SlideShare a Scribd company logo
1 of 84
Chapter 2 AC to DC Converters
Outline
2.1 Single-phase controlled rectifier
2.2 Three-phase controlled rectifier
2.3 Effect of transformer leakage inductance on rectifier circuits
2.4 Capacitor-filtered uncontrolled rectifier
2.5 Harmonics and power factor of rectifier circuits
2.6 High power controlled rectifier
2.7 Inverter mode operation of rectifier circuit
2.8 Thyristor-DC motor system
2.9 Realization of phase-control in rectifier
2.1 Single- phase controlled (controllable) rectifier
2.1.1 Single-phase half-wave controlled rectifier
Resistive load
T
VT
R
a)
u1
u2
uVT
ud
id
0 ωt1 π 2π
ωt
u2
ug
ud
uVT
α θ
0
b)
c)
d)
e)
0
0
ωt
ωt
ωt
∫
+
=+==
π
α
α
α
π
ωω
π 2
cos1
45.0)cos1(
2
2
)(sin2
2
1
2
2
2d U
U
ttdUU
(2-1)
Inductive (resistor-inductor) load
a)
u1
T
VT
R
L
u2
uVT
ud
id
u2
0 ωt1
π 2π
ω t
ug
0
ud
0
id
0
uVT
0
θ
α
b)
c)
d)
e)
f)
+ +
ω t
ω t
ω t
ω t
Basic thought process of time-domain analysis for power electronic
circuits
The time- domain behavior of a power electronic circuit is actually the
combination of consecutive transients of the different linear circuits
when the power semiconductor devices are in different states.
a) b)
VT
R
L
VT
R
L
u2 u2
tURi
t
i
L ωsin2
d
d
2d
d
=+
ω t= a ,id=0
)sin(
2
)sin(
2 2
)(
2
d ϕωϕα
αω
ω −+−−=
−−
t
Z
U
e
Z
U
i
t
L
R
(2-2)
(2-3)
Single- phase half- wave controlled rectifier with freewheeling diode
load (L is large enough) Inductive
a)
L
T VT
R
u1
u2
uVT
ud
VDR
idiVD
u2
ud
id
uVT
iVT
Id
Id
ωtO
O
O
O
O
O
π-α π+α
b)
iVDR
ωt
ωt
ωt
ωt
ωt
g)
c)
e)
f)
d)
ωT1
Maximum forward voltage, maximum reverse voltage
Disadvantages:
–Only single pulse in one line cycle
–DC component in the transformer current
ddVT
2
II
π
απ−
=
d
2
dVT
2
)(
2
1
ItdII
π
απ
ω
π
π
α
−
== ∫
d
2
2
dVD
2
)(
2
1
R
ItdII
π
απ
ω
π
απ
π
+
== ∫
+
ddVD
2
R
II
π
απ+
=
(2-5)
(2-6)
(2-7)
(2-8)
2.1.2 Single- phase bridge fully-controlled rectifier
• Resistive load
π ω t
0
0
0
i2
ud
id
b)
c)
d)
ud
(id
)
α α
R
T
u1 u2
a)
i2
a
b
VT3
ud
id
uVT
1,4
ω t
ω t
VT4
VT1
VT2
Average output (rectified) voltage:
Average output current:
For thyristor:
For transformer:
∫
+
=
+
==
π
α
αα
π
ωω
π 2
cos1
9.0
2
cos122
)(dsin2
1
2
2
2d U
U
ttUU (2-9)
(2-10)
2
cos1
9.0
2
cos122 22d
d
αα
π
+
=
+
==
R
U
R
U
R
U
I
(2-11)2
cos1
45.0
2
1 2
ddVT
α+
==
R
U
II
π
απ
α
π
ωω
π
π
α
−
+== ∫ 2sin
2
1
2
)(d)sin
2
(
2
1 222
VT
R
U
tt
R
U
I (2-12)
π
απ
α
π
ωω
π
π
α
−
+=== ∫ 2sin
2
1
)()sin
2
(
1 222
2
R
U
tdt
R
U
II (2-13)
• Inductive load (L is large enough)
ω t
ω t
ω t
ω t
ω t
ω t
ω t
ο
ο
ο
ο
ο
ο
ο
u2
ud
id
Id
Id
