SlideShare a Scribd company logo
1 of 20
Download to read offline
TE0,2,1 mode S =2, Vb = 30 kV, alpha = 2.57, velocity spread = 0%
Rc / Rw = 0.3268, Rw = 0.3571 cm
L
rw
2 3 4 5 6 7 8 9 10
0
1x10
5
2x10
5
3x10
5
4x10
5
5x10
5
L / rw
beamefficiency(%)
0
10
20
30
40
QPb(kW)
Rw = 0.3571 cm
Vb = 30 kV, alpha = 2.57, Bz0 = 17.4 kG
-20 -10 0 10 20
0
20
40
60
80
100
120
140
160
TE13
TE32
TE61
TE02 (operating mode)
TE22
TE51
TE12
TE31
TE01TE21
S = 2
frequency(GHz)
kz
(cm
-1
)
S = 1
TE11
(1) Do QPVSB runs with the ideal cavity parameters you used to run for Larry's TE02, s=2 design
Previous parameters:
Rw = 0.3571 cm, L/ Rw = 6, Rc / Rw = 0.3268
Vb = 30 kV, alpha = 2.57, delta = -10 ~ 20
Operation mode TE021 S=2
-10 -5 0 5 10 15 20
0.0
2.0x10
4
4.0x10
4
6.0x10
4
8.0x10
4
1.0x10
5 TE(2)
022
TE(2)
025
TE(2)
023
TE(2)
024 TE(1)
115
TE(2)
022
TE(1)
214
TE(1)
213
TE(1)
212
delta
QP(kW)
TE(2)
021
16.8 17.2 17.6 18.0
0.0
2.0x10
4
4.0x10
4
6.0x10
4
8.0x10
4
1.0x10
5
TE(1)
115
TE(2)
025
TE(2)
024
TE(2)
023
TE(2)
022
TE(2)
022
TE(1)
214
TE(1)
213
QP(kW)
B (kG)
TE(2)
021TE(1)
212
(2) Let Vb =30 kV, Rc= 1.26 mm, alpha= 2.0, dVz/Vz = 5%, ismain =2, immain=0, inmain =2,
ilmain=1, dmin=-10, dmax= 20
Rw = 0.3571 cm, L/ Rw = 6, Rc / Rw = 0.3528, velocity spread = 5%
Vb = 30 kV, alpha = 2.0, delta = -10 ~ 20
Operation mode TE021 S=2
-10 -5 0 5 10 15 20
0.0
2.0x10
4
4.0x10
4
6.0x10
4
8.0x10
4
1.0x10
5 TE(2)
022
TE(1)
215
TE(2)
023
TE(2)
024
TE(1)
115
TE(2)
022 TE(1)
214
TE(1)
213 TE(1)
212
delta
QP(kW)
TE(2)
021
16.8 17.2 17.6 18.0
0.0
2.0x10
4
4.0x10
4
6.0x10
4
8.0x10
4
1.0x10
5
TE(1)
115
TE(1)
215
TE(2)
024
TE(2)
023
TE(2)
022
TE(2)
022
TE(1)
214
TE(1)
213
QP(kW)
B (kG)
TE(2)
021TE(1)
212
Electron-wave resonance lines for the S=1 ~ S=3
Rw = 0.3571 cm, Vb = 30 kV, alpha = 2.0, Bz0 = 17.5 kG
Operation mode TE021 S=2
-20 -10 0 10 20
20
40
60
80
100
120
140
160
180 TE14
TE33TE91
TE52TE03
TE23TE81
TE42
TE71TE13
TE32
TE61
TE02TE22
TE51
TE12TE41
S = 3
S = 2
S = 1
TE31
TE01
TE21
TE11
kz
(cm-1
)
frequency(GHz)
(1) Do QPVSB runs with the ideal cavity parameters you used to run for Larry's TE02, s=2 design
Previous parameters:
Rw = 0.3571 cm, L/ Rw = 6, Rc / Rw = 0.3268, velocity spread = 0%
Vb = 30 kV, alpha = 2.57, delta = -10 ~ 20
Operation mode TE021 S=2
16.8 17.2 17.6 18.0
0.0
5.0x10
5
1.0x10
6
1.5x10
6
2.0x10
6
TE(1)
115TE(1)
214
TE(1)
213
TE(1)
212
TE(2)
226
TE(2)
225
TE(2)
224
TE(2)
224
TE(2)
223
TE(2)
223
TE(2)
222TE(2)
222
TE(2)
221 TE(2)
516
TE(2)
515
TE(2)
515
TE(2)
514
TE(2)
513
TE(2)
512
TE(2)
025
TE(2)
024
TE(2)
023
TE(2)
022
TE(2)
022
TE(2)
021
TE(3)
426
TE(3)
425
TE(3)
236
TE(3)
236
TE(3)
235TE(3)
235 TE(3)
234
TE(3)
234
TE(3)
233
TE(3)
233
TE(3)
232
TE(3)
232TE(3)
231
TE(3)
036
TE(3)
035
TE(3)
035
TE(3)
034
TE(3)
034 TE(3)
033
TE(3)
033
TE(3)
032 TE(3)
032TE(3)
031
TE(3)
526
TE(3)
525TE(3)
524
TE(3)
523
TE(3)
523
TE(3)
522
TE(3)
521
B (kG)
QP(kW)
17.0 17.2 17.4 17.6 17.8 18.0
0.0
2.0x10
5
4.0x10
5
6.0x10
5
8.0x10
5
1.0x10
6
TE(1)
115
TE(1)
214
TE(1)
213
TE(2)
226
TE(2)
225
TE(2)
224
TE(2)
223
TE(2)
222
TE(2)
516
TE(2)
514
TE(2)
513
TE(2)
025
TE(2)
024
TE(2)
023
TE(2)
022
TE(2)
022
TE(2)
021
TE(3)
426
TE(3)
235
TE(3)
234
TE(3)
233
TE(3)
232
TE(3)
036TE(3)
035
TE(3)
034
TE(3)
034
TE(3)
033
TE(3)
033
TE(3)
032
TE(3)
032
TE(3)
031
TE(3)
526
TE(3)
525
TE(3)
524
TE(3)
522
TE(3)
522
TE(3)
523
TE(3)
521
B (kG)
QP(kW)
16.8 17.2 17.6 18.0
0
1x10
5
2x10
5
3x10
5
4x10
5
5x10
5
TE(2)
223
TE(2)
223
TE(2)
222
TE(2)
222
TE(2)
221
TE(2)
515TE(2)
514
TE(2)
022
TE(2)
426
TE(3)
526
TE(3)
523
TE(3)
036
TE(3)
035
TE(3)
035
TE(3)
034
TE(3)
034 TE(3)
033
TE(3)
033
TE(3)
032
TE(1)
115TE(1)
214 TE(1)
213
TE(1)
212
TE(2)
425
TE(2)
516
TE(2)
515
TE(2)
513
TE(3)
031
TE(2)
512
TE(2)
025
TE(2)
024TE(2)
023
TE(2)
022
TE(3)
032
TE(3)
524
TE(3)
523
TE(3)
522
TE(3)
525
TE(3)
521
TE(2)
021
B (kG)
QP(kW)
16.8 17.2 17.6 18.0
0.0
2.0x10
4
4.0x10
4
6.0x10
4
8.0x10
4
1.0x10
5
TE(1)
115
TE(2)
025
TE(2)
024
TE(2)
023
TE(2)
022
TE(2)
022
TE(1)
214
TE(1)
213
QP(kW)
B (kG)
TE(2)
021TE(1)
212
(2) Let Vb =30 kV, Rc= 1.26 mm, alpha= 2.0, dVz/Vz = 5%, ismain =2, immain=0, inmain =2,
ilmain=1, dmin=-10, dmax= 20
Rw = 0.3571 cm, L/ Rw = 6, Rc / Rw = 0.3528, velocity spread = 5%
Vb = 30 kV, alpha = 2.0, delta = -10 ~ 20
Operation mode TE021 S=2
16.4 16.8 17.2 17.6 18.0
0.0
5.0x10
5
1.0x10
6
1.5x10
6
2.0x10
6 TE(1)
115
TE(1)
215
TE(1)
214
TE(1)
213
TE(1)
212
TE(2)
416
TE(2)
126
TE(2)
516
TE(2)
515
TE(2)
515
TE(2)
514
TE(2)
513
TE(2)
512
TE(2)
026
TE(2)
025
TE(2)
024
TE(2)
023
TE(2)
022
TE(2)
022
TE(2)
021
TE(3)
424
TE(3)
036
TE(3)
035
TE(3)
035
TE(3)
034
TE(3)
