SlideShare a Scribd company logo
1 of 34
Download to read offline
EECS 242:
Receiver Architectures
Outline
 Complex baseband equivalent of a bandpass signal
 Double-conversion single-quadrature (Superheterodyne)
 Direct-conversion (Single-conversion single-quad,
homodyne, zero-IF)
 Weaver; Double-conversion double-quad
 Low-IF
 References
EECS 242
Complex Baseband
 Any passband waveform can be written in the following form:
EECS 242
sp(t) = a(t) cos [ωct + θ(t)]
sp(t) = a(t) cos ωct cos θ(t) − a(t) sin ωct sin θ(t)
sp(t) =
√
2sc(t) cos ωct −
√
2ss(t) sin ωct
sc(t) ! a(t) cos θ(t) = I(t) ss(t) ! a(t) sin θ(t) = Q(t)
a(t) = |s(t)| =
!
s2
c(t) + s2
s(t) θ(t) = tan−1 ss(t)
sc(t)
s(t) = sc(t) + jss(t) = I(t) + jQ(t)
sp(t) = Re
!√
2s(t)ejωct
"
 We define the complex baseband signal and show that all operations at
passband have a simple equivalent at complex baseband:
||s||=
||sp||2
Orthogonality I/Q
 An important relationship is the orthogonality between the modulated I
and Q signals. This can be proved as follows (Parseval’s Relation):
EECS 242
xc(t) =
√
2sc(t) cos ωct xs(t) =
√
2ss(t) sin ωct
< xc, xs >=< Xc, Xs >= 0 < Xc, Xs >=
! ∞
−∞
Xc(f)X∗
s (f)df
cos θ =
1
2
(ejθ
+ e−jθ
)
xc(t) =
1
√
2
(sc(t)ejωct
+ sc(t)e−jωct
) Xc(f) =
1
√
2
(Sc(f − fc) + Sc(f + fc))
Xs(f) =
1
√
2j
(Ss(f − fc) − Ss(f + fc))
< Xc, Xs >=
1
2j
! ∞
−∞
((Sc(f − fc) + Sc(f + fc)) × (S∗
s (f − fc) − S∗
s (f + fc))) df
Orthogonality (Freq. Dom.)
 In the above integral, if the carrier frequency is larger than
the signal bandwidth, then the frequency shifted signals do
not overlap
EECS 242
Sc(f − fc)S∗
s (f + fc) ≡ 0
Sc(f + fc)S∗
s (f − fc) ≡ 0
< Xc, Xs >=
1
2j
!" ∞
−∞
Sc(f − fc)S∗
s (f − fc)df −
" ∞
−∞
Sc(f + fc)S∗
s (f + fc)df
#
< Xc, Xs >=
1
2j
!" ∞
−∞
Sc(f)S∗
s (f)df −
" ∞
−∞
Sc(f)S∗
s (f)df
#
= 0
 Due to this orthogonality, we can double the bandwidth of
our signal my modulating the I and Q independently.
Also, we have
< up, vp >=< uc, vc > + < us, vs >= Re (< u, v >)
Complex Baseband Spectrum
 Since the passband signal is real, it has a conjugate symmetric
spectrum about the origin. Let’s define the positive portion as follows:
EECS 242
S+
p (f) = Sp(f)u(f)
S(f) =
√
2S+
p (f + fc) Sp(f) =
S(f − fc) + S∗
(−f − fc)
√
2
v(t) =
√
2s(t)ejωct
V (f) =
√
2S(f − fc)
Sp(t) = Re(v(t)) =
v(t) + v(t)∗
2
Sp(f) =
V (f) + V ∗
(−f)
2
=
S(f − fc) + S∗
(−f − fc)
√
2
 Then the spectrum of the passband and baseband complex signal are
related by:
 Since:
The Image Problem
 After low-pass filtering the mixer output, the IF is given by
LNA
LO
IF IF
IF
mr(t) cos(ωLO+ωIF )t×cos(ωLO)t =
1
2
mr(t) (cos(2ωLO + ωIF )t + cos(ωIF )t)
mi(t) cos(ωLO−ωIF )t×cos(ωLO)t =
1
2
mi(t) (cos(2ωLO − ωIF )t + cos(ωIF )t)
IFoutput =
1
2
(mi(t) + mr(t)) cos(ωIF )t
EECS 242
Image Problem (Freq Dom)
 Complex modulation shifts in only one direction … real
modulation shifts up and down
EECS 242
RF+
(ω)
RF−
(ω) RF+
(ω − ω0)
RF+
(ω + ω0)
IM+
(ω)
IM−
(ω)
IM+
(ω − ω0)
IM−
(ω + ω0)
LO
−LO
IF
−IF
ejωLOt
e−jωLOt
RF−
(ω − ω0)
IM−
(ω − ω0)
LO
LO
−LO
−LO
IM−
(ω)
ejωLOt
e−jωLOt
RF−
(ω) RF−
(ω + ω0) RF+
(ω)
IM+
(ω) IM+
(ω + ω0)
Complex Modulation (Positive Frequency)
Complex Modulation (Positive Frequency)
Real Modulation
Superheterodyne Architecture
 The choice of the IF frequency dictated by:
 If the IF is set too low, then we require a very high-Q image reject
filter, which introduces more loss and therefore higher noise figure
in the receiver (not to mention cost).
 If the IF is set too high, then subsequent stages consume more
power (VGA and filters)
 Typical IF frequency is 100-200 MHz.
LNA
Off chip
Passive
BPF
Image
Filter
IF
Filter
EECS 242
LO Planning in Superhet
 Two separate VCOs and synthesizers are used. The IF LO is fixed, while the
RF LO is variable to down-convert the desired channel to the passband of
the IF filter (SAW).
 This typically results in a 3-4 chip solution with many off-chip components.
 LO1 should never be made close to an integer multiple of LO2 for any
channel. The Nth harmonic of the the fixed LO2 could leak into the RF
mixer and cause unwanted mixing.
LNA
Off chip
Passive
BPF
Image
Filter
IF
Filter
PLL1
LO1
PLL2
LO2
I
Q
IF
IF
LO2 LO1
n LO2
IF
nLO2 leaks
into RF mixer
EECS 242
The ½ IF Problem
 Assume that there is a blocker half-way between the LO
and the desired channel. Due to second-order non-linearity
in the RF front-end:
EECS 242
!
mblocker(t) cos(ωLO +
1
2
ωIF )t
"2
= (mblocker(t))2
+ (mblocker(t))2
) cos(2ωLO + ωIF )t
 If the LO has a second-order component, then this signal
will fold right on top of the desired signal at IF:
IF
LO
IF
½ IF
!
(mblocker(t))2
) cos(2ωLO + ωIF )t
"
cos(2ωLO)t = (mblocker(t))2
cos(ωIF )t + · · ·
Note: Bandwidth expansion of blocker due to squaring operation.
Half-IF Continued
 If the IF stage has strong second-order non-linearity, then
the half-IF problem occurs through this mechanism:
EECS 242
IF
DC
½ IF
IF
DC
½ IF
2
!
mblocker(t) cos(
1
2
ωIF )t
"2
= (mblocker(t))2
+ (mblocker(t))2
cos(ωIF )t
 This highlights the importance of frequency planning. One
should select the IF by making sure that there is no strong
half-IF blocker. If one exists, then the second-order non-
linearity must be carefully managed.
Dual-Conversion Single-Quad
 Disadvantages:
 Requires bulky off-chip SAW filters
 As before, two synthesizers are required
 Typically a three chip solution (RF, IF, and Synth)
 Advantages:
 Robust. The clear choice for extremely high sensitivity radios
 High dynamic range SAW filter reduces/relaxes burden on active
circuits. This makes it much easier to design the active circuitry.
 By the same token, the power consumption is lower (< 25mA)
EECS 242
LNA
Off chip
Passive
BPF
Image
Filter
IF
Filter
PLL1
LO1
PLL2
LO2
I
Q
Complex Mixer
 A complex mixer is derived by simple substitution.
 Note that a complex exponential only introduces a
frequency shift in one direction (no image rejection
problems).
EECS 242
+
+
+
–
+
+
Hilbert Architecture
 Image suppression by proper phase shifting.
EECS 242
+
90
IF
90
A
B
C
LNA
RF = mr(t) cos(ωLO + ωIF )t + mi(t) cos(ωLO − ωIF )t
A = RF × cos(ωLOt) =
1
2
mr(t) (cos(2ωLO + ωIF )t + cos(ωIF )t) +
1
2
mi(t) (cos(2ωLO − ωIF )t + cos(ωIF )t)
B = RF × sin(ωLOt) =
1
2
mr(t) (sin(2ωLO + ωIF )t − sin(ωIF )t) +
1
2
mi(t) (sin(2ωLO − ωIF )t + sin(ωIF )t)
C =
1
2
mr(t) (− cos(2ωLO + ωIF )t + cos(ωIF )t) +
1
2
mi(t) (− cos(2ωLO − ωIF )t − cos(ωIF )t)
IF+
= A + C = mr(t) cos(ωIF t)
IF−
= A − C = mi(t) cos(ωIF t)
Sine/Cosine Together
 Since the sine treats positive/negative frequencies
differently (above/below LO), we can exploit this behavior
 A 90° phase shift is needed to eliminate the image
 90° phase shift equivalent to multiply by –j sign(f)
EECS 242
IF
−IF LO
−LO
IF
−IF LO
−LO
Cosine Modulation
Sine Modulation
IF
−IF LO
−LO
Delayed Sine Modulation
/j
/j
/j
/j
Hilbert Implementation
 Advantages:
 Remove the external image-reject SAW filter
 Better integration
 Requires extremely good matching of components (paths
gain/phase). Without trimming/calibration, only ~40dB
image rejection is possible. Many applications require
60dB or more.
 Power hungry (more mixers and higher cap loading).
EECS 242
+
135
IF
A
B
C
45
135
45
D
LNA
Note: A real
implementation
uses 45/135 degree
phase shifters for
better matching/
tracking.
Gain/Phase Imbalance
IF = mr(t)
!
cos(ωIF t) cos(
φ
2
) − α sin(ωIF t) sin(
φ
2
)