Id
Id
Id
iVT1,4
iVT2,3
uVT1,4
i2
,
b)
R
T
u1 u2
a)
i2
a
b
VT3
ud
id
VT4
VT1
VT2
• Electro- motive-force (EMF) load With resistor
∫
+
===
απ
α
αα
π
ωω
π
cos9.0cos
22
)(dsin2
1
222d UUttUU (2-15)
a) b)
R
E
id
ud id
O
E
ud
ωt
Id
O ωt
α θ δ
• With resistor and inductor
When L is large enough, the output voltage and current waveforms are the
same as ordinary inductive load.
When L is at a critical value
O
ud
0
E
id
ω t
ω t
π
δ
α θ =π
dmin
23
dmin
2
1087.2
22
I
U
I
U
L −
×==
πω (2-17)
2.1.3 Single- phase full- wave controlled rectifier
a) b)
u1
T
R
u2
u2
i1 VT1
VT2 ud
ud
i1
O
O
α ω t
ω t
2.1.4 Single- phase bridge half-controlled rectifier
a)
T a
b R
L
O
b)
u2
i2
ud
id
VT1
VT2
VD3
VD4
VDR
u2
O
ud
id Id
O
O
O
O
O
i2
Id
Id
Id
Id
Id
α
ωt
ωt
ωt
ωt
ωt
ωt
ωt
α
π−α
π−α
iVT
1iVD
4
iVT
2iVD
3
iVD
R
• Another single- phase bridge half-controlled rectifier
Comparison with previous circuit:
–No need for additional freewheeling diode
–Isolation is necessary between the drive circuits of the two thyristors
load
T
u2
VT2 VT4
VT1 VT3
Summary of some important points in analysis
When analyzing a thyristor circuit, start from a diode circuit with the
same topology. The behavior of the diode circuit is exactly the same as
the thyristor circuit when firing angle is 0.
A power electronic circuit can be considered as different linear circuits
when the power semiconductor devices are in different states. The
time- domain behavior of the power electronic circuit is actually the
combination of consecutive transients of the different linear circuits.
Take different principle when dealing with different load
– For resistive load: current waveform of a resistor is the same as the
voltage waveform
–For inductive load with a large inductor: the inductor current can
be considered constant
2.2 Three- phase controlled (controllable) rectifier
2.2.1 Three- phase half- wave controlled rectifier
Resistive load, α= 0º
a
b
c
T
R
ud
id
VT2
VT1
VT3
u2
O
O
O
uab uac
O
iVT1
uVT1
ω t
ω t
ω t
ω t
ω t
u a u b u c
u G
u d
ω t1 ω t2 ω t3
Common-cathode connection
Natural commutation point
Resistive load, α= 30º
u2
ua ub uc
O
O
O ωt
O
ωt
O
ωt
uG
ud
uab uac
ωt1
iVT1
uVT1 uac
ωt
ωt
a
b
c
T
R
ud
id
VT2
VT1
VT3
Resistive load, α= 60º
ωt
u2 ua ub uc
O
O
O
O
uG
ud
iVT
1
ωt
ωt
ωt
a
b
c
T
R
ud
id
VT2
VT1
VT3
Resistive load, quantitative analysis
When α≤ 30º , load current id is continuous.
When α > 30º , load current id is discontinuous.
Average load current
Thyristor voltages
αα
π
ωω
π
α
π
α
π cos17.1cos
2
63
)(sin2
3
2
1
22
6
5
6
2d UUttdUU === ∫
+
+
(2-18)