034 TE(3)
033
TE(3)
033
TE(3)
032
TE(3)
032TE(3)
031
TE(3)
526
TE(3)
525
TE(3)
524
TE(3)
523
TE(3)
523
TE(3)
522
TE(3)
521
B (kG)
QP(kW)
17.0 17.2 17.4 17.6 17.8 18.0
0.0
2.0x10
5
4.0x10
5
6.0x10
5
8.0x10
5
1.0x10
6
TE(1)
115
TE(1)
215
TE(1)
214
TE(1)
213
TE(2)
514
TE(2)
513
TE(2)
026
TE(2)
025TE(2)
024
TE(2)
023
TE(2)
022
TE(2)
022
TE(3)
036 TE(3)
034TE(3)
033TE(3)
032
TE(3)
031
TE(3)
526
TE(3)
525
TE(3)
524TE(3)
523
TE(3)
522
TE(3)
522
TE(3)
521
TE(2)
021
B (kG)
QP(kW)
16.5 17.0 17.5 18.0
0
1x10
5
2x10
5
3x10
5
4x10
5
5x10
5
TE(1)
115
TE(1)
215
TE(1)
214
TE(1)
213
TE(1)
212
TE(2)
416
TE(2)
126
TE(2)
516
TE(2)
515
TE(2)
515
TE(2)
514
TE(2)
513
TE(2)
512
TE(2)
026
TE(2)
025
TE(2)
024
TE(2)
023
TE(2)
022
TE(2)
022
TE(3)
032
TE(3)
524
TE(3)
523 TE(3)
523
TE(3)
522
TE(3)
522
TE(3)
521
TE(2)
021
B (kG)
QP(kW)
16.8 17.2 17.6 18.0
0.0
2.0x10
4
4.0x10
4
6.0x10
4
8.0x10
4
1.0x10
5
TE(1)
115
TE(1)
215
TE(2)
024
TE(2)
023
TE(2)
022
TE(2)
022
TE(1)
214
TE(1)
213
QP(kW)
B (kG)
TE(2)
021TE(1)
212
Structure (all dimension in cm)
0 1 2 3 4
0.0
0.1
0.2
0.3
0.4
0.5
3.9855 cm
0.4077r1 = 0.35 0.3571
12.3
0.1355
0.3
0.15
Rw(cm)
Z (cm)
0.1
Parameters Table.1. (cavity dimensions shown above)
Vb = 35kV, alpha = 2.0, dVz/Vz = 6 %, Rc/Rw = 0.3192, and / 1Cu   in all structure section.
Operation mode: (2)
021TE
Use the stationary self-consistent code(parameters as in Table.1) to estimate the start oscillation current vs
B(uniform) for each competition mode.
8 10 12 14 16 18 20 22
0
10
20
30
40
50
TE(2)
5,1
TE(2)
2,2
TE(1)
1,1
TE(1)
2,1
TE(2)
0,2
B (kG)
Ist(A)
16 17 18 19 20
0
2
4
6
8
10
TE(2)
5,1
TE(2)
2,2
TE(1)
1,1
TE(1)
2,1
TE(2)
0,2
B (kG)
Ist(A)
The corresponding hot f and hot Q vs B (Hot Q defined in Sec. III-B of S. H. Kao, C. C. Chiu, P. C. Chang, K.
L. Wu, and K. R. Chu, “Harmonic Mode Competition in a THz Gyrotron Backward-Wave Oscillator,” Phys.
Plasmas 19, 103103 (2012).)
17.5 18.0 18.5 19.0 19.5 20.0
90
92
94
96
98
100
102
104
B (kG)
 = 3
 = 2
 = 1
0
1000
2000
3000
4000
5000
TE(2)
0,2
Hotf(GHz)
HotQ
10 12 14 16 18 20
20
25
30
35
40
45
50
Hotf(GHz)
20
40
60
80
100
120
TE(1)
1,1
B (kG)
HotQ
15 16 17 18 19 20
40
42
44
46
48
50
TE(1)
2,1
B (kG)
Hotf(GHz)
HotQ
0
100
200
300
400
17 18 19 20
88
90
92
94
96
98
100
0
1000
2000
3000
4000
5000
TE(2)
2,2
HotQ
Hotf(GHz)
B (kG)
16 17 18 19 20
85
90
95
100
0
500
1000
1500
2000
2500
3000
TE(2)
5,1
HotQ
B (kG)
Hotf(GHz)
Change r1 to see the trend of the Ist vs B
r1 = 0.35 cm
15 16 17 18 19 20
0
2
4
6
8
10
TE(2)
5,1
TE(2)
2,2
TE(1)
1,1
TE(1)
2,1
TE(2)
0,2
B (kG)
Ist(A)
r1 = 0.3 cm
15 16 17 18 19 20
0
2
4
6
8
10
TE(2)
5,1
TE(1)
1,1
TE(1)
2,1
TE(2)
0,2
B (kG)
Ist(A)
r1 = 0.25 cm
15 16 17 18 19 20
0
2
4
6
8
10
TE(2)
5,1
TE(1)
1,1
TE(1)
2,1
TE(2)
0,2
B (kG)
Ist(A)
Using stationary self-consistent code to determined efficiency and forward wave power
choose r1 = 0.35 cm, B = 17.78 kG (the magnetic field corresponding to the lowest Ist)
other parameters are the same as in Table.1.
0 2 4 6 8 10 12
93.90
93.92
93.94
93.96
93.98
94.00
94.02
94.04
94.06 TE(2)
0,2
Ib (A)
Frequency(GHz)
0 1 2 3 4 5 6 7 8 9 10 11 12
0
5
10
15
20
25
30
35
40
TE(2)
0,2
backward wave power
Ib (A)
power(kW)
forward wave power
TE
(2)
02
Ist
0.93 A 1.51 A
TE
(1)
21
Ist TE
(1)
11
Ist
2.76 A
0 1 2 3 4 5 6 7 8 9 10 11 12
0
1
2
3
4
5
6
7
8
9
10
11
TE(2)
0,2
TE
(2)
02
Ist
0.93 A 1.51 A
TE
(1)
21
Ist TE
(1)
11
Ist
backward wave efficiency
forward wave efficiency
Efficiency(%)
Ib (A)2.76 A
choose r1 = 0.35 cm, Ib = 5A, tune B-field, other parameters are the same as in Table.1.
17.6 17.8 18.0 18.2 18.4 18.6
93.8
94.0
94.2
94.4
94.6
94.8
95.0
95.2
95.4
95.6
Frequency(GHz)
B (kG)
17.4 17.6 17.8 18.0 18.2 18.4 18.6
0
10
20
30
40
50
60
70
backward wave power
forward wave power
power(kW)
B (kG)
17.4 17.6 17.8 18.0 18.2 18.4 18.6
0
5
10
15
20
25
30
35
40
backward wave efficiency
forward wave efficiency
Efficiency(%)
B (kG)
Using stationary self-consistent code to determined efficiency and forward wave power
choose r1 = 0.3 cm, B = 17.78 kG (the magnetic field corresponding to the lowest Ist)
other parameters are the same as in Table.1.
0 2 4 6 8 10 12
93.94
93.96
93.98
94.00
94.02
94.04
94.06
94.08
TE(2)
0,2
Ib (A)
Frequency(GHz)
0 1 2 3 4 5 6 7 8 9 10 11 12
0
5
10
15
20
25
30
35
40
TE(2)
0,2
backward wave power~0
Ib (A)
power(kW)
forward wave power
TE
(2)
02
Ist
1.25 A 1.78 A
TE
(1)
21
Ist TE
(1)
11
Ist
2.75 A
0 1 2 3 4 5 6 7 8 9 10 11 12
0
1
2
3
4
5
6
7
8
9
10
11
TE(2)
0,2
TE
(2)
02
Ist
1.25 A 1.78 A
TE
(1)
21
Ist TE
(1)
11
Ist
backward wave efficiency~0
forward wave efficiency
Efficiency(%)
Ib (A)2.75 A
