10.3 Hyperbolas
Chapter 10 Analytic Geometry
Concepts and Objectives
⚫ Hyperbolas
⚫ Identify equations of hyperbolas
⚫ From the equation, identify the center, direction of
opening, vertices, x-radius, y-radius, slope of the
asymptotes, and foci
⚫ Sketch the hyperbola
⚫ Determine the eccentricity
⚫ Write the equation of the hyperbola
Hyperbolas
⚫ Hyperbolas have two disconnected branches. Each
branch approaches diagonal asymptotes.
⚫ Parts of a hyperbola:
⚫ Center
⚫ Vertices
⚫ Asymptotes
⚫ Hyperbola • ••
Hyperbolas
⚫ The general equation of a hyperbola is
or
⚫ The hyperbola opens in whichever direction has the
positive term (x-direction if x is positive, y-direction if y
is positive).
⚫ The slope of the asymptotes is always .
⚫ The vertices are rx or ry from the center, whichever is
positive. a is the positive term radius, b is the negative
term radius.
  − −
− =    
   
22
1
x y
x h y k
r r
  − −
− + =    
   
22
1
x y
x h y k
r r
 y
x
r
r
Hyperbolas
⚫ Example: Graph − + + + =2 2
9 4 90 32 197 0x y x y
Hyperbolas
⚫ Example: Graph − + + + =2 2
9 4 90 32 197 0x y x y
( ) ( ) ( ) ( )++ − =+ +−− −22 2 22 2
9 10 8 1975 9 54 4 4 4x x y y
Notice that the
negative sign has
been factored as
well!
Remember to
distribute the
negative sign!
Hyperbolas
⚫ Example: Graph − + + + =2 2
9 4 90 32 197 0x y x y
( ) ( ) ( ) ( )++ − =+ +−− −22 2 22 2
9 10 8 1975 9 54 4 4 4x x y y
( ) ( )+ − − = −
2 2
9 64 45 3x yNotice that the
negative sign has
been factored as
well!
Remember to
distribute the
negative sign!
Hyperbolas
⚫ Example: Graph − + + + =2 2
9 4 90 32 197 0x y x y
( ) ( ) ( ) ( )++ − =+ +−− −22 2 22 2
9 10 8 1975 9 54 4 4 4x x y y
( ) ( )+ − −
− =
− − −
2 2
9 5 4 4 36
36 36 36
x yNotice that the
negative sign has
been factored as
well!
Remember to
distribute the
negative sign!
Hyperbolas
⚫ Example: Graph − + + + =2 2
9 4 90 32 197 0x y x y
( ) ( ) ( ) ( )++ − =+ +−− −22 2 22 2
9 10 8 1975 9 54 4 4 4x x y y
( ) ( )+ − −
− =
− − −
2 2
9 5 4 4 36
36 36 36
x y
( ) ( )+ −
− + =
2 2
5 4
1
4 9
x y
Notice that the
negative sign has
been factored as
well!
Remember to
distribute the
negative sign!
Hyperbolas
⚫ Example: Graph − + + + =2 2
9 4 90 32 197 0x y x y
( ) ( ) ( ) ( )++ − =+ +−− −22 2 22 2
9 10 8 1975 9 54 4 4 4x x y y
( ) ( )+ − −
− =
− − −
2 2
9 5 4 4 36
36 36 36
x y
( ) ( )+ −
− + =
2 2
5 4
1
4 9
x y
( ) ( )+ −
− + =
2 2
2 2
5 4
1
2 3
x y
Notice that the
negative sign has
been factored as
well!
Remember to
distribute the
negative sign!
Hyperbolas
⚫ Example: Graph
Center (–5, 4)
− + + + =2 2
9 4 90 32 197 0x y x y
( ) ( )+ −
− + =
2 2
2 2
5 4
1
2 3
x y
Hyperbolas
⚫ Example: Graph
Center (–5, 4)
opens in y-direction
rx = 2, ry = 3
 vertices 3
− + + + =2 2
9 4 90 32 197 0x y x y
( ) ( )+ −
− + =
2 2
2 2
5 4
1
2 3
x y
Hyperbolas
⚫ Example: Graph
Center (–5, 4)
opens in y-direction
rx = 2, ry = 3
 vertices 3
slope of asymptotes:
− + + + =2 2
9 4 90 32 197 0x y x y
( ) ( )+ −
− + =
2 2
2 2
5 4
1
2 3
x y

