?
  • 7. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the parabola below the x axis?
  • 8. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis?
  • 9. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis? x 2  3x  4  0
  • 10. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis? x 2  3x  4  0 y  x  4  x  1  0 –4 1 x
  • 11. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis? x 2  3x  4  0 y  x  4  x  1  0 –4 1 x Q: for what values of x is the parabola above the x axis?
  • 12. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis? x 2  3x  4  0 y  x  4  x  1  0 –4 1 x Q: for what values of x is the parabola above the x axis?
  • 13. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis? x 2  3x  4  0 y  x  4  x  1  0 x  4 or x  1 Note: quadratic inequalities –4 1 x always have solutions in the form Q: for what values of x is the ? < x < ? OR x < ? or x > ? parabola above the x axis?
  • 14. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis? x 2  3x  4  0 y  x  4  x  1  0 x  4 or x  1 –4 1 x Q: for what values of x is the parabola above the x axis?
  • 15. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis? x 2  3x  4  0 y  x  4  x  1  0 x  4 or x  1 Note: quadratic inequalities –4 1 x always have solutions in the form Q: for what values of x is the ? < x < ? OR x < ? or x > ? parabola above the x axis?
  • 16. 2. Inequalities with Pronumerals in the Denominator
  • 17. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 x
  • 18. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x
  • 19. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x
  • 20. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 2) Solve the “equality”
  • 21. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3
  • 22. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line
  • 23. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 3
  • 24. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3
  • 25. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 Test x  1 3 1
  • 26. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 Test x  1 3 Test x  1 1 4 4
  • 27. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 Test x  1 3 Test x  1 1 4 4
  • 28. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4
  • 29. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  3
  • 30. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 x3
  • 31. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 x3 x3 0 x  3
  • 32. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 2 x3 5 x3 x3 0 x  3
  • 33. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 2 x3 5 x3 x3 0 2  5 x  15 x  3 5 x  13 13 x 5
  • 34. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 2 x3 5 x3 x3 0 2  5 x  15 –3 13  x  3 5 x  13 5 13 x 5
  • 35. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 2 x3 5 x3 x3 0 2  5 x  15 –3 13  x  3 5 x  13 5 13 x 5
  • 36. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 2 x3 5 x3 x3 0 2  5 x  15 –3 13  x  3 5 x  13 5 13 x 5
  • 37. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 2 x3 5 x3 x3 0 2  5 x  15 –3 13  x  3 5 x  13 5 13 x 13  x  3 or x   5 5
  • 39. 3. Proving Inequalities (I) Start with a known result
  • 40. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2
  • 41. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz
  • 42. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x
  • 43. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2
  • 44. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2 (II) Move everything to the left
  • 45. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2 (II) Move everything to the left Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2
  • 46. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2 (II) Move everything to the left Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2 ab  a 2  b 2   2a 2b 2
  • 47. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2 (II) Move everything to the left Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2 ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2 
  • 48. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2 (II) Move everything to the left Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2 ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2   ab  a  b  2
  • 49. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2 (II) Move everything to the left Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2 ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2   ab  a  b  2 0
  • 50. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2 (II) Move everything to the left Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2 ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2   ab  a  b  2 0  ab  a 2  b 2   2a 2b 2
  • 51. (III) Squares are positive or zero
  • 52. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
  • 53. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac a  b  0 2
  • 54. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac a  b  0 2 a 2  2ab  b 2  0
  • 55. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac a  b  0 2 a 2  2ab  b 2  0 a 2  b 2  2ab
  • 56. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac a  b  0 2 a 2  2ab  b 2  0 a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc
  • 57. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac a  b  0 2 a 2  2ab  b 2  0 a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc 2a 2  2b 2  2c 2  2ab  2bc  2ac
  • 58. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac a  b  0 2 a 2  2ab  b 2  0 a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc 2a 2  2b 2  2c 2  2ab  2bc  2ac a 2  b 2  c 2  ab  bc  ac
  • 59. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac a  b  0 2 a 2  2ab  b 2  0 a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc 2a 2  2b 2  2c 2  2ab  2bc  2ac a 2  b 2  c 2  ab  bc  ac Exercise 3A; 4, 6ace, 7bdf, 8bdf, 9, 11, 12, 13ac, 15, 18bcd, 22, 24