choose r1 = 0.3 cm, Ib = 5A, tune B-field, other parameters are the same as in Table.1.
17.4 17.6 17.8 18.0 18.2 18.4 18.6
93.8
94.0
94.2
94.4
94.6
94.8
95.0
TE(2)
0,2
Frequency(GHz)
B (kG)
17.4 17.6 17.8 18.0 18.2 18.4 18.6
0
10
20
30
40
50
60
70
TE(2)
0,2
backward wave power
forward wave power
power(kW)
B (kG)
17.4 17.6 17.8 18.0 18.2 18.4 18.6
0
5
10
15
20
25
30
35
40
TE(2)
0,2
backward wave efficiency
forward wave efficiency
Efficiency(%)
B (kG)
Mode Competition Criteria
Ref.: S. H. Kao, C. C. Chiu, P. C. Chang, K. L. Wu, and K. R. Chu, “Harmonic Mode Competition in a
THz Gyrotron Backward-Wave Oscillator,” Phys. Plasmas 19, 103103 (2012).
The mode competition processes examined in the above reference (Sec. IV-C) consistently follow three
criteria:
(1) The presence of the s = 2 mode enhances the Ist of the competing modes. For example, in Fig. 4(d-f), the s
= 2 mode enhances the linear Ist of the lowest-kz, s = 1 mode by a factor of 2.63, 2.14, and 1.63, respectively. As
can be seen from the figures, the enhancement factor is larger for a higher-amplitude s = 2 mode. As shown in [30],
the enhancement factor can be as large as 15 if the competing mode is a high-kz, s = 1 mode. Clearly, this criterion
also applies to an early-starting mode of any cyclotron harmonic number.
(2) The early-starting s = 2 mode is eventually suppressed by an s = 1 mode because of the unfavorable
evolution of the s = 2 coupling coefficient. This is a criterion that gives a lower-s mode a dominant advantage over
a higher-s mode.
(3) Among the s = 1 modes, the one with the lowest kz (instead of the lowest Ist) has a competitive advantage.
This criterion plays an insignificant role in an s = 1 gyrotron because one can always tune the magnetic field to
favor a low-kz (e.g. 1 ) mode. However, it governs the competition among the s = 1 modes when the magnetic
field is tuned in favor of an s>1 mode as in the present case. For the reason discussed at the end of Sec. IV-A, this
criterion can be generalized to the competition between any two modes, with the same or different cyclotron
harmonic numbers.
In multiple-mode competitions, more than one criterion may be at work. In this case, all three criteria could
work in favor of one mode (e.g. an early-starting, low-kz, s = 1 mode) or two criteria play opposing roles [e.g. an
early-starting, low-kz, s = 2 mode competing with a low-kz, s = 1 mode with a higher Ist, as in Fig. 4(d-f)]. One
criterion does not necessarily override an opposing one. The outcome of the competition depends on the relative
weight of the criteria, which in turn depends on the relative magnitude of kz, the separation of Ist of the modes
involved, as well as the peak Ib value. Hence, a clearer picture lies in the details in the Ist versus B chart.
Although criteria (1) and (3) do not bias a particular cyclotron harmonic number, criterion (2) is inherently in
favor of a lower-s mode. Thus, overall, a higher-s mode is much more likely to be suppressed by a lower-s mode,
as in Fig. 4(d-f) and [13, 14, 16, 19, 20, 30, 31].
Analysis of the case inTable I
(r1 = 0.35 cm, Vb=35 kV, α=2, Δvz/vz=6%, Rc/Rw=0.3192, uniform B-field, etc.)
1. At B = 17.78 kG, as Ib rises to 0.93 A, the TE02 (s=2) mode will be the first mode excited. It will remain in
single-mode operation until Ib=1.51 A (Pout ~3 kW, η~5.7%) which is the linear Ist of the TE21 (s=1) mode.
As Ib rises further to Ib=2.76 A, it hits the linear Ist of the TE11 (s=1) mode. We have assumed α=2 for all Ib.
2. In the competition between the early-starting, low-kz,TE02 (s=2) mode and the two, higher-kz, s=1 modes,
Criteria (1) and (3) favor the TE02 (s=2) mode, while Criterion (2) favors the s=1 modes. By Criteria (1) and
(3), it is likely that the TE02 (s=2) mode can survive up to Ib~2.5 A (Pout~7.5 kW, η~8.7%) before it is
eventually suppressed by the TE21 (s=1) mode. By Criterion (3), the highest-kz, TE11 (s=1) is less
competitive than the TE21 (s=1) mode.
3. If Criteria (1) and (3) dominate over Criterion (2) at still higher Ib (e.g. 5A), the TE02 (s=2) mode may
remain in single mode operation with significantly higher Pout (e.g. Pout ~18 kW and η~10.3% at Ib~5 A).
4. From cases studied in the above reference, it is unlikely that the TE02 (s=2) mode can operate at a more
optimal B-field (e.g. 17.6 kG) by suppressing the early-starting TE21 (s=1) mode.
Scenario 2 is reasonable, but Scenario 3 may be too optimistic. Unfortunately, no one here knows how
to run our time-dependent, multi-mode code to verify Scenarios 2 and 3. It will take ~2 months to get one
data point anyway.