+ mi(t)
!
α cos(ωIF t) cos(
φ
2
) − sin(ωIF t) sin(
φ
2
)

EECS 242
A = RF × (1 + α) cos(ωLOt +
φ
2
) =
1
2 mr(t)(1 + α)
!
cos(2ωLOt + ωIF t + φ
2 ) + cos(ωIF t − φ
2 )

+
1
2 mi(t)(1 + α)
!
cos(2ωLOt − ωIF t + φ
2 ) + cos(ωIF t + φ
2 )

B = RF × (1 − α) cos(ωLOt −
φ
2
) =
1
2 mr(t)(1 − α)
!
sin(2ωLOt + ωIF t − φ
2 ) − sin(ωIF t − φ
2 )

+
1
2 mi(t)(1 − α)
!
sin(2ωLOt − ωIF t − φ
2 ) + sin(ωIF t − φ
2 )

C =
1
2 mr(t)(1 − α)
!
− cos(2ωLOt + ωIF t − φ
2 ) + cos(ωIF t − φ
2 )

+
1
2 mi(t)(1 − α)
!
− cos(2ωLOt − ωIF t − φ
2 ) − cos(ωIF t − φ
2 )

IF = A + C =
mr(t)
2
!
(1 + α) cos(ωIF t −
φ
2
) + (1 − α) cos(ωIF t +
φ
2
)

+
mi(t)
2
!
(1 + α) cos(ωIF t +
φ
2
) − (1 − α) cos(ωIF t −
φ
2
)
Image-Reject Ratio
 Level of image rejection depends on amplitude/phase
mismatch
 Typical op-chip values of 30-40 dB achieved ( 5°,  0.6
dB)
EECS 242
IR(dB) = 10 log
!
cos φ
2 − α sin φ
2
α cos φ
2 + sin φ
2
2
0 1 2 3 4
0
2
4
6
8
10
RF/IF Phase Shift, Fixed LO
 This requires a 90 degree phase shift across the band. It’s
much easier to shift the phase of a single frequency (LO).
 Polyphase filters can be used to do this, but a broadband
implementation requires many stages (high loss)
EECS 242
+
90
IF
90
A
B
LNA
A’
RF
RF’
–
Weaver Architecture
 Eliminates the need for a phase shift in the signal path.
Easier to implement phase shift in the LO path.
 Can use a pair of quadrature VCOs. Requires 4X mixers!
 Sensitive to second image.
EECS 242
RF = mr(t) cos(ωLO1
+ ωIF1
)t + mi(t) cos(ωLO1
− ωIF1
)t
IF1 = LO1 − RF
IF = LO2 − IF1 = LO2 − LO1 + RF = RF − (LO1 − LO2)
ALP F = cos ωLO1
t × RF =
mr
2
cos(ωIF1
)t +
mi
2
cos(ωIF1
)t
BLP F = sin ωLO1
t × RF = −
mr
2
sin(ωIF1
)t +
mi
2
sin(ωIF1
)t
CLP F = A × cos ωLO2t =
mr
4
cos(ωIF )t +
mi
4
cos(ωIF )t
DLP F = B × sin ωLO2t = −
mr
4
cos(ωIF )t +
mi
4
cos(ωIF )t
IF = C − D =
mr
2
cos ωIF t
+
90
90
IF
A
B
LNA
RF
C
D
LO1 LO2 –
+
Direct Conversion (Zero-IF)
 The most obvious choice of LO is the RF frequency, right?
IF = LO – RF = DC?
 Why not?
 Even though the signal is its own image, if a complex
modulation is used, the complex envelope is asymmetric
and thus there is a “mangling” of the signal
EECS 242
LNA
LO
RF
DC
DC
Let ωRF = ωLO = ω0
mr(t) cos(ωRF )t × cos(ωLO)t =
1
2
mr(t) (1 + cos(2ω0)t)
Direct Conversion (cont)
 Use orthogonal mixing to prevent signal folding and retain
both I and Q for complex demodulation (e.g. QPSK or
QAM)
 Since the image and the signal are the same, the image-
reject requirements are relaxed (it’s an SNR hit, so
typically 20-25 dB is adequate)
EECS 242
90
LNA
I
Q
Problems with Zero-IF
 Self-mixing of the LO signal is a big concern.
 LO self-mixing degrades the SNR. The signal that reflects
from the antenna and is gained up appears at the input of
the mixer and mixes down to DC.
 If the reflected signal varies in time, say due to a changing
VSWR on the antenna, then the DC offset is time-varying
EECS 242
90
LNA
I
Q
LO = p(t) cos(ωLOt + φ(t))
LO × LO = p(t)2
+ p(t)2
cos(2ωLOt + 2φ(t))
DC
Dynamic DC
Offset
DC Offset
 DC offsets that appear at the baseband experience a large
gain. This signal can easily saturate out the receive chain.
 A large AC coupling capacitor or a programmable DC-
offset cancellation loop is required. The HPF corner
should be low (kHz), which requires a large capacitor.
 Any transients require a large settling time as a result.
EECS 242
90
LNA
I
Q
60 dB Gain
1mV Offset 1V Offset
Sensitivity to 2nd Order Disto
 Assume two jammers have a frequency separation of Δf:
EECS 242
s1 = m1(t) cos(ω1t)
s2 = m2(t) cos(ω1t + ∆ωt)
(s1 + s2)2
= (m1(t) cos ω1t)2
+ (m2(t) cos ω2t)2
+ 2m1(t)m2(t) cos(ω1t) cos(ω1 + ∆ω)t
LPF{(s1 + s2)2
} = m1(t)2
+ m2(t)2
+ m1(t)m2(t) cos(∆ω)t
 The two produce distortion at DC. The modulation of the
jammers gets doubled in bandwidth.
 If the jammers are close together, then their inter-
modulation can also fall into the band of the receiver.
 Even if it is out of band, it may be large enough to saturate
the receiver.
Sensitivity to 1/f Noise
 Since the IF is at DC, any low frequency noise, such as 1/f
noise, is particularly harmful.
 CMOS has much higher 1/f noise, which requires careful
device sizing to ensure good operation.
 Many cellular systems are narrowband and the entire
baseband may fall into the 1/f regime!
EECS 242
Noise
Density
1/f Slope, 20dB/dec
1kHz
10
kHz
100
kHz
200
kHz
ni
2
100 ni
2
Example: GSM has a 200 kHz bandwidth. Suppose
that the flicker corner frequency is 100 kHz. The in-
band noise degradation is thus:
v2
ave =
1
200kHz
! 100kHz
1kHz
a
f
df +
! 200kHz
100kHz
bdf
a = 1kHz · 100 · v2
i b = v2
i
v2
ave =
1
200kHz
!
a ln
100k
1k
+ b(200k − 100k)

