COORDINATE EQUATION PROBLEMS: PROCESS 1 EXAMPLES: a) Given the coordinate equation  7 = (x-5)² + (y+6)², change it to the form  0 = x² + y² + dx + ey + f .  b) Given the coordinate equation  18 = (x+3)² + (y-4)², change it to the form  0 = x² + y² + dx + ey + f .
Solution to a) : Solution to b): PROCESS 1 SOLUTIONS:
PROCESS 2 EXAMPLES: c) Given the centre (-4,7), and the radius √26, write the coordinate equation.  d) Given the centre (9,-2), and the radius √54, write the coordinate equation.
Solution to c) : Solution to d) : PROCESS 2 SOLUTIONS:
PROCESS 3 EXAMPLE: Given the centre (4,-9), and the point (10,-3), write the coordinate equation.
PROCESS 3 SOLUTION:
PROCESS 4 EXAMPLE: Given the centre (7,12), and the area 21  , write the coordinate equation.
PROCESS 4 SOLUTION:
PERPENDICULAR DISTANCE PROBLEMS: PROCESS 1 EXAMPLE: Given the point P(3,5) and the line 12x + 4y +3 = 0, find the perpendicular distance.
PROCESS 1 SOLUTION:
PROCESS 2 EXAMPLE: Given the point P(2,5) and the line 3x + 5y = 8, find the perpendicular distance.
PROCESS 2 SOLUTION:
PROCESS 3 EXAMPLE: Given the lines -4y + x + 9 = 0 and y - 5x = 12, find the perpendicular distance.
PROCESS 3 SOLUTION:
LINEAR EQUATION SYSTEM  PROBLEM: Solve by Graphing Example: Given this system : Solve graphically.    y = x² y = 6 - x²
Solve by Graphing solution: y = x²    x | y   -1   1         --->         P(-1,1)   0   0         --->          P(0,0)   1   1         --->          P(1,1)   2   4         --->          P(2,4)   3   9         --->          P(3,9)   4   16       --->          P(4,16)   5   25       --->          P(5,25)   6   36       --->          P(6,36)
y = 6 - x²     y = - x²  + 6    x | y   -1   5         --->        P(-1,5)   0   6         --->        P(0,6)   1   5         --->        P(1,5)   2   2         --->        P(2,2)   3   -3        --->        P(3,-3)   4   -10      --->        P(4,-10)   5   -19      --->        P(5,-19)   6   -30      --->        P(6,30)
(-1¾, 3) (1¾, 3) The Solutions are  (-1¾, 3)  and  (1¾, 3) .
Solve by Substitution Example: Given this system : Solve using substitution.       12x - 4y = 9    y + 4x  = 18
Solve by Substitution solution:
Solve by Elimination Example: Given this system :    4x + y = 30     -2x + 2y = 10  Solve using elimination.  
Solve by Elimination solution:
BIBLIOGRAPHY: http://www.univie.ac.at/future.media/moe/fplotter/fplotter.html

Analytic Geometry

  • 1.
  • 2.
    COORDINATE EQUATION PROBLEMS:PROCESS 1 EXAMPLES: a) Given the coordinate equation  7 = (x-5)² + (y+6)², change it to the form  0 = x² + y² + dx + ey + f . b) Given the coordinate equation  18 = (x+3)² + (y-4)², change it to the form  0 = x² + y² + dx + ey + f .
  • 3.
    Solution to a): Solution to b): PROCESS 1 SOLUTIONS:
  • 4.
    PROCESS 2 EXAMPLES:c) Given the centre (-4,7), and the radius √26, write the coordinate equation. d) Given the centre (9,-2), and the radius √54, write the coordinate equation.
  • 5.
    Solution to c): Solution to d) : PROCESS 2 SOLUTIONS:
  • 6.
    PROCESS 3 EXAMPLE:Given the centre (4,-9), and the point (10,-3), write the coordinate equation.
  • 7.
  • 8.
    PROCESS 4 EXAMPLE:Given the centre (7,12), and the area 21  , write the coordinate equation.
  • 9.
  • 10.
    PERPENDICULAR DISTANCE PROBLEMS:PROCESS 1 EXAMPLE: Given the point P(3,5) and the line 12x + 4y +3 = 0, find the perpendicular distance.
  • 11.
  • 12.
    PROCESS 2 EXAMPLE:Given the point P(2,5) and the line 3x + 5y = 8, find the perpendicular distance.
  • 13.
  • 14.
    PROCESS 3 EXAMPLE:Given the lines -4y + x + 9 = 0 and y - 5x = 12, find the perpendicular distance.
  • 15.
  • 16.
    LINEAR EQUATION SYSTEM PROBLEM: Solve by Graphing Example: Given this system : Solve graphically.   y = x² y = 6 - x²
  • 17.
    Solve by Graphingsolution: y = x²    x | y   -1   1         --->         P(-1,1)   0   0         --->          P(0,0)   1  1         --->          P(1,1)   2   4         --->          P(2,4)   3   9         --->          P(3,9)   4   16       --->          P(4,16)   5   25       --->          P(5,25) 6   36       --->          P(6,36)
  • 18.
    y = 6- x² y = - x² + 6    x | y   -1   5         --->        P(-1,5)   0   6         --->        P(0,6)   1  5         --->        P(1,5)   2   2         --->       P(2,2)   3   -3        --->        P(3,-3)   4   -10      --->        P(4,-10)   5   -19      --->        P(5,-19) 6   -30      --->        P(6,30)
  • 19.
    (-1¾, 3) (1¾,3) The Solutions are (-1¾, 3) and (1¾, 3) .
  • 20.
    Solve by SubstitutionExample: Given this system : Solve using substitution.     12x - 4y = 9    y + 4x = 18
  • 21.
  • 22.
    Solve by EliminationExample: Given this system :   4x + y = 30    -2x + 2y = 10 Solve using elimination.  
  • 23.
  • 24.