More Related Content

What's hot

B1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuning
B1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuningB1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuning
B1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuningPei-Che Chang
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Simen Li
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitancePei-Che Chang
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheorySimen Li
 
GPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationGPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationPei-Che Chang
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Simen Li
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介Simen Li
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisSimen Li
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power AmplifierSimen Li
 
OXX B66 Rx sensitivity and desense analysis issue debug
OXX B66 Rx sensitivity and desense analysis issue debugOXX B66 Rx sensitivity and desense analysis issue debug
OXX B66 Rx sensitivity and desense analysis issue debugPei-Che Chang
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise AmplifierSimen Li
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisSimen Li
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingSimen Li
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsSimen Li
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and LinearitiesSimen Li
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Simen Li
 
Theoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWOTheoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWOPei-Che Chang
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierSimen Li
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
 

What's hot (20)

B1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuning
B1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuningB1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuning
B1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuning
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
 
B2 desence
B2 desenceB2 desence
B2 desence
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line Theory
 
GPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationGPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF consideration
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
OXX B66 Rx sensitivity and desense analysis issue debug
OXX B66 Rx sensitivity and desense analysis issue debugOXX B66 Rx sensitivity and desense analysis issue debug
OXX B66 Rx sensitivity and desense analysis issue debug
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier Analysis
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and Linearities
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
Theoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWOTheoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWO
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 

Viewers also liked

GNSS De-sense By IMT and PCS DA Output
GNSS De-sense By IMT and PCS DA OutputGNSS De-sense By IMT and PCS DA Output
GNSS De-sense By IMT and PCS DA Outputcriterion123
 
Differential stripline impedance calculate
Differential stripline impedance calculateDifferential stripline impedance calculate
Differential stripline impedance calculatePei-Che Chang
 
ICT+UD 융합작품 개발문서(스마트디바이스지능통신)
ICT+UD 융합작품 개발문서(스마트디바이스지능통신)ICT+UD 융합작품 개발문서(스마트디바이스지능통신)
ICT+UD 융합작품 개발문서(스마트디바이스지능통신)Yong Heui Cho
 
Introduction to differential signal -For RF and EMC engineer
Introduction to differential signal -For RF and EMC engineerIntroduction to differential signal -For RF and EMC engineer
Introduction to differential signal -For RF and EMC engineercriterion123
 
GPS RF Front End Considerations
GPS RF Front End ConsiderationsGPS RF Front End Considerations
GPS RF Front End Considerationscriterion123
 
System(board level) noise figure analysis and optimization
System(board level) noise figure analysis and optimizationSystem(board level) noise figure analysis and optimization
System(board level) noise figure analysis and optimizationcriterion123
 
IIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset ReceiversIIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset Receiverscriterion123
 
Passive component z versus freq
Passive component z versus freqPassive component z versus freq
Passive component z versus freqPei-Che Chang
 
Introduction to PAMiD
Introduction to PAMiDIntroduction to PAMiD
Introduction to PAMiDcriterion123
 
The ABCs of ADCs Understanding How ADC Errors Affect System Performance
The ABCs of ADCs Understanding How ADC Errors Affect System PerformanceThe ABCs of ADCs Understanding How ADC Errors Affect System Performance
The ABCs of ADCs Understanding How ADC Errors Affect System Performancecriterion123
 
SAW-less Direct Conversion Receiver Consideration
SAW-less Direct Conversion Receiver ConsiderationSAW-less Direct Conversion Receiver Consideration
SAW-less Direct Conversion Receiver Considerationcriterion123
 
CDMA Zero-IF Receiver Consideration
CDMA  Zero-IF Receiver ConsiderationCDMA  Zero-IF Receiver Consideration
CDMA Zero-IF Receiver Considerationcriterion123
 
Introduction to differential signal -For RF and EMC engineer
Introduction to differential signal -For RF and EMC engineerIntroduction to differential signal -For RF and EMC engineer
Introduction to differential signal -For RF and EMC engineercriterion123
 
PA Output Notch Filter Consideration
PA Output Notch Filter ConsiderationPA Output Notch Filter Consideration
PA Output Notch Filter Considerationcriterion123
 
Introduction to 3 terminal capacitor
Introduction to 3 terminal capacitorIntroduction to 3 terminal capacitor
Introduction to 3 terminal capacitorcriterion123
 
EVM Degradation in LTE systems by RF Filtering
EVM Degradation in LTE systems by RF Filtering EVM Degradation in LTE systems by RF Filtering
EVM Degradation in LTE systems by RF Filtering criterion123
 
Sensitivity or selectivity - How does eLNA impact the receriver performance
Sensitivity or selectivity  - How does eLNA impact the receriver performanceSensitivity or selectivity  - How does eLNA impact the receriver performance
Sensitivity or selectivity - How does eLNA impact the receriver performancecriterion123
 
How to solve ACLR issue
How to solve ACLR issueHow to solve ACLR issue
How to solve ACLR issuecriterion123
 

Viewers also liked (20)

GNSS De-sense By IMT and PCS DA Output
GNSS De-sense By IMT and PCS DA OutputGNSS De-sense By IMT and PCS DA Output
GNSS De-sense By IMT and PCS DA Output
 
Differential stripline impedance calculate
Differential stripline impedance calculateDifferential stripline impedance calculate
Differential stripline impedance calculate
 
ICT+UD 융합작품 개발문서(스마트디바이스지능통신)
ICT+UD 융합작품 개발문서(스마트디바이스지능통신)ICT+UD 융합작품 개발문서(스마트디바이스지능통신)
ICT+UD 융합작품 개발문서(스마트디바이스지능통신)
 
Introduction to differential signal -For RF and EMC engineer
Introduction to differential signal -For RF and EMC engineerIntroduction to differential signal -For RF and EMC engineer
Introduction to differential signal -For RF and EMC engineer
 
GPS RF Front End Considerations
GPS RF Front End ConsiderationsGPS RF Front End Considerations
GPS RF Front End Considerations
 
System(board level) noise figure analysis and optimization
System(board level) noise figure analysis and optimizationSystem(board level) noise figure analysis and optimization
System(board level) noise figure analysis and optimization
 
IIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset ReceiversIIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset Receivers
 
Passive component z versus freq
Passive component z versus freqPassive component z versus freq
Passive component z versus freq
 
Introduction to PAMiD
Introduction to PAMiDIntroduction to PAMiD
Introduction to PAMiD
 
The ABCs of ADCs Understanding How ADC Errors Affect System Performance
The ABCs of ADCs Understanding How ADC Errors Affect System PerformanceThe ABCs of ADCs Understanding How ADC Errors Affect System Performance
The ABCs of ADCs Understanding How ADC Errors Affect System Performance
 
Reverse IMD
Reverse IMDReverse IMD
Reverse IMD
 
SAW-less Direct Conversion Receiver Consideration
SAW-less Direct Conversion Receiver ConsiderationSAW-less Direct Conversion Receiver Consideration
SAW-less Direct Conversion Receiver Consideration
 
CDMA Zero-IF Receiver Consideration
CDMA  Zero-IF Receiver ConsiderationCDMA  Zero-IF Receiver Consideration
CDMA Zero-IF Receiver Consideration
 
Introduction to differential signal -For RF and EMC engineer
Introduction to differential signal -For RF and EMC engineerIntroduction to differential signal -For RF and EMC engineer
Introduction to differential signal -For RF and EMC engineer
 
PA Output Notch Filter Consideration
PA Output Notch Filter ConsiderationPA Output Notch Filter Consideration
PA Output Notch Filter Consideration
 
Saw filters
Saw filtersSaw filters
Saw filters
 
Introduction to 3 terminal capacitor
Introduction to 3 terminal capacitorIntroduction to 3 terminal capacitor
Introduction to 3 terminal capacitor
 
EVM Degradation in LTE systems by RF Filtering
EVM Degradation in LTE systems by RF Filtering EVM Degradation in LTE systems by RF Filtering
EVM Degradation in LTE systems by RF Filtering
 
Sensitivity or selectivity - How does eLNA impact the receriver performance
Sensitivity or selectivity  - How does eLNA impact the receriver performanceSensitivity or selectivity  - How does eLNA impact the receriver performance
Sensitivity or selectivity - How does eLNA impact the receriver performance
 