=
1
200kHz
(11.5a + 100kb) = 6.25v2
i
Low IF Architecture
 Instead of going to DC, go a low IF, low enough so that
the IF circuitry and filters can be implemented on-chip, yet
high enough to avoid problems around DC (flicker noise,
offsets, etc). Typical IF is twice the signal bandwidth.
 The image is rejected through a complex filter.
EECS 242
90
LNA
I
Q
Complex
Image
Reject
Filter
Double-Conversion Double-Quad
 The dual-conversion double-quad architecture has the
advantage of de-sensitizing the receiver gain and phase
imbalance of the I and Q paths.
EECS 242
90
÷
90
+
+
+
–
+
+
I
Q
A
B
C
D
E
F
LNA
Analysis of Double/Double
 Assuming ideal quadrature and no gain errors:
EECS 242
RF = mr(t) cos(ωLO1 + ωLO2 + ωIF )t + mi(t) cos(ωLO1 + ωLO2 − ωIF )t+
A = LPF{RF × cos(ωLO1t)} =
1
2
!
mr(t) cos(ωLO2 + ωIF )t+
mi(t) cos(ωLO2 − ωIF )t
B = LPF{RF × sin(ωLO1t)} =
1
2
!
−mr(t) sin(ωLO2 + ωIF )t
−mi(t) sin(ωLO2 − ωIF )t
C = LPF{A × cos(ωLO2t)} =
1
2
!
mr(t) cos(ωIF )t+
mi(t) cos(ωIF )t
D = LPF{A × sin(ωLO2t)} =
1
2
!
mr(t) sin(ωIF )t+
−mi(t) sin(ωIF )t
E = LPF{B × cos(ωLO2t)} =
1
2
!
mr(t) sin(ωIF )t+
−mi(t) sin(ωIF )t
F = LPF{B × sin(ωLO2t)} =
1
2
!
−mr(t) cos(ωIF )t+
−mi(t) cos(ωIF )t
I = C − F = (mr(t) + mi(t)) cos(ωIF )t
Q = D + E = (mr(t) − mi(t)) sin(ωIF )t
Gain Error Analysis
 The gain mismatch is reduced since due to the product of
two small numbers (amplitude errors).
EECS 242
RF = mr(t) cos(ωLO1 + ωLO2 + ωIF )t + mi(t) cos(ωLO1 + ωLO2 − ωIF )t+
A = LPF{RF ×
!
1 +
∆a1
2

cos(ωLO1t)} =
1
2
!
1 +
∆a1
2
 #
mr(t) cos(ωLO2 + ωIF )t+
mi(t) cos(ωLO2 − ωIF )t
B = LPF{RF ×
!
1 −
∆a1
2

sin(ωLO1t)} =
1
2
!
1 −
∆a1
2
 #
−mr(t) sin(ωLO2 + ωIF )t
−mi(t) sin(ωLO2 − ωIF )t
C = LPF{A ×
!
1 +
∆a2
2

cos(ωLO2t)} =
1
2
!
1 +
∆a1
2
 !
1 +
∆a2
2
 #
mr(t) cos(ωIF )t+
mi(t) cos(ωIF )t
D = LPF{A ×
!
1 −
∆a2
2

sin(ωLO2t)} =
1
2
!
1 +
∆a1
2
 !
1 −
∆a2
2
 #
mr(t) sin(ωIF )t+
−mi(t) sin(ωIF )t
E = LPF{B ×
!
1 +
∆a2
2

cos(ωLO2t)} =
1
2
!
1 −
∆a1
2
 !
1 +
∆a2
2
 #
mr(t) sin(ωIF )t+
−mi(t) sin(ωIF )t
F = LPF{B ×
!
1 −
∆a2
2