++=





++== ∫ +
)
6
cos(1675.0)
6
cos(1
2
23
)(sin2
3
2
1
2
6
2d α
π
α
π
π
ωω
π
π
α
π UttdUU (2-19)
R
U
I d
d =
(2-20)
0 30 60 90 120 150
0.4
0.8
1.2
1.17
3
2
1
α/(°)
Ud/U2
• Inductive load, L is large enough
T
R
L
ud
eL
id
VT3
ud
ia
ua ub uc
ib
ic
id
uac
uab
uac
O
O
O
O
O
O ω tα
uVT
1
ω t
ω t
ω t
ω t
ω t
a
b
c
VT2
Thyristor voltage and currents, transformer current :
αα
π
ωω
π
α
π
α
π cos17.1cos
2
63
)(sin2
3
2
1
22
6
5
6
2d UUttdUU === ∫
+
+
(2-18)
ddVT2 577.0
3
1
IIII === d
VT
VT(AV) 368.0
57.1
I
I
I ==
2RMFM 45.2 UUU ==
(2-23)
(2-25)
(2-24)
2.2.2 Three- phase bridge fully-controlled rectifier
Circuit diagram
Common- cathode group and common- anode group of thyristors
Numbering of the 6 thyristors indicates the trigger sequence.
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
Resistive load, α= 0º
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
u2
ud1
ud2
u2L
ud
uab uac
uab uac ubc uba uca ucb uab uac
uab uac ubc uba uca ucb uab uac
I II III IV V VI
ua ucub
ωt1O ωt
O ωt
O ωt
O ωt
α= 0°
iVT
1
uVT
1
Resistive load, α= 30º
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
ud1
ud2
α=30¡
ã
ia
O
O
O
O ωt
ud
uab uac
ua ub
uc
ωt1
uab uac ubc uba uca ucb uab uac
І II III IV V VI
uab u ac ubc uba u ca ucb u ab u acuVT
1
ωt
ωt
ωt
Resistive load, α= 60º
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
α= 60º
ud1
ud2
ud
uac
uac
uab
uab
uac
ubc
uba
uca
ucb
uab
uac
ua
I II III IV V VI
ub uc
O
ωt1
O ωt
O
uVT
1
ωt
ωt
Resistive load, α= 90º
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
ud1
ud2
ud
ua ub uc ua ub
ωt
O
O
O
O
O
ia
id
uab uac ubc uba uca ucb uab uac ubc uba
iVT1
ωt
ωt
ωt
ωt
Inductive load, α= 0º
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
ud1
u2
ud2
u2L
ud
id
O
O
O
ωtO
uaα = 0
ub
uc
ωt1
uab uac ubc uba uca ucb uab uac
I II III IV V VI
iVT
1
ωt
ωt
ωt
º
Inductive load, α= 30º
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
ud1
α= 30
ud2
ud
uab
uac
ubc
uba
uca
ucb
uab
uac
I II III IV V VI
ωtO
ωtO
ωtO
ωtO
id
ia
ωt1
ua ub uc
°
Inductive load, α= 90º
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
α = 90°
ud1
ud2
uac ubc uba uca ucb uab uac
uab
I II III IV V VI
ud
uac
uab
uac
ωtO
ωtO
ωtO
ub uc ua
ωt1
uVT
1
Quantitative analysis
Average output voltage:
For resistive load, When a > 60º, load current id is discontinuous.
everage output current (load current):
Transformer current:
αωω
π
α
π
α
π cos34.2)(sin6
3
1
2
3
2
3
2d UttdUU == ∫
+
+ (2-26)
(2-27)



++== ∫ +
)
3
cos(134.2)(sin6
3
2
3
2d α
π
ωω
π
π
α
π UttdUU
R
U
I d
d = (2-20)
dddd IIIII 816.0
3
2
3
2
)(
3
2
2
1 22
2 ==