How to solve ACLR issue
How to solve ACLR issueHow to solve ACLR issue
How to solve ACLR issue
 

Similar to UC Davis gyrotron cavity simulation

132kv-substation-settings_compress.pdf
132kv-substation-settings_compress.pdf132kv-substation-settings_compress.pdf
132kv-substation-settings_compress.pdfssuser4d1f4f
 
Malik - Formal Element Report
Malik - Formal Element ReportMalik - Formal Element Report
Malik - Formal Element ReportJunaid Malik
 
Original NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code New
Original NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code NewOriginal NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code New
Original NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code Newauthelectroniccom
 
Original PNP Transistor 2SB688 B688 8A 120V New Toshiba
Original PNP Transistor 2SB688 B688 8A 120V New ToshibaOriginal PNP Transistor 2SB688 B688 8A 120V New Toshiba
Original PNP Transistor 2SB688 B688 8A 120V New ToshibaAUTHELECTRONIC
 
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsauthelectroniccom
 
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsAUTHELECTRONIC
 
Original Transistor 2SC2026-Y KTC2026 C2026 3A 60V TO-220 New KEC
Original Transistor 2SC2026-Y KTC2026 C2026 3A 60V TO-220 New KECOriginal Transistor 2SC2026-Y KTC2026 C2026 3A 60V TO-220 New KEC
Original Transistor 2SC2026-Y KTC2026 C2026 3A 60V TO-220 New KECAUTHELECTRONIC
 
Cmos digital integrated circuits analysis and design 4th edition kang solutio...
Cmos digital integrated circuits analysis and design 4th edition kang solutio...Cmos digital integrated circuits analysis and design 4th edition kang solutio...
Cmos digital integrated circuits analysis and design 4th edition kang solutio...vem2001
 
Solutions manual for cmos digital integrated circuits analysis and design 4th...
Solutions manual for cmos digital integrated circuits analysis and design 4th...Solutions manual for cmos digital integrated circuits analysis and design 4th...
Solutions manual for cmos digital integrated circuits analysis and design 4th...Blitzer567
 
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New InfineonOriginal IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineonauthelectroniccom
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfNahshonMObiri
 
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...Amr E. Mohamed
 
First order active rc sections hw1
First order active rc sections hw1First order active rc sections hw1
First order active rc sections hw1Hoopeer Hoopeer
 

Similar to UC Davis gyrotron cavity simulation (20)

Progress 1st sem
Progress 1st semProgress 1st sem
Progress 1st sem
 
132kv-substation-settings_compress.pdf
132kv-substation-settings_compress.pdf132kv-substation-settings_compress.pdf
132kv-substation-settings_compress.pdf
 
Malik - Formal Element Report
Malik - Formal Element ReportMalik - Formal Element Report
Malik - Formal Element Report
 
Oscillatorsppt
OscillatorspptOscillatorsppt
Oscillatorsppt
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
Chapter5
Chapter5Chapter5
Chapter5
 
Original NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code New
Original NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code NewOriginal NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code New
Original NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code New
 
Slough nov99
Slough nov99Slough nov99
Slough nov99
 
Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
 
Original PNP Transistor 2SB688 B688 8A 120V New Toshiba
Original PNP Transistor 2SB688 B688 8A 120V New ToshibaOriginal PNP Transistor 2SB688 B688 8A 120V New Toshiba
Original PNP Transistor 2SB688 B688 8A 120V New Toshiba
 
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
 
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
 
2
22
2
 
Original Transistor 2SC2026-Y KTC2026 C2026 3A 60V TO-220 New KEC
Original Transistor 2SC2026-Y KTC2026 C2026 3A 60V TO-220 New KECOriginal Transistor 2SC2026-Y KTC2026 C2026 3A 60V TO-220 New KEC
Original Transistor 2SC2026-Y KTC2026 C2026 3A 60V TO-220 New KEC
 
Cmos digital integrated circuits analysis and design 4th edition kang solutio...
Cmos digital integrated circuits analysis and design 4th edition kang solutio...Cmos digital integrated circuits analysis and design 4th edition kang solutio...
Cmos digital integrated circuits analysis and design 4th edition kang solutio...
 
Solutions manual for cmos digital integrated circuits analysis and design 4th...
Solutions manual for cmos digital integrated circuits analysis and design 4th...Solutions manual for cmos digital integrated circuits analysis and design 4th...
Solutions manual for cmos digital integrated circuits analysis and design 4th...
 
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New InfineonOriginal IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdf
 
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
 
First order active rc sections hw1
First order active rc sections hw1First order active rc sections hw1
First order active rc sections hw1
 

More from Pei-Che Chang

Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1Pei-Che Chang
 
NTHU Comm Presentation
NTHU Comm PresentationNTHU Comm Presentation
NTHU Comm PresentationPei-Che Chang
 
Introduction to Compressive Sensing in Wireless Communication
Introduction to Compressive Sensing in Wireless CommunicationIntroduction to Compressive Sensing in Wireless Communication
Introduction to Compressive Sensing in Wireless CommunicationPei-Che Chang
 
Distributed Architecture of Subspace Clustering and Related
Distributed Architecture of Subspace Clustering and RelatedDistributed Architecture of Subspace Clustering and Related
Distributed Architecture of Subspace Clustering and RelatedPei-Che Chang
 
Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)Pei-Che Chang
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDMPei-Che Chang
 
The Wireless Channel Propagation
The Wireless Channel PropagationThe Wireless Channel Propagation
The Wireless Channel PropagationPei-Che Chang
 
MIMO Channel Capacity
MIMO Channel CapacityMIMO Channel Capacity
MIMO Channel CapacityPei-Che Chang
 
Digital Passband Communication
Digital Passband CommunicationDigital Passband Communication
Digital Passband CommunicationPei-Che Chang
 
Digital Baseband Communication
Digital Baseband CommunicationDigital Baseband Communication
Digital Baseband CommunicationPei-Che Chang
 
The relationship between bandwidth and rise time
The relationship between bandwidth and rise timeThe relationship between bandwidth and rise time
The relationship between bandwidth and rise timePei-Che Chang
 
Millimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesMillimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesPei-Che Chang
 
Filtering Requirements for FDD + TDD CA Scenarios
Filtering Requirements for FDD + TDD CA ScenariosFiltering Requirements for FDD + TDD CA Scenarios
Filtering Requirements for FDD + TDD CA ScenariosPei-Che Chang
 

More from Pei-Che Chang (20)

PLL Note
PLL NotePLL Note
PLL Note
 
Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1
 
NTHU Comm Presentation
NTHU Comm PresentationNTHU Comm Presentation
NTHU Comm Presentation
 
Introduction to Compressive Sensing in Wireless Communication
Introduction to Compressive Sensing in Wireless CommunicationIntroduction to Compressive Sensing in Wireless Communication
Introduction to Compressive Sensing in Wireless Communication
 
Distributed Architecture of Subspace Clustering and Related
Distributed Architecture of Subspace Clustering and RelatedDistributed Architecture of Subspace Clustering and Related
Distributed Architecture of Subspace Clustering and Related
 
PMF BPMF and BPTF
PMF BPMF and BPTFPMF BPMF and BPTF
PMF BPMF and BPTF
 
Distributed ADMM
Distributed ADMMDistributed ADMM
Distributed ADMM
 
Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)
 
Patch antenna
Patch antennaPatch antenna
Patch antenna
 
Antenna basic
Antenna basicAntenna basic
Antenna basic
 
PAPR Reduction
PAPR ReductionPAPR Reduction
PAPR Reduction
 
Channel Estimation
Channel EstimationChannel Estimation
Channel Estimation
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDM
 