sin(ωLO2t)} =
1
2
!
1 −
∆a1
2
 !
1 −
∆a2
2
 #
−mr(t) cos(ωIF )t+
−mi(t) cos(ωIF )t
I = C − F = (1 + ∆a1∆a2)(mr(t) + mi(t)) cos(ωIF )t
Q = D + E = (1 − ∆a1∆a2)(mr(t) − mi(t)) sin(ωIF )t
Phase Error Analysis
 The phase error impacts the I/Q channels in the same way,
and as long as the phase errors are small, it has a minimal
impact on the gain of the I/Q channels.
EECS 242
RF = mr(t) cos(ωLO1 + ωLO2 + ωIF )t + mi(t) cos(ωLO1 + ωLO2 − ωIF )t+
A = LPF{RF × cos(ωLO1t + φ1)} =
1
2
!
mr(t) cos(ωLO2 + ωIF + φ1)t+
mi(t) cos(ωLO2 − ωIF + φ1)t
B = LPF{RF × sin(ωLO1t − φ1)} =
1
2
!
−mr(t) sin(ωLO2 + ωIF − φ1)t
−mi(t) sin(ωLO2 − ωIF − +φ1)t
C = LPF{A × cos(ωLO2t + φ2)} =
1
2
!
mr(t) cos(ωIF + φ1 + φ2)t+
mi(t) cos(ωIF + φ1 + φ2)t
D = LPF{A × sin(ωLO2t − φ2)} =
1
2
!
mr(t) sin(ωIF − φ1 − φ2)t+
−mi(t) sin(ωIF − φ1 − φ2)t
E = LPF{B × cos(ωLO2t + φ2)} =
1
2
!
mr(t) sin(ωIF + φ1 + φ2)t+
−mi(t) sin(ωIF + φ1 + φ2)t
F = LPF{B × sin(ωLO2t − φ2)} =
1
2
!
−mr(t) cos(ωIF − φ1 − φ2)t+
−mi(t) cos(ωIF − φ1 − φ2)t
Q = D + E = (mr(t) − mi(t)) cos(φ1 + φ2) sin(ωIF )t
Double-Quad Low-IF
 Essentially a complex mixer topology. Mix RF I/Q with
LO I/Q to form baseband I/Q
 Improved image rejection due to desensitization to
quadrature gain and phase error.
EECS 242
90
90
+
+
+
–
+
+
I
Q
A
B
C
D
LNA
References
 Fundamental of Digital Communication, U. Madhow, Cambridge 2008
 O. Shana’a, EECS 290C Course Notes, 2005.
 A.A. Abidi, “Radio frequency integrated circuits for portable
communications,” Proc. of CICC, pp. 151-158, May 1994.
 A.A. Abidi, “Direct conversion radio transceivers for digital communications,”
Proc. of ISSCC, pp. 186-187, Feb. 1995.
 J. Crols and M. Steyaert, “A single-chip 900MHz receiver front-end with high
performance low-IF topology,” IEEE JSSC, vol. 30, no. 12, pp. 1483-1492,
Dec. 1995.
 B. Razavi, RF Microelectronics, Prentice Halls, 1998.
 J. Crols, M. Steyaert, CMOS Wireless Transceiver Design, Kluwer Academic
Publishers, 1997.
 Practical RF System Design, Willian F. Egdan, Wiley-IEEE Press, 2003.
EECS 242

More Related Content

Similar to eecs242_lect3_rxarch.pdf

RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureSimen Li
 
Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Jyothirmaye Suneel
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise AmplifierSimen Li
 
AM - Modulator and Demodulator
AM - Modulator and DemodulatorAM - Modulator and Demodulator
AM - Modulator and DemodulatorKannanKrishnana
 
Spacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerSpacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerJim Jenkins
 
Introduction to OFDM.ppt
Introduction to  OFDM.pptIntroduction to  OFDM.ppt
Introduction to OFDM.pptStefan Oprea
 
First order active rc sections hw1
First order active rc sections hw1First order active rc sections hw1
First order active rc sections hw1Hoopeer Hoopeer
 
Wideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdfWideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdfArijitDhali
 
Frequency domain analysis of Linear Time Invariant system
Frequency domain analysis of Linear Time Invariant systemFrequency domain analysis of Linear Time Invariant system
Frequency domain analysis of Linear Time Invariant systemTsegaTeklewold1
 
Digital modulation techniques
Digital modulation techniquesDigital modulation techniques
Digital modulation techniquessrkrishna341
 
Tele3113 wk3wed
Tele3113 wk3wedTele3113 wk3wed
Tele3113 wk3wedVin Voro
 
Malik - Formal Element Report
Malik - Formal Element ReportMalik - Formal Element Report
Malik - Formal Element ReportJunaid Malik
 
Analog communicationintroduction
Analog communicationintroductionAnalog communicationintroduction
Analog communicationintroductionsrilaxmi524
 

Similar to eecs242_lect3_rxarch.pdf (20)

RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver Architecture
 
Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
IMT Advanced
IMT AdvancedIMT Advanced
IMT Advanced
 
AM - Modulator and Demodulator
AM - Modulator and DemodulatorAM - Modulator and Demodulator
AM - Modulator and Demodulator
 
Signal & system
Signal & systemSignal & system
Signal & system
 
Spacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerSpacecraft RF Communications Course Sampler
Spacecraft RF Communications Course Sampler
 
Ph ddefence
Ph ddefencePh ddefence
Ph ddefence
 
Introduction to OFDM.ppt
Introduction to  OFDM.pptIntroduction to  OFDM.ppt
Introduction to OFDM.ppt
 
First order active rc sections hw1
First order active rc sections hw1First order active rc sections hw1
First order active rc sections hw1
 
Wideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdfWideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdf
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulation
 
Frequency domain analysis of Linear Time Invariant system
Frequency domain analysis of Linear Time Invariant systemFrequency domain analysis of Linear Time Invariant system
Frequency domain analysis of Linear Time Invariant system
 
Digital modulation techniques
Digital modulation techniquesDigital modulation techniques
Digital modulation techniques
 
Ece5318 ch4
Ece5318 ch4Ece5318 ch4
Ece5318 ch4
 
E 2017 1
E 2017 1E 2017 1
E 2017 1
 
Tele3113 wk3wed
Tele3113 wk3wedTele3113 wk3wed
Tele3113 wk3wed
 
5th Semeste Electronics and Communication Engineering (June-2016) Question Pa...
5th Semeste Electronics and Communication Engineering (June-2016) Question Pa...5th Semeste Electronics and Communication Engineering (June-2016) Question Pa...
5th Semeste Electronics and Communication Engineering (June-2016) Question Pa...
 
Malik - Formal Element Report
Malik - Formal Element ReportMalik - Formal Element Report
Malik - Formal Element Report
 
Analog communicationintroduction
Analog communicationintroductionAnalog communicationintroduction
Analog communicationintroduction
 

More from NahshonMObiri

pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdfpcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdfNahshonMObiri
 
Lecture 5 - Superheterodyne Receivers.pdf
Lecture 5 - Superheterodyne Receivers.pdfLecture 5 - Superheterodyne Receivers.pdf
Lecture 5 - Superheterodyne Receivers.pdfNahshonMObiri
 
EE303Sp09_L12_Superhet.pdf
EE303Sp09_L12_Superhet.pdfEE303Sp09_L12_Superhet.pdf
EE303Sp09_L12_Superhet.pdfNahshonMObiri
 
section_4B_The_SuperHet_Receiver_package.pdf
section_4B_The_SuperHet_Receiver_package.pdfsection_4B_The_SuperHet_Receiver_package.pdf
section_4B_The_SuperHet_Receiver_package.pdfNahshonMObiri
 
Superheterodyne_Receiver.pdf
Superheterodyne_Receiver.pdfSuperheterodyne_Receiver.pdf
Superheterodyne_Receiver.pdfNahshonMObiri
 