×−+×= ππ
π
(2-28)
2.3 Effect of transformer leakage inductance on rectifier circuits
In practical, the transformer leakage inductance has to be taken into account.
Commutation between thyristors, thus can not happen instantly,but with a
commutation process.
a
b
c
T
Lud
ic
ib
iaLB
LB
LB
ik VT1
VT2
VT3
R
id
O γ
ic ia ib ic ia Id
ud
ωt
ua ub uc
α
ωt
O
Commutation process analysis
Circulating current ik during commutation
Output voltage during commutation
ik: 0 Id
ub-ua = 2·LB·dia/dt
ia = Id-ik : Id
ib = ik : 0 Id
0
2d
d
d
d bak
Bb
k
Bad
uu
t
i
Lu
t
i
Luu
+
=−=+= (2-30)
Quantitative calculation
Reduction of average output voltage due to the commutation process
Calculation of commutation angle
– Id ↑,γ↑
– XB↑, γ↑
– For α ≤ 90۫, α↓, γ↑
dB
0
B
6
5
6
5 B
6
5
6
5 Bbb
6
5
6
5 dbd
2
3
d
2
3
)(d
d
d
2
3
)(d)]
d
d
([
2
3
)(d)(
3/2
1
IXiLt
t
i
L
t
t
i
LuutuuU
I
π
ω
π
ω
π
ω
π
ω
π
π
γα
π
α
π
γα
π
α
π
γα
π
α
===
−−=−=∆
∫∫
∫∫
++
+
++
+
++
+
d
k
k
k
(2-31)
2
dB
6
2
)cos(cos
U
IX
=+− γαα (2-36)
Summary of the effect on rectifier circuits
Circuits
Single-
phase
Full wave
Single-
phase
bridge
Three-
phase
half wave
Three-
phase
bridge
m-pulse recfifier
dU∆ d
B
I
X
π d
B2
I
X
π d
B
2
3
I
X
π
d
B3
I
X
π d
B
2
I
mX
π
)cos(cos γαα +−
2
Bd
2U
XI
2
Bd
2
2
U
XI
2
dB
6
2
U
IX
2
dB
6
2
U
IX
m
U
XI
π
sin2 2
Bd
• Conclusions
–Commutation process actually provides additional working states of the
circuit.
–di/dt of the thyristor current is reduced.
–The average output voltage is reduced.
–Positive du/dt
– Notching in the AC side voltag
2.4 Capacitor- filtered uncontrolled (uncontrollable) rectifier
2.4.1 Capacitor- filtered single- phase uncontrolled rectifier
Single-phase bridge, RC load:
a)
+
RCu1 u2
i2
VD1 VD3
VD2 VD4
id
iC
iR
ud
b)
0
i
ud
θ
δ
π 2π ω t
i,ud
Single-phase bridge, RLC load
a) b)
-
+
R
C
L
+
u1 u2
i2
ud
uL
id
iC iR
VD2 VD4
VD1
VD3
u2 ud
i2
0
δ θ π ωt
i2,u2,ud
2.4.2 Capacitor- filtered three- phase uncontrolled rectifier
Three-phase bridge, RC load
a)
+
a
b
c
T
ia
RCud
id
iC
iR
VD2
b)
O
ia
ud
id
uduab uac
0δ θ ππ
3
ωtVD6VD4
VD1VD3VD5
ωt
Three- phase bridge, RC load Waveform when ωRC≤1.732
a) b)
ωt ωt
ωtωt
ia
id
ia
id
O
O
O
O
a)ωRC=
•
b)ωRC<3 3
Three- phase bridge, RLC load
a)
b)
c)
+
a
b
c
T ia
RCud
id
iC
iR
VD4
VD6
VD1
VD3
VD5
VD2
ia
ia
O
O ωt
ωt
2.5 Harmonics and power factor of rectifier circuits
2.5.1 Basic concepts of harmonics and reactive power
For pure sinusoidal waveform
For periodic non-sinusoidal waveform
where
• Harmonics-related specifications
Take current harmonics as examples
Content of nth harmonics
In is the effective (RMS) value of nth harmonics.
I1 is the effective (RMS) value of fundamental component.
Total harmonic distortion
Ih is the total effective (RMS) value of all the harmonic components.
%100
1
×=
I
I
HRI n
n (2-57)
%100
1
×=
I
I
THD h
i (2-58)
• Definition of power and power factor for sinusoidal circuits
Active power
Reactive power
Apparent power
Power factor
∫ ==
π
ϕω
π
2
0
cos)(
2
1
UItuidP (2-59)
Q=U I sinϕ (2-61)
S=UI (2-60)
222
QPS += (2-63)
S
P
=λ (2-62)
λ =cos ϕ (2-64)
• Definition of power and power factor For non- sinusoidal circuit
Active power:
Power factor:
Distortion factor (fundamental- component factor):
Displacement factor (power factor of fundamental component):
Definition of reactive power is still in dispute
P=U I1 cosϕ1 (2-65)
(2-66)11
111
coscos
cos
ϕνϕ
ϕ
λ ====
I
I
UI
UI
S
P
ν =I1 / I
λ =cos ϕ1 1
• Review of the reactive power concept
The reactive power Q does not lead to net transmission of energy between
the source and load. When Q ≠ 0, the rms current and apparent power
are greater than the minimum amount necessary to transmit the
average power P.
Inductor: current lags voltage by 90°, hence displacement factor is zero.
The alternate storing and releasing of energy in an inductor leads to
current flow and nonzero apparent power, but P = 0. Just as resistors
consume real (average) power P, inductors can be viewed as
consumers of reactive power Q.
Capacitor: current leads voltage by 90°, hence displacement factor is zero.
Capacitors supply reactive power Q. They are often placed in the
utility power distribution system near inductive loads. If Q supplied by
capacitor is equal to Q consumed by inductor, then the net current
(flowing from the source into the capacitor- inductive- load
combination) is in phase with the voltage, leading to unity power
factor and minimum rms current magnitude.
2.5.2 AC side harmonics and power factor of controlled rectifiers with
inductive load
• Single- phase bridge fully-controlled rectifier
R
T
u1 u2
a)
i2
a
b
VT3
ud
id
VT4
VT1
VT2
ωt
ωt
ωt
ωt
ωt
ωt
ωt
ο
ο
ο
ο
ο
ο
ο
u2
ud
id
Id
Id
Id
Id
Id
iVT1,4
iVT2,3
uVT1,4
i2
,
b)
AC side current harmonics of single- phase bridge fully-controlled
rectifier with inductive load
Where
Conclusions
–Only odd order harmonics exist
– In∝1/n
– In / I1 = 1/n
∑∑ ==
==
+++=