The Wireless Channel Propagation
The Wireless Channel PropagationThe Wireless Channel Propagation
The Wireless Channel Propagation
 
MIMO Channel Capacity
MIMO Channel CapacityMIMO Channel Capacity
MIMO Channel Capacity
 
Digital Passband Communication
Digital Passband CommunicationDigital Passband Communication
Digital Passband Communication
 
Digital Baseband Communication
Digital Baseband CommunicationDigital Baseband Communication
Digital Baseband Communication
 
The relationship between bandwidth and rise time
The relationship between bandwidth and rise timeThe relationship between bandwidth and rise time
The relationship between bandwidth and rise time
 
Millimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesMillimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphones
 
Filtering Requirements for FDD + TDD CA Scenarios
Filtering Requirements for FDD + TDD CA ScenariosFiltering Requirements for FDD + TDD CA Scenarios
Filtering Requirements for FDD + TDD CA Scenarios
 

Recently uploaded

Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 

Recently uploaded (20)

Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 

UC Davis gyrotron cavity simulation

  • 1. TE0,2,1 mode S =2, Vb = 30 kV, alpha = 2.57, velocity spread = 0% Rc / Rw = 0.3268, Rw = 0.3571 cm L rw 2 3 4 5 6 7 8 9 10 0 1x10 5 2x10 5 3x10 5 4x10 5 5x10 5 L / rw beamefficiency(%) 0 10 20 30 40 QPb(kW)
  • 2. Rw = 0.3571 cm Vb = 30 kV, alpha = 2.57, Bz0 = 17.4 kG -20 -10 0 10 20 0 20 40 60 80 100 120 140 160 TE13 TE32 TE61 TE02 (operating mode) TE22 TE51 TE12 TE31 TE01TE21 S = 2 frequency(GHz) kz (cm -1 ) S = 1 TE11
  • 3. (1) Do QPVSB runs with the ideal cavity parameters you used to run for Larry's TE02, s=2 design Previous parameters: Rw = 0.3571 cm, L/ Rw = 6, Rc / Rw = 0.3268 Vb = 30 kV, alpha = 2.57, delta = -10 ~ 20 Operation mode TE021 S=2 -10 -5 0 5 10 15 20 0.0 2.0x10 4 4.0x10 4 6.0x10 4 8.0x10 4 1.0x10 5 TE(2) 022 TE(2) 025 TE(2) 023 TE(2) 024 TE(1) 115 TE(2) 022 TE(1) 214 TE(1) 213 TE(1) 212 delta QP(kW) TE(2) 021 16.8 17.2 17.6 18.0 0.0 2.0x10 4 4.0x10 4 6.0x10 4 8.0x10 4 1.0x10 5 TE(1) 115 TE(2) 025 TE(2) 024 TE(2) 023 TE(2) 022 TE(2) 022 TE(1) 214 TE(1) 213 QP(kW) B (kG) TE(2) 021TE(1) 212
  • 4. (2) Let Vb =30 kV, Rc= 1.26 mm, alpha= 2.0, dVz/Vz = 5%, ismain =2, immain=0, inmain =2, ilmain=1, dmin=-10, dmax= 20 Rw = 0.3571 cm, L/ Rw = 6, Rc / Rw = 0.3528, velocity spread = 5% Vb = 30 kV, alpha = 2.0, delta = -10 ~ 20 Operation mode TE021 S=2 -10 -5 0 5 10 15 20 0.0 2.0x10 4 4.0x10 4 6.0x10 4 8.0x10 4 1.0x10 5 TE(2) 022 TE(1) 215 TE(2) 023 TE(2) 024 TE(1) 115 TE(2) 022 TE(1) 214 TE(1) 213 TE(1) 212 delta QP(kW) TE(2) 021 16.8 17.2 17.6 18.0 0.0 2.0x10 4 4.0x10 4 6.0x10 4 8.0x10 4 1.0x10 5 TE(1) 115 TE(1) 215 TE(2) 024 TE(2) 023 TE(2) 022 TE(2) 022 TE(1) 214 TE(1) 213 QP(kW) B (kG) TE(2) 021TE(1) 212
  • 5. Electron-wave resonance lines for the S=1 ~ S=3 Rw = 0.3571 cm, Vb = 30 kV, alpha = 2.0, Bz0 = 17.5 kG Operation mode TE021 S=2 -20 -10 0 10 20 20 40 60 80 100 120 140 160 180 TE14 TE33TE91 TE52TE03 TE23TE81 TE42 TE71TE13 TE32 TE61 TE02TE22 TE51 TE12TE41 S = 3 S = 2 S = 1 TE31 TE01 TE21 TE11 kz (cm-1 ) frequency(GHz)
  • 6. (1) Do QPVSB runs with the ideal cavity parameters you used to run for Larry's TE02, s=2 design Previous parameters: Rw = 0.3571 cm, L/ Rw = 6, Rc / Rw = 0.3268, velocity spread = 0% Vb = 30 kV, alpha = 2.57, delta = -10 ~ 20 Operation mode TE021 S=2 16.8 17.2 17.6 18.0 0.0 5.0x10 5 1.0x10 6 1.5x10 6 2.0x10 6 TE(1) 115TE(1) 214 TE(1) 213 TE(1) 212 TE(2) 226 TE(2) 225 TE(2) 224 TE(2) 224 TE(2) 223 TE(2) 223 TE(2) 222TE(2) 222 TE(2) 221 TE(2) 516 TE(2) 515 TE(2) 515 TE(2) 514 TE(2) 513 TE(2) 512 TE(2) 025 TE(2) 024 TE(2) 023 TE(2) 022 TE(2) 022 TE(2) 021 TE(3) 426 TE(3) 425 TE(3) 236 TE(3) 236 TE(3) 235TE(3) 235 TE(3) 234 TE(3) 234 TE(3) 233 TE(3) 233 TE(3) 232 TE(3) 232TE(3) 231 TE(3) 036 TE(3) 035 TE(3) 035 TE(3) 034 TE(3) 034 TE(3) 033 TE(3) 033 TE(3) 032 TE(3) 032TE(3) 031 TE(3) 526 TE(3) 525TE(3) 524 TE(3) 523 TE(3) 523 TE(3) 522 TE(3) 521 B (kG) QP(kW) 17.0 17.2 17.4 17.6 17.8 18.0 0.0 2.0x10 5 4.0x10 5 6.0x10 5 8.0x10 5 1.0x10 6 TE(1) 115 TE(1) 214 TE(1) 213 TE(2) 226 TE(2) 225 TE(2) 224 TE(2) 223 TE(2) 222 TE(2) 516 TE(2) 514 TE(2) 513 TE(2) 025 TE(2) 024 TE(2) 023 TE(2) 022 TE(2) 022 TE(2) 021 TE(3) 426 TE(3) 235 TE(3) 234 TE(3) 233 TE(3) 232 TE(3) 036TE(3) 035 TE(3) 034 TE(3) 034 TE(3) 033 TE(3) 033 TE(3) 032 TE(3) 032 TE(3) 031 TE(3) 526 TE(3) 525 TE(3) 524 TE(3) 522 TE(3) 522 TE(3) 523 TE(3) 521 B (kG) QP(kW)
  • 7. 16.8 17.2 17.6 18.0 0 1x10 5 2x10 5 3x10 5 4x10 5 5x10 5 TE(2) 223 TE(2) 223 TE(2) 222 TE(2) 222 TE(2) 221 TE(2) 515TE(2) 514 TE(2) 022 TE(2) 426 TE(3) 526 TE(3) 523 TE(3) 036 TE(3) 035 TE(3) 035 TE(3) 034 TE(3) 034 TE(3) 033 TE(3) 033 TE(3) 032 TE(1) 115TE(1) 214 TE(1) 213 TE(1) 212 TE(2) 425 TE(2) 516 TE(2) 515 TE(2) 513 TE(3) 031 TE(2) 512 TE(2) 025 TE(2) 024TE(2) 023 TE(2) 022 TE(3) 032 TE(3) 524 TE(3) 523 TE(3) 522 TE(3) 525 TE(3) 521 TE(2) 021 B (kG) QP(kW) 16.8 17.2 17.6 18.0 0.0 2.0x10 4 4.0x10 4 6.0x10 4 8.0x10 4 1.0x10 5 TE(1) 115 TE(2) 025 TE(2) 024 TE(2) 023 TE(2) 022 TE(2) 022 TE(1) 214 TE(1) 213 QP(kW) B (kG) TE(2) 021TE(1) 212