More from NahshonMObiri (7)

pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdfpcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
 
Lecture 5 - Superheterodyne Receivers.pdf
Lecture 5 - Superheterodyne Receivers.pdfLecture 5 - Superheterodyne Receivers.pdf
Lecture 5 - Superheterodyne Receivers.pdf
 
chap4_lec4.ppt
chap4_lec4.pptchap4_lec4.ppt
chap4_lec4.ppt
 
Lec_9_ELG3175.pdf
Lec_9_ELG3175.pdfLec_9_ELG3175.pdf
Lec_9_ELG3175.pdf
 
EE303Sp09_L12_Superhet.pdf
EE303Sp09_L12_Superhet.pdfEE303Sp09_L12_Superhet.pdf
EE303Sp09_L12_Superhet.pdf
 
section_4B_The_SuperHet_Receiver_package.pdf
section_4B_The_SuperHet_Receiver_package.pdfsection_4B_The_SuperHet_Receiver_package.pdf
section_4B_The_SuperHet_Receiver_package.pdf
 
Superheterodyne_Receiver.pdf
Superheterodyne_Receiver.pdfSuperheterodyne_Receiver.pdf
Superheterodyne_Receiver.pdf
 

Recently uploaded

Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...Open Access Research Paper
 
Green Marketing Strategies and Challenges
Green Marketing Strategies and ChallengesGreen Marketing Strategies and Challenges
Green Marketing Strategies and ChallengesDr. Salem Baidas
 
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service Gorakhpur
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service GorakhpurVIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service Gorakhpur
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service GorakhpurSuhani Kapoor
 
Air pollution soli pollution water pollution noise pollution land pollution
Air pollution soli pollution water pollution noise pollution land pollutionAir pollution soli pollution water pollution noise pollution land pollution
Air pollution soli pollution water pollution noise pollution land pollutionrgxv72jrgc
 
VIP Call Girls Service Chaitanyapuri Hyderabad Call +91-8250192130
VIP Call Girls Service Chaitanyapuri Hyderabad Call +91-8250192130VIP Call Girls Service Chaitanyapuri Hyderabad Call +91-8250192130
VIP Call Girls Service Chaitanyapuri Hyderabad Call +91-8250192130Suhani Kapoor
 
Determination of antibacterial activity of various broad spectrum antibiotics...
Determination of antibacterial activity of various broad spectrum antibiotics...Determination of antibacterial activity of various broad spectrum antibiotics...
Determination of antibacterial activity of various broad spectrum antibiotics...Open Access Research Paper
 
Along the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"sAlong the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"syalehistoricalreview
 
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...Delhi Escorts
 
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full NightCall Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Nightssuser7cb4ff
 
Spiders by Slidesgo - an introduction to arachnids
Spiders by Slidesgo - an introduction to arachnidsSpiders by Slidesgo - an introduction to arachnids
Spiders by Slidesgo - an introduction to arachnidsprasan26
 
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一F dds
 
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012sapnasaifi408
 
Mumbai Call Girls, 💞 Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, 💞  Prity 9892124323, Navi Mumbai Call girlsMumbai Call Girls, 💞  Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, 💞 Prity 9892124323, Navi Mumbai Call girlsPooja Nehwal
 
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...Suhani Kapoor
 
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...ranjana rawat
 

Recently uploaded (20)

Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...
 
Green Marketing Strategies and Challenges
Green Marketing Strategies and ChallengesGreen Marketing Strategies and Challenges
Green Marketing Strategies and Challenges
 
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service
 
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service Gorakhpur
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service GorakhpurVIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service Gorakhpur
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service Gorakhpur
 
Air pollution soli pollution water pollution noise pollution land pollution
Air pollution soli pollution water pollution noise pollution land pollutionAir pollution soli pollution water pollution noise pollution land pollution
Air pollution soli pollution water pollution noise pollution land pollution
 
VIP Call Girls Service Chaitanyapuri Hyderabad Call +91-8250192130
VIP Call Girls Service Chaitanyapuri Hyderabad Call +91-8250192130VIP Call Girls Service Chaitanyapuri Hyderabad Call +91-8250192130
VIP Call Girls Service Chaitanyapuri Hyderabad Call +91-8250192130
 
Determination of antibacterial activity of various broad spectrum antibiotics...
Determination of antibacterial activity of various broad spectrum antibiotics...Determination of antibacterial activity of various broad spectrum antibiotics...
Determination of antibacterial activity of various broad spectrum antibiotics...
 
Along the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"sAlong the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"s
 
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...
 
Escort Service Call Girls In Shakti Nagar, 99530°56974 Delhi NCR
Escort Service Call Girls In Shakti Nagar, 99530°56974 Delhi NCREscort Service Call Girls In Shakti Nagar, 99530°56974 Delhi NCR
Escort Service Call Girls In Shakti Nagar, 99530°56974 Delhi NCR
 
E Waste Management
E Waste ManagementE Waste Management
E Waste Management
 
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full NightCall Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
 
Spiders by Slidesgo - an introduction to arachnids
Spiders by Slidesgo - an introduction to arachnidsSpiders by Slidesgo - an introduction to arachnids
Spiders by Slidesgo - an introduction to arachnids
 
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一
 
Call Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
Call Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCeCall Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
Call Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
 
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
 
Mumbai Call Girls, 💞 Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, 💞  Prity 9892124323, Navi Mumbai Call girlsMumbai Call Girls, 💞  Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, 💞 Prity 9892124323, Navi Mumbai Call girls
 
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...
 
Hot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort ServiceHot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort Service
 