3
2
Hyperbolas
⚫ Example: Graph
Center (–5, 4)
opens in y-direction
rx = 2, ry = 3
 vertices 3
slope of asymptotes:
− + + + =2 2
9 4 90 32 197 0x y x y
( ) ( )+ −
− + =
2 2
2 2
5 4
1
2 3
x y

3
2
Focal Length
⚫ In an ellipse, the sum of the distances from a point on the
ellipse to the two foci is constant, but in a hyperbola, it’s
the difference between the distances that is constant.
⚫ To find the focal radius, we can use the Pythagorean
Theorem.
⚫ Notice that c > a for the
hyperbola. a
b
c
•
= +2 2 2
c a b
Eccentricity
⚫ Like the ellipse, the eccentricity of the hyperbola
determines the basic shape, and like the ellipse, the
eccentricity of the hyperbola is
⚫ In an ellipse, e will always be between 0 and 1, but in a
hyperbola, e will always be greater than 1.
=
c
e
a
Eccentricity
⚫ Example: Find the eccentricity of the hyperbola
− =
2 2
1
9 4
x y
Eccentricity
⚫ Example: Find the eccentricity of the hyperbola
a = 3, b = 2
− =
2 2
1
9 4
x y
− =
2 2
2 2
1
3 2
x y
= +2 2 2
3 2c
= + =9 4 13
= 13c
= 
13
1.2
3
e
Eccentricity
⚫ Example: Write the equation of the hyperbola with
eccentricity 2 and foci at (–9, 5) and (–3, 5).
Eccentricity
⚫ Example: Write the equation of the hyperbola with
eccentricity 2 and foci at (–9, 5) and (–3, 5).
The foci’s coordinates tell us that the hyperbola opens in
the x-direction, that the center is at (–6, 5), and that c = 3.
=
3
2
a
 =1.5a
= − =2
9 2.25 6.75b
=2
2.25a
( ) ( )+ −
− =
2 2
6 5
1
2.25 6.75
x y
Classwork
⚫ College Algebra
⚫ Page 978: 10-22 (even), page 968: 16-28 (even),
page 959: 52-56 (even)