,5,3,1,5,3,1
d
d2
sin2sin
14
)5sin
5
1
3sin
3
1
(sin
4
n
n
n
tnItn
n
I
tttIi
ωω
π
ωωω
π
(2-72)
πn
I
In
d22
= n=1,3,5,… (2-73)
• A typical gate triggering control circuit
220V 36V
+
B
TP
+15V
A
VS
+15V
- 15V - 15VX Y
Disable
R
Q
uts
VD1
VD2
C1 R2
R4
TS
V2 R5
R8
R6
R7
R3
R9
R10
R11
R12
R13
R14
R16
R15
R18
R17
RP1
uco
up
C2
C3
C3
C5
C6C7
R1
RP2
V1
I1c
V3
V4
V6
V5
V7
V8
VD4
VD10 VD5
VD6
VD7
VD9
VD8
VD15
VD11
~VD14
• Three- phase bridge fully-controlled rectifier
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
ud1
α= 30
ud2
ud
uab
uac
ubc
uba
uca
ucb
uab
uac
I II III IV V VI
ωtO
ωtO
ωtO
ωtO
id
ia
ωt1
ua ub uc
°
• AC side current harmonics of three- phase bridge fully- controlled
rectifier with inductive load
where
∑∑
=
±=
=
±=
−+=−+=
−++−−=


3,2,1
16
1
3,2,1
16
dd
da
sin2)1(sin2sin
1
)1(
32
sin
32
]13sin
13
1
11sin
11
1
7sin
7
1
5sin
5
1
[sin
32
k
kn
n
k
k
kn
k
tnItItn
n
ItI
tttttIi
ωωω
π
ω
π
ωωωωω
π (2-79)
(2-80)







=±==
=
,3,2,1,16,
6
6
d
d1
kknI
n
I
II
n
π
π
2.5.3 AC side harmonics and power factor of capacitor- filtered
uncontrolled rectifiers
Situation is a little complicated than rectifiers with inductive load.
Some conclusions that are easy to remember:
–Only odd order harmonics exist in single- phase circuit, and only 6k±1 (k is
positive integer) order harmonics exist in three- phase circuit.
–Magnitude of harmonics decreases as harmonic order increases.
–Harmonics increases and power factor decreases as capacitor increases.
–Harmonics decreases and power factor increases as inductor increases.
2.5.4 Harmonic analysis of output voltage and current