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
 

eecs242_lect3_rxarch.pdf

  • 2. Outline  Complex baseband equivalent of a bandpass signal  Double-conversion single-quadrature (Superheterodyne)  Direct-conversion (Single-conversion single-quad, homodyne, zero-IF)  Weaver; Double-conversion double-quad  Low-IF  References EECS 242
  • 3. Complex Baseband  Any passband waveform can be written in the following form: EECS 242 sp(t) = a(t) cos [ωct + θ(t)] sp(t) = a(t) cos ωct cos θ(t) − a(t) sin ωct sin θ(t) sp(t) = √ 2sc(t) cos ωct − √ 2ss(t) sin ωct sc(t) ! a(t) cos θ(t) = I(t) ss(t) ! a(t) sin θ(t) = Q(t) a(t) = |s(t)| = ! s2 c(t) + s2 s(t) θ(t) = tan−1 ss(t) sc(t) s(t) = sc(t) + jss(t) = I(t) + jQ(t) sp(t) = Re !√ 2s(t)ejωct "  We define the complex baseband signal and show that all operations at passband have a simple equivalent at complex baseband: ||s||= ||sp||2
  • 4. Orthogonality I/Q  An important relationship is the orthogonality between the modulated I and Q signals. This can be proved as follows (Parseval’s Relation): EECS 242 xc(t) = √ 2sc(t) cos ωct xs(t) = √ 2ss(t) sin ωct < xc, xs >=< Xc, Xs >= 0 < Xc, Xs >= ! ∞ −∞ Xc(f)X∗ s (f)df cos θ = 1 2 (ejθ + e−jθ ) xc(t) = 1 √ 2 (sc(t)ejωct + sc(t)e−jωct ) Xc(f) = 1 √ 2 (Sc(f − fc) + Sc(f + fc)) Xs(f) = 1 √ 2j (Ss(f − fc) − Ss(f + fc)) < Xc, Xs >= 1 2j ! ∞ −∞ ((Sc(f − fc) + Sc(f + fc)) × (S∗ s (f − fc) − S∗ s (f + fc))) df
  • 5. Orthogonality (Freq. Dom.)  In the above integral, if the carrier frequency is larger than the signal bandwidth, then the frequency shifted signals do not overlap EECS 242 Sc(f − fc)S∗ s (f + fc) ≡ 0 Sc(f + fc)S∗ s (f − fc) ≡ 0 < Xc, Xs >= 1 2j !" ∞ −∞ Sc(f − fc)S∗ s (f − fc)df − " ∞ −∞ Sc(f + fc)S∗ s (f + fc)df # < Xc, Xs >= 1 2j !" ∞ −∞ Sc(f)S∗ s (f)df − " ∞ −∞ Sc(f)S∗ s (f)df # = 0  Due to this orthogonality, we can double the bandwidth of our signal my modulating the I and Q independently. Also, we have < up, vp >=< uc, vc > + < us, vs >= Re (< u, v >)
  • 6. Complex Baseband Spectrum  Since the passband signal is real, it has a conjugate symmetric spectrum about the origin. Let’s define the positive portion as follows: EECS 242 S+ p (f) = Sp(f)u(f) S(f) = √ 2S+ p (f + fc) Sp(f) = S(f − fc) + S∗ (−f − fc) √ 2 v(t) = √ 2s(t)ejωct V (f) = √ 2S(f − fc) Sp(t) = Re(v(t)) = v(t) + v(t)∗ 2 Sp(f) = V (f) + V ∗ (−f) 2 = S(f − fc) + S∗ (−f − fc) √ 2  Then the spectrum of the passband and baseband complex signal are related by:  Since:
  • 7. The Image Problem  After low-pass filtering the mixer output, the IF is given by LNA LO IF IF IF mr(t) cos(ωLO+ωIF )t×cos(ωLO)t = 1 2 mr(t) (cos(2ωLO + ωIF )t + cos(ωIF )t) mi(t) cos(ωLO−ωIF )t×cos(ωLO)t = 1 2 mi(t) (cos(2ωLO − ωIF )t + cos(ωIF )t) IFoutput = 1 2 (mi(t) + mr(t)) cos(ωIF )t EECS 242
  • 8. Image Problem (Freq Dom)  Complex modulation shifts in only one direction … real modulation shifts up and down EECS 242 RF+ (ω) RF− (ω) RF+ (ω − ω0) RF+ (ω + ω0) IM+ (ω) IM− (ω) IM+ (ω − ω0) IM− (ω + ω0) LO −LO IF −IF ejωLOt e−jωLOt RF− (ω − ω0) IM− (ω − ω0) LO LO −LO −LO IM− (ω) ejωLOt e−jωLOt RF− (ω) RF− (ω + ω0) RF+ (ω) IM+ (ω) IM+ (ω + ω0) Complex Modulation (Positive Frequency) Complex Modulation (Positive Frequency) Real Modulation
  • 9. Superheterodyne Architecture  The choice of the IF frequency dictated by:  If the IF is set too low, then we require a very high-Q image reject filter, which introduces more loss and therefore higher noise figure in the receiver (not to mention cost).  If the IF is set too high, then subsequent stages consume more power (VGA and filters)  Typical IF frequency is 100-200 MHz. LNA Off chip Passive BPF Image Filter IF Filter EECS 242
  • 10. LO Planning in Superhet  Two separate VCOs and synthesizers are used. The IF LO is fixed, while the RF LO is variable to down-convert the desired channel to the passband of the IF filter (SAW).  This typically results in a 3-4 chip solution with many off-chip components.  LO1 should never be made close to an integer multiple of LO2 for any channel. The Nth harmonic of the the fixed LO2 could leak into the RF mixer and cause unwanted mixing. LNA Off chip Passive BPF Image Filter IF Filter PLL1 LO1 PLL2 LO2 I Q IF IF LO2 LO1 n LO2 IF nLO2 leaks into RF mixer EECS 242
  • 11. The ½ IF Problem  Assume that there is a blocker half-way between the LO and the desired channel. Due to second-order non-linearity in the RF front-end: EECS 242 ! mblocker(t) cos(ωLO + 1 2 ωIF )t "2 = (mblocker(t))2 + (mblocker(t))2 ) cos(2ωLO + ωIF )t  If the LO has a second-order component, then this signal will fold right on top of the desired signal at IF: IF LO IF ½ IF ! (mblocker(t))2 ) cos(2ωLO + ωIF )t " cos(2ωLO)t = (mblocker(t))2 cos(ωIF )t + · · · Note: Bandwidth expansion of blocker due to squaring operation.
  • 12. Half-IF Continued  If the IF stage has strong second-order non-linearity, then the half-IF problem occurs through this mechanism: EECS 242 IF DC ½ IF IF DC ½ IF 2 ! mblocker(t) cos( 1 2 ωIF )t "2 = (mblocker(t))2 + (mblocker(t))2 cos(ωIF )t  This highlights the importance of frequency planning. One should select the IF by making sure that there is no strong half-IF blocker. If one exists, then the second-order non- linearity must be carefully managed.