  • 8. (2) Let Vb =30 kV, Rc= 1.26 mm, alpha= 2.0, dVz/Vz = 5%, ismain =2, immain=0, inmain =2, ilmain=1, dmin=-10, dmax= 20 Rw = 0.3571 cm, L/ Rw = 6, Rc / Rw = 0.3528, velocity spread = 5% Vb = 30 kV, alpha = 2.0, delta = -10 ~ 20 Operation mode TE021 S=2 16.4 16.8 17.2 17.6 18.0 0.0 5.0x10 5 1.0x10 6 1.5x10 6 2.0x10 6 TE(1) 115 TE(1) 215 TE(1) 214 TE(1) 213 TE(1) 212 TE(2) 416 TE(2) 126 TE(2) 516 TE(2) 515 TE(2) 515 TE(2) 514 TE(2) 513 TE(2) 512 TE(2) 026 TE(2) 025 TE(2) 024 TE(2) 023 TE(2) 022 TE(2) 022 TE(2) 021 TE(3) 424 TE(3) 036 TE(3) 035 TE(3) 035 TE(3) 034 TE(3) 034 TE(3) 033 TE(3) 033 TE(3) 032 TE(3) 032TE(3) 031 TE(3) 526 TE(3) 525 TE(3) 524 TE(3) 523 TE(3) 523 TE(3) 522 TE(3) 521 B (kG) QP(kW) 17.0 17.2 17.4 17.6 17.8 18.0 0.0 2.0x10 5 4.0x10 5 6.0x10 5 8.0x10 5 1.0x10 6 TE(1) 115 TE(1) 215 TE(1) 214 TE(1) 213 TE(2) 514 TE(2) 513 TE(2) 026 TE(2) 025TE(2) 024 TE(2) 023 TE(2) 022 TE(2) 022 TE(3) 036 TE(3) 034TE(3) 033TE(3) 032 TE(3) 031 TE(3) 526 TE(3) 525 TE(3) 524TE(3) 523 TE(3) 522 TE(3) 522 TE(3) 521 TE(2) 021 B (kG) QP(kW)
  • 9. 16.5 17.0 17.5 18.0 0 1x10 5 2x10 5 3x10 5 4x10 5 5x10 5 TE(1) 115 TE(1) 215 TE(1) 214 TE(1) 213 TE(1) 212 TE(2) 416 TE(2) 126 TE(2) 516 TE(2) 515 TE(2) 515 TE(2) 514 TE(2) 513 TE(2) 512 TE(2) 026 TE(2) 025 TE(2) 024 TE(2) 023 TE(2) 022 TE(2) 022 TE(3) 032 TE(3) 524 TE(3) 523 TE(3) 523 TE(3) 522 TE(3) 522 TE(3) 521 TE(2) 021 B (kG) QP(kW) 16.8 17.2 17.6 18.0 0.0 2.0x10 4 4.0x10 4 6.0x10 4 8.0x10 4 1.0x10 5 TE(1) 115 TE(1) 215 TE(2) 024 TE(2) 023 TE(2) 022 TE(2) 022 TE(1) 214 TE(1) 213 QP(kW) B (kG) TE(2) 021TE(1) 212
  • 10. Structure (all dimension in cm) 0 1 2 3 4 0.0 0.1 0.2 0.3 0.4 0.5 3.9855 cm 0.4077r1 = 0.35 0.3571 12.3 0.1355 0.3 0.15 Rw(cm) Z (cm) 0.1 Parameters Table.1. (cavity dimensions shown above) Vb = 35kV, alpha = 2.0, dVz/Vz = 6 %, Rc/Rw = 0.3192, and / 1Cu   in all structure section. Operation mode: (2) 021TE
  • 11. Use the stationary self-consistent code(parameters as in Table.1) to estimate the start oscillation current vs B(uniform) for each competition mode. 8 10 12 14 16 18 20 22 0 10 20 30 40 50 TE(2) 5,1 TE(2) 2,2 TE(1) 1,1 TE(1) 2,1 TE(2) 0,2 B (kG) Ist(A) 16 17 18 19 20 0 2 4 6 8 10 TE(2) 5,1 TE(2) 2,2 TE(1) 1,1 TE(1) 2,1 TE(2) 0,2 B (kG) Ist(A)
  • 12. The corresponding hot f and hot Q vs B (Hot Q defined in Sec. III-B of S. H. Kao, C. C. Chiu, P. C. Chang, K. L. Wu, and K. R. Chu, “Harmonic Mode Competition in a THz Gyrotron Backward-Wave Oscillator,” Phys. Plasmas 19, 103103 (2012).) 17.5 18.0 18.5 19.0 19.5 20.0 90 92 94 96 98 100 102 104 B (kG)  = 3  = 2  = 1 0 1000 2000 3000 4000 5000 TE(2) 0,2 Hotf(GHz) HotQ 10 12 14 16 18 20 20 25 30 35 40 45 50 Hotf(GHz) 20 40 60 80 100 120 TE(1) 1,1 B (kG) HotQ
  • 13. 15 16 17 18 19 20 40 42 44 46 48 50 TE(1) 2,1 B (kG) Hotf(GHz) HotQ 0 100 200 300 400 17 18 19 20 88 90 92 94 96 98 100 0 1000 2000 3000 4000 5000 TE(2) 2,2 HotQ Hotf(GHz) B (kG) 16 17 18 19 20 85 90 95 100 0 500 1000 1500 2000 2500 3000 TE(2) 5,1 HotQ B (kG) Hotf(GHz)
  • 14. Change r1 to see the trend of the Ist vs B r1 = 0.35 cm 15 16 17 18 19 20 0 2 4 6 8 10 TE(2) 5,1 TE(2) 2,2 TE(1) 1,1 TE(1) 2,1 TE(2) 0,2 B (kG) Ist(A) r1 = 0.3 cm 15 16 17 18 19 20 0 2 4 6 8 10 TE(2) 5,1 TE(1) 1,1 TE(1) 2,1 TE(2) 0,2 B (kG) Ist(A) r1 = 0.25 cm 15 16 17 18 19 20 0 2 4 6 8 10 TE(2) 5,1 TE(1) 1,1 TE(1) 2,1 TE(2) 0,2 B (kG) Ist(A)
  • 15. Using stationary self-consistent code to determined efficiency and forward wave power choose r1 = 0.35 cm, B = 17.78 kG (the magnetic field corresponding to the lowest Ist) other parameters are the same as in Table.1. 0 2 4 6 8 10 12 93.90 93.92 93.94 93.96 93.98 94.00 94.02 94.04 94.06 TE(2) 0,2 Ib (A) Frequency(GHz) 0 1 2 3 4 5 6 7 8 9 10 11 12 0 5 10 15 20 25 30 35 40 TE(2) 0,2 backward wave power Ib (A) power(kW) forward wave power TE (2) 02 Ist 0.93 A 1.51 A TE (1) 21 Ist TE (1) 11 Ist 2.76 A 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 TE(2) 0,2 TE (2) 02 Ist 0.93 A 1.51 A TE (1) 21 Ist TE (1) 11 Ist backward wave efficiency forward wave efficiency Efficiency(%) Ib (A)2.76 A
  • 16. choose r1 = 0.35 cm, Ib = 5A, tune B-field, other parameters are the same as in Table.1. 17.6 17.8 18.0 18.2 18.4 18.6 93.8 94.0 94.2 94.4 94.6 94.8 95.0 95.2 95.4 95.6 Frequency(GHz) B (kG) 17.4 17.6 17.8 18.0 18.2 18.4 18.6 0 10 20 30 40 50 60 70 backward wave power forward wave power power(kW) B (kG) 17.4 17.6 17.8 18.0 18.2 18.4 18.6 0 5 10 15 20 25 30 35 40 backward wave efficiency forward wave efficiency Efficiency(%) B (kG)