−
−=+= ∑∑
∞
=
∞
=
tn
n
k
UtnbUu
mknmkn
n ω
π
ω cos
1
cos2
1cos 2d0d0d0 (2-85)
(2-86)m
m
UU
π
π
sin2 2d0 =
d02
1
cos2
U
n
k
bn
−
−=
π
(2-87)
u
d
ωtOπ
m
π
m
2π
m
U
2
2
Output voltage of m- pulse
rectifier when α = 0º
Ripple factor in the output voltage
Output voltage ripple factor
where UR is the total RMS value of all the harmonic components in the output
voltage
and U is the total RMS value of the output voltage
d0
R
U
U
u =γ (2-88)
(2-89)
2
d0
22
R UUUU
mkn
n −== ∑
∞
=
• Harmonics in the output current
where
)cos(dd n
mkn
n tndIi ϕω −+= ∑
∞
=
(2-92)
(2-93)
R
EU
I
−
= d0
d
22
)( LnR
b
z
b
d n
n
n
n
ω+
==
R
Ln
n
ω
ϕ arctan=
(2-94)
(2-95)
Conclusions
for α = 0º
Only mk (k is positive integer) order harmonics exist in the output voltage and
current of m- pulse rectifiers
Magnitude of harmonics decreases as harmonic order increases when m is
constant.
The order number of the lowest harmonics increases as m increases. The
corresponding magnitude of the lowest harmonics decreases accordingly.
For α ≠ 0º
Quantitative harmonic analysis of output voltage and current is very
complicated for α ≠ 0º.
As an example,for 3- phase bridge fully- controlled rectifie
2.6 High power controlled rectifier
2.6.1 Double- star controlled rectifier
Circuit Waveforms When α= 0º
T
a b c
L
R
niP
LP
ud
id
VT5
ca'
b'
n1
n2
'
VT4 VT6 VT2VT3 VT1
ud1
ua ub uc
ia
ud2
ia
'
uc' ua
' ub
' uc
'
O ω t
O ω t
O ω t
O ω t
Id
1
2
Id
1
6
Id
1
2
Id
1
6
• Effect of interphase reactor(inductor, transformer)
n
L
R
+- +-
ud1
LP
ub
'
ud2
ud
n2
n1
iP
ua
VT1 VT6
uP
1
2
up
ud1
,ud2
O
O
60
360°
ωt1 ωt
ωt
b)
a)
ua ub ucuc
' ua'ub' ub'
°
d1d2p uuu −=
)(
2
1
2
1
2
1
d2d1pd1pd2d uuUuuuu +=+=−=
(2-97)
(2-98)
Quantitative analysis when α = 0º
]9cos
40
1
6cos
35
2
3cos
4
1
1[
2
63 2
d1 ⋅⋅⋅−+−+= ttt
U
u ωωω
π
]9cos
40
1
6cos
35
2
3cos
4
1
1[
2
63
])60(9cos
40
1
)60(6cos
35
2
)60(3cos
4
1
1[
2
63
2
2
d2
⋅⋅⋅−−−=
⋅⋅⋅−°−+°−−°−+=
ttt
U
ttt
U
u
ωωω
π
ωωω
π
]9cos
20
1
3cos
2
1
[
2
63 2
p ⋅⋅⋅−−−= tt
U
u ωω
π
]6cos
35
2
1[
2
63 2
d ⋅⋅⋅−−= t
U
u ω
π
(2-99)
(2-100)
(2-101)
(2-102)
Waveforms when α > 0º
Ud=1.17 U2 cos α
°90=α
°60=α
°30=αud
ud
ud
ωtO
ωtO
ωtO
ua ub ucuc
' ua
' ub
'
ub
uc
uc
' ua
' ub
'
ub
uc
uc
' ua
' ub
'
2.6.2 Connection of multiple rectifiers
Connection
of multiple
rectifiers
To increase the
output capacity
To improve the AC side current waveform
and DC side voltage waveform
Larger output voltage:
series connection
Larger output current:
parallel connection
• Phase-shift connection of multiple rectifiers
Parallel connection
M
LT
VT
1 2
c1
b1
a1
c2
b2
a2
LP
12- pulse rectifier realized by
paralleled 3- phase bridge rectifiers
Series connection
C
?
L
RB
A
1
*
?
?
*
*
0
30°
3
iA
c1
b1
a1
1
c2
b2
a2
iab 2
ua2b2
ua1b1
i
a1 id
ud
I
II
I
III
0
a)
b)
c)
d)
ia1
Id
ia2
iab2'
iA
Id
iab2
ωt
ωt
ωt
ωt
0
0
0
Id
2
3
3
3
Id
3
3
Id
Id3
2 3
(1+ ) Id3
2 3
(1+ )Id3
3
Id
1
3
12- pulse rectifier realized by
series 3- phase bridge rectifiers
• Sequential control of multiple series-connected rectifiers
L
i
a)
l oad
Ⅰ
Ⅱ
Ⅲ
u
2
u
2
u
2
Id
VT11
u d
b)
c)
i Id
2 Id
ud
O α π + α
VT12
VT13
VT14
VT21
VT22
VT23
VT24
VT31
VT32
VT33
VT34
Circuit and waveforms of series- connected
three single-phase bridge rectifiers
2.7 Inverter mode operationof rectifiers
• Review of DC generator- motor system
c)b)a)
MG MG MG
E G E M
Id
R ¡Æ
E G E M
Id
R ¡Æ
E G
E M
Id
R ¡Æ
Id =
EG EM
RΣ
-
Id =
EM EG
RΣ
- should be avoided
• Inverter mode operation of rectifiers
Rectifier and inverter mode operation of single- phase full- wave
converter
a) b)
R
+
-
engry
M
1
0
2
u10
u20
ud
id
L
VT1
VT2
u10ud
u20 u10
α
O
O ωt
ωt
Id
id
Ud
>EM
EM
engry
M
R
+
-
1
0
2
ud
id
LVT1
VT2
u10ud
u20
u10
O
O ωt
ωt
Id
id
Ud
<EM
α
EM
iVT
1
iVT2
iVT
1
iVT
2
iVT1
iVT2
iVT2
id = +iVT1
iVT2
iVT1