  • 13. Dual-Conversion Single-Quad  Disadvantages:  Requires bulky off-chip SAW filters  As before, two synthesizers are required  Typically a three chip solution (RF, IF, and Synth)  Advantages:  Robust. The clear choice for extremely high sensitivity radios  High dynamic range SAW filter reduces/relaxes burden on active circuits. This makes it much easier to design the active circuitry.  By the same token, the power consumption is lower (< 25mA) EECS 242 LNA Off chip Passive BPF Image Filter IF Filter PLL1 LO1 PLL2 LO2 I Q
  • 14. Complex Mixer  A complex mixer is derived by simple substitution.  Note that a complex exponential only introduces a frequency shift in one direction (no image rejection problems). EECS 242 + + + – + +
  • 15. Hilbert Architecture  Image suppression by proper phase shifting. EECS 242 + 90 IF 90 A B C LNA RF = mr(t) cos(ωLO + ωIF )t + mi(t) cos(ωLO − ωIF )t A = RF × cos(ωLOt) = 1 2 mr(t) (cos(2ωLO + ωIF )t + cos(ωIF )t) + 1 2 mi(t) (cos(2ωLO − ωIF )t + cos(ωIF )t) B = RF × sin(ωLOt) = 1 2 mr(t) (sin(2ωLO + ωIF )t − sin(ωIF )t) + 1 2 mi(t) (sin(2ωLO − ωIF )t + sin(ωIF )t) C = 1 2 mr(t) (− cos(2ωLO + ωIF )t + cos(ωIF )t) + 1 2 mi(t) (− cos(2ωLO − ωIF )t − cos(ωIF )t) IF+ = A + C = mr(t) cos(ωIF t) IF− = A − C = mi(t) cos(ωIF t)
  • 16. Sine/Cosine Together  Since the sine treats positive/negative frequencies differently (above/below LO), we can exploit this behavior  A 90° phase shift is needed to eliminate the image  90° phase shift equivalent to multiply by –j sign(f) EECS 242 IF −IF LO −LO IF −IF LO −LO Cosine Modulation Sine Modulation IF −IF LO −LO Delayed Sine Modulation /j /j /j /j
  • 17. Hilbert Implementation  Advantages:  Remove the external image-reject SAW filter  Better integration  Requires extremely good matching of components (paths gain/phase). Without trimming/calibration, only ~40dB image rejection is possible. Many applications require 60dB or more.  Power hungry (more mixers and higher cap loading). EECS 242 + 135 IF A B C 45 135 45 D LNA Note: A real implementation uses 45/135 degree phase shifters for better matching/ tracking.
  • 18. Gain/Phase Imbalance IF = mr(t) ! cos(ωIF t) cos( φ 2 ) − α sin(ωIF t) sin( φ 2 ) + mi(t) ! α cos(ωIF t) cos( φ 2 ) − sin(ωIF t) sin( φ 2 ) EECS 242 A = RF × (1 + α) cos(ωLOt + φ 2 ) = 1 2 mr(t)(1 + α) ! cos(2ωLOt + ωIF t + φ 2 ) + cos(ωIF t − φ 2 ) + 1 2 mi(t)(1 + α) ! cos(2ωLOt − ωIF t + φ 2 ) + cos(ωIF t + φ 2 ) B = RF × (1 − α) cos(ωLOt − φ 2 ) = 1 2 mr(t)(1 − α) ! sin(2ωLOt + ωIF t − φ 2 ) − sin(ωIF t − φ 2 ) + 1 2 mi(t)(1 − α) ! sin(2ωLOt − ωIF t − φ 2 ) + sin(ωIF t − φ 2 ) C = 1 2 mr(t)(1 − α) ! − cos(2ωLOt + ωIF t − φ 2 ) + cos(ωIF t − φ 2 ) + 1 2 mi(t)(1 − α) ! − cos(2ωLOt − ωIF t − φ 2 ) − cos(ωIF t − φ 2 ) IF = A + C = mr(t) 2 ! (1 + α) cos(ωIF t − φ 2 ) + (1 − α) cos(ωIF t + φ 2 ) + mi(t) 2 ! (1 + α) cos(ωIF t + φ 2 ) − (1 − α) cos(ωIF t − φ 2 )
  • 19. Image-Reject Ratio  Level of image rejection depends on amplitude/phase mismatch  Typical op-chip values of 30-40 dB achieved ( 5°, 0.6 dB) EECS 242 IR(dB) = 10 log ! cos φ 2 − α sin φ 2 α cos φ 2 + sin φ 2 2 0 1 2 3 4 0 2 4 6 8 10
  • 20. RF/IF Phase Shift, Fixed LO  This requires a 90 degree phase shift across the band. It’s much easier to shift the phase of a single frequency (LO).  Polyphase filters can be used to do this, but a broadband implementation requires many stages (high loss) EECS 242 + 90 IF 90 A B LNA A’ RF RF’ –
  • 21. Weaver Architecture  Eliminates the need for a phase shift in the signal path. Easier to implement phase shift in the LO path.  Can use a pair of quadrature VCOs. Requires 4X mixers!  Sensitive to second image. EECS 242 RF = mr(t) cos(ωLO1 + ωIF1 )t + mi(t) cos(ωLO1 − ωIF1 )t IF1 = LO1 − RF IF = LO2 − IF1 = LO2 − LO1 + RF = RF − (LO1 − LO2) ALP F = cos ωLO1 t × RF = mr 2 cos(ωIF1 )t + mi 2 cos(ωIF1 )t BLP F = sin ωLO1 t × RF = − mr 2 sin(ωIF1 )t + mi 2 sin(ωIF1 )t CLP F = A × cos ωLO2t = mr 4 cos(ωIF )t + mi 4 cos(ωIF )t DLP F = B × sin ωLO2t = − mr 4 cos(ωIF )t + mi 4 cos(ωIF )t IF = C − D = mr 2 cos ωIF t + 90 90 IF A B LNA RF C D LO1 LO2 – +
  • 22. Direct Conversion (Zero-IF)  The most obvious choice of LO is the RF frequency, right? IF = LO – RF = DC?  Why not?  Even though the signal is its own image, if a complex modulation is used, the complex envelope is asymmetric and thus there is a “mangling” of the signal EECS 242 LNA LO RF DC DC Let ωRF = ωLO = ω0 mr(t) cos(ωRF )t × cos(ωLO)t = 1 2 mr(t) (1 + cos(2ω0)t)
  • 23. Direct Conversion (cont)  Use orthogonal mixing to prevent signal folding and retain both I and Q for complex demodulation (e.g. QPSK or QAM)  Since the image and the signal are the same, the image- reject requirements are relaxed (it’s an SNR hit, so typically 20-25 dB is adequate) EECS 242 90 LNA I Q
  • 24. Problems with Zero-IF  Self-mixing of the LO signal is a big concern.  LO self-mixing degrades the SNR. The signal that reflects from the antenna and is gained up appears at the input of the mixer and mixes down to DC.  If the reflected signal varies in time, say due to a changing VSWR on the antenna, then the DC offset is time-varying EECS 242 90 LNA I Q LO = p(t) cos(ωLOt + φ(t)) LO × LO = p(t)2 + p(t)2 cos(2ωLOt + 2φ(t)) DC Dynamic DC Offset
  • 25. DC Offset  DC offsets that appear at the baseband experience a large gain. This signal can easily saturate out the receive chain.  A large AC coupling capacitor or a programmable DC- offset cancellation loop is required. The HPF corner should be low (kHz), which requires a large capacitor.  Any transients require a large settling time as a result. EECS 242 90 LNA I Q 60 dB Gain 1mV Offset 1V Offset