10.3 Hyperbolas

  • 1.
    10.3 Hyperbolas Chapter 10Analytic Geometry
  • 2.
    Concepts and Objectives ⚫Hyperbolas ⚫ Identify equations of hyperbolas ⚫ From the equation, identify the center, direction of opening, vertices, x-radius, y-radius, slope of the asymptotes, and foci ⚫ Sketch the hyperbola ⚫ Determine the eccentricity ⚫ Write the equation of the hyperbola
  • 3.
    Hyperbolas ⚫ Hyperbolas havetwo disconnected branches. Each branch approaches diagonal asymptotes. ⚫ Parts of a hyperbola: ⚫ Center ⚫ Vertices ⚫ Asymptotes ⚫ Hyperbola • ••
  • 4.
    Hyperbolas ⚫ The generalequation of a hyperbola is or ⚫ The hyperbola opens in whichever direction has the positive term (x-direction if x is positive, y-direction if y is positive). ⚫ The slope of the asymptotes is always . ⚫ The vertices are rx or ry from the center, whichever is positive. a is the positive term radius, b is the negative term radius.   − − − =         22 1 x y x h y k r r   − − − + =         22 1 x y x h y k r r  y x r r
  • 5.
    Hyperbolas ⚫ Example: Graph− + + + =2 2 9 4 90 32 197 0x y x y
  • 6.
    Hyperbolas ⚫ Example: Graph− + + + =2 2 9 4 90 32 197 0x y x y ( ) ( ) ( ) ( )++ − =+ +−− −22 2 22 2 9 10 8 1975 9 54 4 4 4x x y y Notice that the negative sign has been factored as well! Remember to distribute the negative sign!
  • 7.
    Hyperbolas ⚫ Example: Graph− + + + =2 2 9 4 90 32 197 0x y x y ( ) ( ) ( ) ( )++ − =+ +−− −22 2 22 2 9 10 8 1975 9 54 4 4 4x x y y ( ) ( )+ − − = − 2 2 9 64 45 3x yNotice that the negative sign has been factored as well! Remember to distribute the negative sign!
  • 8.
    Hyperbolas ⚫ Example: Graph− + + + =2 2 9 4 90 32 197 0x y x y ( ) ( ) ( ) ( )++ − =+ +−− −22 2 22 2 9 10 8 1975 9 54 4 4 4x x y y ( ) ( )+ − − − = − − − 2 2 9 5 4 4 36 36 36 36 x yNotice that the negative sign has been factored as well! Remember to distribute the negative sign!
  • 9.
    Hyperbolas ⚫ Example: Graph− + + + =2 2 9 4 90 32 197 0x y x y ( ) ( ) ( ) ( )++ − =+ +−− −22 2 22 2 9 10 8 1975 9 54 4 4 4x x y y ( ) ( )+ − − − = − − − 2 2 9 5 4 4 36 36 36 36 x y ( ) ( )+ − − + = 2 2 5 4 1 4 9 x y Notice that the negative sign has been factored as well! Remember to distribute the negative sign!
  • 10.
    Hyperbolas ⚫ Example: Graph− + + + =2 2 9 4 90 32 197 0x y x y ( ) ( ) ( ) ( )++ − =+ +−− −22 2 22 2 9 10 8 1975 9 54 4 4 4x x y y ( ) ( )+ − − − = − − − 2 2 9 5 4 4 36 36 36 36 x y ( ) ( )+ − − + = 2 2 5 4 1 4 9 x y ( ) ( )+ − − + = 2 2 2 2 5 4 1 2 3 x y Notice that the negative sign has been factored as well! Remember to distribute the negative sign!
  • 11.
    Hyperbolas ⚫ Example: Graph Center(–5, 4) − + + + =2 2 9 4 90 32 197 0x y x y ( ) ( )+ − − + = 2 2 2 2 5 4 1 2 3 x y
  • 12.
    Hyperbolas ⚫ Example: Graph Center(–5, 4) opens in y-direction rx = 2, ry = 3  vertices 3 − + + + =2 2 9 4 90 32 197 0x y x y ( ) ( )+ − − + = 2 2 2 2 5 4 1 2 3 x y
  • 13.
    Hyperbolas ⚫ Example: Graph Center(–5, 4) opens in y-direction rx = 2, ry = 3  vertices 3 slope of asymptotes: − + + + =2 2 9 4 90 32 197 0x y x y ( ) ( )+ − − + = 2 2 2 2 5 4 1 2 3 x y  3 2
  • 14.
    Hyperbolas ⚫ Example: Graph Center(–5, 4) opens in y-direction rx = 2, ry = 3  vertices 3 slope of asymptotes: − + + + =2 2 9 4 90 32 197 0x y x y ( ) ( )+ − − + = 2 2 2 2 5 4 1 2 3 x y  3 2
  • 15.
    Focal Length ⚫ Inan ellipse, the sum of the distances from a point on the ellipse to the two foci is constant, but in a hyperbola, it’s the difference between the distances that is constant. ⚫ To find the focal radius, we can use the Pythagorean Theorem. ⚫ Notice that c > a for the hyperbola. a b c • = +2 2 2 c a b
  • 16.
    Eccentricity ⚫ Like theellipse, the eccentricity of the hyperbola determines the basic shape, and like the ellipse, the eccentricity of the hyperbola is ⚫ In an ellipse, e will always be between 0 and 1, but in a hyperbola, e will always be greater than 1. = c e a
  • 17.
    Eccentricity ⚫ Example: Findthe eccentricity of the hyperbola − = 2 2 1 9 4 x y
  • 18.
    Eccentricity ⚫ Example: Findthe eccentricity of the hyperbola a = 3, b = 2 − = 2 2 1 9 4 x y − = 2 2 2 2 1 3 2 x y = +2 2 2 3 2c = + =9 4 13 = 13c =  13 1.2 3 e
  • 19.
    Eccentricity ⚫ Example: Writethe equation of the hyperbola with eccentricity 2 and foci at (–9, 5) and (–3, 5).
  • 20.
    Eccentricity ⚫ Example: Writethe equation of the hyperbola with eccentricity 2 and foci at (–9, 5) and (–3, 5). The foci’s coordinates tell us that the hyperbola opens in the x-direction, that the center is at (–6, 5), and that c = 3. = 3 2 a  =1.5a = − =2 9 2.25 6.75b =2 2.25a ( ) ( )+ − − = 2 2 6 5 1 2.25 6.75 x y
  • 21.
    Classwork ⚫ College Algebra ⚫Page 978: 10-22 (even), page 968: 16-28 (even), page 959: 52-56 (even)