iVT2
iVT1
id = +iVT1
iVT2
Id =
Ud EG
RΣ
-
Id =
UdEM
RΣ
-
Necessary conditions for the inverter mode operation of controlled
rectifiers
There must be DC EMF in the load and the direction of the DC EMF must be
enabling current flow in
thyristors. (In other word EM must be negative if taking the ordinary output
voltage direction as positive.)
α > 90º so that the output voltage Ud is also negative.
• Inverter mode operation of 3- phase bridge rectifier
uab uac ubc uba uca ucb uab uac ubc uba uca ucb uab uac ubc uba uca ucb uab uac ubc
ua ub uc ua ub uc ua ub uc ua ubu2
ud
ωtO
ωtO
β =
π
4
β = π
3
β =
π
6
β = π
4
β = π
3
β = π
6
ωt1 ωt3ωt2
Inversion angle (extinction angle) β
α+ β=180º
Inversion failure and minimum inversion angle
Possible reasons of inversion failures
–Malfunction of triggering circuit
–Failure in thyristors
–Sudden dropout of AC source voltage
–Insufficient margin for commutation of thyristors
Minimum inversion angle (extinction angle)
βmin= δ + γ+ θ′ ( 2-109 )
L
a
b
c
+
-
Mud
id
EM
LB
LB
LB
VT1
VT2
VT3
o
ud
O
O
id
ωt
ωt
ua
ub
uc
ua
ub
p
β
γ
β<γ
α γ
β
β>γ
iVT
1
iVT
2
iVT
3
iVT
1
iVT
2
iVT
3
iVT
1
iVT
3
LB
LB
2.8 Thyristor- DC motor system
2.8.1 Rectifier mode of operation
Waveforms and equations
UIREU dMd ∆++= Σ (2-112)
where
RΣ RM RB
3XB
2π
+ +=
(for 3- phase half-wave)
u
d
O
id
ωt
ua ub uc
α
ud
O
ia ib icic
ωt
E
Ud
idR
(Waveforms of 3- phase half- wave
rectifier with DC motor load
• Speed- torque (mechanic) characteristic when load current is
continuous
nEM ϕ= Ce (2-113)
For 3- phase half-wave
UIEM −−= cosα1.17 2U ΣR d ∆
EM = cosα1.17 2U
α
e
d
e C
UIR
C
U
n
∆+
−=
Σcos1.17 2
(2-114)
For 3-phase bridge
α
e
d
e C
IR
C
U
n −=
Σcos2.34 2
(2-115)
(2-116)
O
n
a1<a2<a3
a3
a2
a1
Id
(RB+RM+ )
Id
Ce
3XB
2π
For 3- phase half-wave
• Speed- torque (mechanic) characteristic when load current is
discontinuous
EMF at no load (taking 3- phase half-wave as example)
For α≤ 60º
22UEo=
For α>60º
)3cos(2 2 πα−UEo=
discontinuouts
mode
continuous mode
E
E0
E0'
O
Idmin
Id
(0.585U2)
( U2)2
For 3- phase half-wave
2.8.2 Inverter mode of operation
Equations
–are just the same as in the
rectifier mode of operation
except that Ud, EM and n
become negative. E.g., in
3- phase half- wave
UIEM −−= cosα1.17 2U ΣR d ∆
α
e
d
e C
UIR
C
U
n
∆+
−=
Σcos1.17 2
(2-114)
(2-115)
– Or in another form
(2-123)
I)0cos β+( ∑RIUE ddM = - (2-122)
eC
n −= ∑+ RIU dd βcos0
1
rectifier
mode
n
α3
α2
α1
Id
α4
β2
β3
β4
β1
α =β =
π
2
inverter
mode
α
increasingβ
increasing
Speed-torque characteristic of
a DC motor fed by a thyristor
rectifier circuit
2.8.3 Reversible DC motor drive system(4-quadrant operation)
L
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
AC
source
converter 2converter 1
converter 2
+T- T
converter 1 rectifying
converter 2 rectifying
converter 2 inverting
converter 1 inverting
forward motoring
reverse motoring
forward braking(regenerating)
reverse braking(regenerating)
converter 1 converter 2
EM
M
a
b
c
a
b
c
+n
Id Id
Udα
M EM
Id
M EM
MEM
Id
Energ
yM
EM
- n
Udβ
Udα Udβ
O
AC
source
converter 1
Energ
y
Energ
y
Energ
y
converter 2 converter 2converter 1
converter 1
AC
source
AC
source
Back-to-back
connection of two 3-
phase bridge circuits
converter 1converter 2
n
α3
α2
α1
Id
α4
β2
β3
β4
β1
α =β =
π
2
α '=β '=
π
2
β'3
β'2
β'1
β'4
α'2
α'3
α'4
α'1
α1
=β '1
;α '1
=β1
α2
=β '2
;α '2
=β2
α
increasingβ
increasing
β
increasingα
increasing
2.9 Gate triggering control circuit for thyristor rectifiers
A typical gate triggering control circuit
220V 36V
+
B
TP
+15V
A
VS
+15V
-15V - 15VX Y
Disable
R
Q
uts
VD1
VD2
C1 R2
R4
TS
V2 R5
R8
R6
R7
R3
R9
R10
R11
R12
R13
R14
R16
R15
R
18
R17
RP1
uco
up
C2
C3
C3
C5
C6C7
R1
RP2
V1
I1c
V3
V4
V6
V5
V7
V8
VD4
VD10 VD5
VD6
VD7
VD9
VD8
VD15
VD11
~VD14