  • 17. Using stationary self-consistent code to determined efficiency and forward wave power choose r1 = 0.3 cm, B = 17.78 kG (the magnetic field corresponding to the lowest Ist) other parameters are the same as in Table.1. 0 2 4 6 8 10 12 93.94 93.96 93.98 94.00 94.02 94.04 94.06 94.08 TE(2) 0,2 Ib (A) Frequency(GHz) 0 1 2 3 4 5 6 7 8 9 10 11 12 0 5 10 15 20 25 30 35 40 TE(2) 0,2 backward wave power~0 Ib (A) power(kW) forward wave power TE (2) 02 Ist 1.25 A 1.78 A TE (1) 21 Ist TE (1) 11 Ist 2.75 A 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 TE(2) 0,2 TE (2) 02 Ist 1.25 A 1.78 A TE (1) 21 Ist TE (1) 11 Ist backward wave efficiency~0 forward wave efficiency Efficiency(%) Ib (A)2.75 A
  • 18. choose r1 = 0.3 cm, Ib = 5A, tune B-field, other parameters are the same as in Table.1. 17.4 17.6 17.8 18.0 18.2 18.4 18.6 93.8 94.0 94.2 94.4 94.6 94.8 95.0 TE(2) 0,2 Frequency(GHz) B (kG) 17.4 17.6 17.8 18.0 18.2 18.4 18.6 0 10 20 30 40 50 60 70 TE(2) 0,2 backward wave power forward wave power power(kW) B (kG) 17.4 17.6 17.8 18.0 18.2 18.4 18.6 0 5 10 15 20 25 30 35 40 TE(2) 0,2 backward wave efficiency forward wave efficiency Efficiency(%) B (kG)
  • 19. Mode Competition Criteria Ref.: S. H. Kao, C. C. Chiu, P. C. Chang, K. L. Wu, and K. R. Chu, “Harmonic Mode Competition in a THz Gyrotron Backward-Wave Oscillator,” Phys. Plasmas 19, 103103 (2012). The mode competition processes examined in the above reference (Sec. IV-C) consistently follow three criteria: (1) The presence of the s = 2 mode enhances the Ist of the competing modes. For example, in Fig. 4(d-f), the s = 2 mode enhances the linear Ist of the lowest-kz, s = 1 mode by a factor of 2.63, 2.14, and 1.63, respectively. As can be seen from the figures, the enhancement factor is larger for a higher-amplitude s = 2 mode. As shown in [30], the enhancement factor can be as large as 15 if the competing mode is a high-kz, s = 1 mode. Clearly, this criterion also applies to an early-starting mode of any cyclotron harmonic number. (2) The early-starting s = 2 mode is eventually suppressed by an s = 1 mode because of the unfavorable evolution of the s = 2 coupling coefficient. This is a criterion that gives a lower-s mode a dominant advantage over a higher-s mode. (3) Among the s = 1 modes, the one with the lowest kz (instead of the lowest Ist) has a competitive advantage. This criterion plays an insignificant role in an s = 1 gyrotron because one can always tune the magnetic field to favor a low-kz (e.g. 1 ) mode. However, it governs the competition among the s = 1 modes when the magnetic field is tuned in favor of an s>1 mode as in the present case. For the reason discussed at the end of Sec. IV-A, this criterion can be generalized to the competition between any two modes, with the same or different cyclotron harmonic numbers. In multiple-mode competitions, more than one criterion may be at work. In this case, all three criteria could work in favor of one mode (e.g. an early-starting, low-kz, s = 1 mode) or two criteria play opposing roles [e.g. an early-starting, low-kz, s = 2 mode competing with a low-kz, s = 1 mode with a higher Ist, as in Fig. 4(d-f)]. One criterion does not necessarily override an opposing one. The outcome of the competition depends on the relative weight of the criteria, which in turn depends on the relative magnitude of kz, the separation of Ist of the modes involved, as well as the peak Ib value. Hence, a clearer picture lies in the details in the Ist versus B chart. Although criteria (1) and (3) do not bias a particular cyclotron harmonic number, criterion (2) is inherently in favor of a lower-s mode. Thus, overall, a higher-s mode is much more likely to be suppressed by a lower-s mode, as in Fig. 4(d-f) and [13, 14, 16, 19, 20, 30, 31].
  • 20. Analysis of the case inTable I (r1 = 0.35 cm, Vb=35 kV, α=2, Δvz/vz=6%, Rc/Rw=0.3192, uniform B-field, etc.) 1. At B = 17.78 kG, as Ib rises to 0.93 A, the TE02 (s=2) mode will be the first mode excited. It will remain in single-mode operation until Ib=1.51 A (Pout ~3 kW, η~5.7%) which is the linear Ist of the TE21 (s=1) mode. As Ib rises further to Ib=2.76 A, it hits the linear Ist of the TE11 (s=1) mode. We have assumed α=2 for all Ib. 2. In the competition between the early-starting, low-kz,TE02 (s=2) mode and the two, higher-kz, s=1 modes, Criteria (1) and (3) favor the TE02 (s=2) mode, while Criterion (2) favors the s=1 modes. By Criteria (1) and (3), it is likely that the TE02 (s=2) mode can survive up to Ib~2.5 A (Pout~7.5 kW, η~8.7%) before it is eventually suppressed by the TE21 (s=1) mode. By Criterion (3), the highest-kz, TE11 (s=1) is less competitive than the TE21 (s=1) mode. 3. If Criteria (1) and (3) dominate over Criterion (2) at still higher Ib (e.g. 5A), the TE02 (s=2) mode may remain in single mode operation with significantly higher Pout (e.g. Pout ~18 kW and η~10.3% at Ib~5 A). 4. From cases studied in the above reference, it is unlikely that the TE02 (s=2) mode can operate at a more optimal B-field (e.g. 17.6 kG) by suppressing the early-starting TE21 (s=1) mode. Scenario 2 is reasonable, but Scenario 3 may be too optimistic. Unfortunately, no one here knows how to run our time-dependent, multi-mode code to verify Scenarios 2 and 3. It will take ~2 months to get one data point anyway.