  • 26. Sensitivity to 2nd Order Disto  Assume two jammers have a frequency separation of Δf: EECS 242 s1 = m1(t) cos(ω1t) s2 = m2(t) cos(ω1t + ∆ωt) (s1 + s2)2 = (m1(t) cos ω1t)2 + (m2(t) cos ω2t)2 + 2m1(t)m2(t) cos(ω1t) cos(ω1 + ∆ω)t LPF{(s1 + s2)2 } = m1(t)2 + m2(t)2 + m1(t)m2(t) cos(∆ω)t  The two produce distortion at DC. The modulation of the jammers gets doubled in bandwidth.  If the jammers are close together, then their inter- modulation can also fall into the band of the receiver.  Even if it is out of band, it may be large enough to saturate the receiver.
  • 27. Sensitivity to 1/f Noise  Since the IF is at DC, any low frequency noise, such as 1/f noise, is particularly harmful.  CMOS has much higher 1/f noise, which requires careful device sizing to ensure good operation.  Many cellular systems are narrowband and the entire baseband may fall into the 1/f regime! EECS 242 Noise Density 1/f Slope, 20dB/dec 1kHz 10 kHz 100 kHz 200 kHz ni 2 100 ni 2 Example: GSM has a 200 kHz bandwidth. Suppose that the flicker corner frequency is 100 kHz. The in- band noise degradation is thus: v2 ave = 1 200kHz ! 100kHz 1kHz a f df + ! 200kHz 100kHz bdf a = 1kHz · 100 · v2 i b = v2 i v2 ave = 1 200kHz ! a ln 100k 1k + b(200k − 100k) = 1 200kHz (11.5a + 100kb) = 6.25v2 i
  • 28. Low IF Architecture  Instead of going to DC, go a low IF, low enough so that the IF circuitry and filters can be implemented on-chip, yet high enough to avoid problems around DC (flicker noise, offsets, etc). Typical IF is twice the signal bandwidth.  The image is rejected through a complex filter. EECS 242 90 LNA I Q Complex Image Reject Filter
  • 29. Double-Conversion Double-Quad  The dual-conversion double-quad architecture has the advantage of de-sensitizing the receiver gain and phase imbalance of the I and Q paths. EECS 242 90 ÷ 90 + + + – + + I Q A B C D E F LNA
  • 30. Analysis of Double/Double  Assuming ideal quadrature and no gain errors: EECS 242 RF = mr(t) cos(ωLO1 + ωLO2 + ωIF )t + mi(t) cos(ωLO1 + ωLO2 − ωIF )t+ A = LPF{RF × cos(ωLO1t)} = 1 2 ! mr(t) cos(ωLO2 + ωIF )t+ mi(t) cos(ωLO2 − ωIF )t B = LPF{RF × sin(ωLO1t)} = 1 2 ! −mr(t) sin(ωLO2 + ωIF )t −mi(t) sin(ωLO2 − ωIF )t C = LPF{A × cos(ωLO2t)} = 1 2 ! mr(t) cos(ωIF )t+ mi(t) cos(ωIF )t D = LPF{A × sin(ωLO2t)} = 1 2 ! mr(t) sin(ωIF )t+ −mi(t) sin(ωIF )t E = LPF{B × cos(ωLO2t)} = 1 2 ! mr(t) sin(ωIF )t+ −mi(t) sin(ωIF )t F = LPF{B × sin(ωLO2t)} = 1 2 ! −mr(t) cos(ωIF )t+ −mi(t) cos(ωIF )t I = C − F = (mr(t) + mi(t)) cos(ωIF )t Q = D + E = (mr(t) − mi(t)) sin(ωIF )t
  • 31. Gain Error Analysis  The gain mismatch is reduced since due to the product of two small numbers (amplitude errors). EECS 242 RF = mr(t) cos(ωLO1 + ωLO2 + ωIF )t + mi(t) cos(ωLO1 + ωLO2 − ωIF )t+ A = LPF{RF × ! 1 + ∆a1 2 cos(ωLO1t)} = 1 2 ! 1 + ∆a1 2 # mr(t) cos(ωLO2 + ωIF )t+ mi(t) cos(ωLO2 − ωIF )t B = LPF{RF × ! 1 − ∆a1 2 sin(ωLO1t)} = 1 2 ! 1 − ∆a1 2 # −mr(t) sin(ωLO2 + ωIF )t −mi(t) sin(ωLO2 − ωIF )t C = LPF{A × ! 1 + ∆a2 2 cos(ωLO2t)} = 1 2 ! 1 + ∆a1 2 ! 1 + ∆a2 2 # mr(t) cos(ωIF )t+ mi(t) cos(ωIF )t D = LPF{A × ! 1 − ∆a2 2 sin(ωLO2t)} = 1 2 ! 1 + ∆a1 2 ! 1 − ∆a2 2 # mr(t) sin(ωIF )t+ −mi(t) sin(ωIF )t E = LPF{B × ! 1 + ∆a2 2 cos(ωLO2t)} = 1 2 ! 1 − ∆a1 2 ! 1 + ∆a2 2 # mr(t) sin(ωIF )t+ −mi(t) sin(ωIF )t F = LPF{B × ! 1 − ∆a2 2 sin(ωLO2t)} = 1 2 ! 1 − ∆a1 2 ! 1 − ∆a2 2 # −mr(t) cos(ωIF )t+ −mi(t) cos(ωIF )t I = C − F = (1 + ∆a1∆a2)(mr(t) + mi(t)) cos(ωIF )t Q = D + E = (1 − ∆a1∆a2)(mr(t) − mi(t)) sin(ωIF )t
  • 32. Phase Error Analysis  The phase error impacts the I/Q channels in the same way, and as long as the phase errors are small, it has a minimal impact on the gain of the I/Q channels. EECS 242 RF = mr(t) cos(ωLO1 + ωLO2 + ωIF )t + mi(t) cos(ωLO1 + ωLO2 − ωIF )t+ A = LPF{RF × cos(ωLO1t + φ1)} = 1 2 ! mr(t) cos(ωLO2 + ωIF + φ1)t+ mi(t) cos(ωLO2 − ωIF + φ1)t B = LPF{RF × sin(ωLO1t − φ1)} = 1 2 ! −mr(t) sin(ωLO2 + ωIF − φ1)t −mi(t) sin(ωLO2 − ωIF − +φ1)t C = LPF{A × cos(ωLO2t + φ2)} = 1 2 ! mr(t) cos(ωIF + φ1 + φ2)t+ mi(t) cos(ωIF + φ1 + φ2)t D = LPF{A × sin(ωLO2t − φ2)} = 1 2 ! mr(t) sin(ωIF − φ1 − φ2)t+ −mi(t) sin(ωIF − φ1 − φ2)t E = LPF{B × cos(ωLO2t + φ2)} = 1 2 ! mr(t) sin(ωIF + φ1 + φ2)t+ −mi(t) sin(ωIF + φ1 + φ2)t F = LPF{B × sin(ωLO2t − φ2)} = 1 2 ! −mr(t) cos(ωIF − φ1 − φ2)t+ −mi(t) cos(ωIF − φ1 − φ2)t Q = D + E = (mr(t) − mi(t)) cos(φ1 + φ2) sin(ωIF )t
  • 33. Double-Quad Low-IF  Essentially a complex mixer topology. Mix RF I/Q with LO I/Q to form baseband I/Q  Improved image rejection due to desensitization to quadrature gain and phase error. EECS 242 90 90 + + + – + + I Q A B C D LNA
  • 34. References  Fundamental of Digital Communication, U. Madhow, Cambridge 2008  O. Shana’a, EECS 290C Course Notes, 2005.  A.A. Abidi, “Radio frequency integrated circuits for portable communications,” Proc. of CICC, pp. 151-158, May 1994.  A.A. Abidi, “Direct conversion radio transceivers for digital communications,” Proc. of ISSCC, pp. 186-187, Feb. 1995.  J. Crols and M. Steyaert, “A single-chip 900MHz receiver front-end with high performance low-IF topology,” IEEE JSSC, vol. 30, no. 12, pp. 1483-1492, Dec. 1995.  B. Razavi, RF Microelectronics, Prentice Halls, 1998.  J. Crols, M. Steyaert, CMOS Wireless Transceiver Design, Kluwer Academic Publishers, 1997.  Practical RF System Design, Willian F. Egdan, Wiley-IEEE Press, 2003. EECS 242