Introduction to Particles
Swarm Optimization
Presented By Mat S
Particle Swarm Optimization
Inventors: James Kennedy and Russell Eberhart
 An Algorithm originally developed to imitate the
motion of a Flock of Birds, or insects
 Assumes Information Exchange (Social Interactions)
among the search agents
 Basic Idea: Keep track of
– Global Best (G best)
– Self Best (P best)
How does it work?
 Problem:
Find X which minimizes f(X)
 Particle Swarm:
– Start: Random set of solution vectors
– Experiment: Include randomness in the choice
of new states.
– Remember: Encode the information about good
solutions.
– Improvise: Use the ‘experience’ information to
initiate search in a new regions
Particle Swarm Optimization
Particle Swarm Optimization
Vi pbest and Vik
Particle Swarm Optimization
Overview of PSO
0 10 20 30 40 50 60 70 80 90 100
0
10
20
30
40
50
60
70
80
90
100
PSO
X
Y
0 10 20 30 40 50 60 70 80 90 100
0
10
20
30
40
50
60
70
80
90
100
PSO
X
Y
0 10 20 30 40 50 60 70 80 90 100
0
10
20
30
40
50
60
70
80
90
100
PSO
X
Y
0 10 20 30 40 50 60 70 80 90 100
0
10
20
30
40
50
60
70
80
90
100
PSO
X
Y
0 10 20 30 40 50 60 70 80 90 100
0
10
20
30
40
50
60
70
80
90
100
PSO
X
Y
0 10 20 30 40 50 60 70 80 90 100
0
10
20
30
40
50
60
70
80
90
100
PSO
X
Y
0 10 20 30 40 50 60 70 80 90 100
0
10
20
30
40
50
60
70
80
90
100
PSO
X
Y
0 10 20 30 40 50 60 70 80 90 100
0
10
20
30
40
50
60
70
80
90
100
PSO
X
Y
0 10 20 30 40 50 60 70 80 90 100
0
10
20
30
40
50
60
70
80
90
100
PSO
X
Y
Example
Find minimum value in the function:
(x - 15)^2 + (y - 20)^2 = 0
Answer:
x = 15 and y = 20
Now.. Please find minimum value using PSO!
Example
1st iterations
0 5 10 15 20 25 30
0
5
10
15
20
25
30
PSO
X
Y
Example
Iteration X Y (X-15)^2+(Y-20)^2 Gbest
1 10 10 125 25
2 10 14.9721 50.27981356 25
3 10 23.77597 39.25795364 15.7092
Example
0 0 0.7403 1 0 2 0.7404 10 10 2 0.7404 10 10
0 0 0.2934 1 0 2 0.2934 10 10 2 0.2934 10 10
For X
Example
4.972 6.464 0.7404 1 6.4637 2 0.7404 10 10 2 0.7404 10 10
8.804 11.445 0.2934 1 11.445 2 0.2934 14.97 14.97 2 0.2934 10 10
For Y
Example
2nd iterations
0 5 10 15 20 25 30
0
5
10
15
20
25
30
Example
7th Iterations
0 5 10 15 20 25 30
0
5
10
15
20
25
30
Example
30th Iterations
0 5 10 15 20 25 30
0
5
10
15
20
25
30
Particle Swarm Optimization
What is P best ?
What is G best ?
Look at the datapbestngbest.xls
Demo
Thank You

Particles Swarm Optimization

  • 1.
    Introduction to Particles SwarmOptimization Presented By Mat S
  • 2.
    Particle Swarm Optimization Inventors:James Kennedy and Russell Eberhart  An Algorithm originally developed to imitate the motion of a Flock of Birds, or insects  Assumes Information Exchange (Social Interactions) among the search agents  Basic Idea: Keep track of – Global Best (G best) – Self Best (P best)
  • 3.
    How does itwork?  Problem: Find X which minimizes f(X)  Particle Swarm: – Start: Random set of solution vectors – Experiment: Include randomness in the choice of new states. – Remember: Encode the information about good solutions. – Improvise: Use the ‘experience’ information to initiate search in a new regions
  • 4.
  • 5.
  • 6.
  • 7.
    Overview of PSO 010 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 PSO X Y 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 PSO X Y 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 PSO X Y 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 PSO X Y 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 PSO X Y 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 PSO X Y 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 PSO X Y 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 PSO X Y 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 PSO X Y
  • 8.
    Example Find minimum valuein the function: (x - 15)^2 + (y - 20)^2 = 0 Answer: x = 15 and y = 20 Now.. Please find minimum value using PSO!
  • 9.
    Example 1st iterations 0 510 15 20 25 30 0 5 10 15 20 25 30 PSO X Y
  • 10.
    Example Iteration X Y(X-15)^2+(Y-20)^2 Gbest 1 10 10 125 25 2 10 14.9721 50.27981356 25 3 10 23.77597 39.25795364 15.7092
  • 11.
    Example 0 0 0.74031 0 2 0.7404 10 10 2 0.7404 10 10 0 0 0.2934 1 0 2 0.2934 10 10 2 0.2934 10 10 For X
  • 12.
    Example 4.972 6.464 0.74041 6.4637 2 0.7404 10 10 2 0.7404 10 10 8.804 11.445 0.2934 1 11.445 2 0.2934 14.97 14.97 2 0.2934 10 10 For Y
  • 13.
    Example 2nd iterations 0 510 15 20 25 30 0 5 10 15 20 25 30
  • 14.
    Example 7th Iterations 0 510 15 20 25 30 0 5 10 15 20 25 30
  • 15.
    Example 30th Iterations 0 510 15 20 25 30 0 5 10 15 20 25 30
  • 16.
    Particle Swarm Optimization Whatis P best ? What is G best ? Look at the datapbestngbest.xls
  • 17.