More Related Content

What's hot

Unit-2 AC-DC converter
Unit-2 AC-DC converter Unit-2 AC-DC converter
Unit-2 AC-DC converter johny renoald
 
half wave, full wave, pushpull single pahse inverter and 3 phase inverter
half wave, full wave, pushpull single pahse inverter and 3 phase inverterhalf wave, full wave, pushpull single pahse inverter and 3 phase inverter
half wave, full wave, pushpull single pahse inverter and 3 phase inverterSanil Sharahudeen
 
AC-AC voltage covertors (Cycloconvertors)
AC-AC voltage covertors (Cycloconvertors)AC-AC voltage covertors (Cycloconvertors)
AC-AC voltage covertors (Cycloconvertors)Taimur Ijaz
 
Commutation techniques in power electronics
Commutation techniques in power electronicsCommutation techniques in power electronics
Commutation techniques in power electronicsAniruddha Gautam
 
Power electronics phase control rectifier
Power electronics phase control rectifierPower electronics phase control rectifier
Power electronics phase control rectifierKUMAR GOSWAMI
 
Silicon Control Rectifier Phase Control
Silicon Control Rectifier Phase ControlSilicon Control Rectifier Phase Control
Silicon Control Rectifier Phase ControlDerrick Tiew
 
Power electronics Phase Controlled Rectifiers - SCR
Power electronics   Phase Controlled Rectifiers - SCRPower electronics   Phase Controlled Rectifiers - SCR
Power electronics Phase Controlled Rectifiers - SCRBurdwan University
 
DC-DC power processing
DC-DC power processingDC-DC power processing
DC-DC power processingTaimur Ijaz
 
Voltage commutated chopper
Voltage commutated chopperVoltage commutated chopper
Voltage commutated chopperJosin Hippolitus
 
Single phase full bridge inverter
Single phase full bridge inverterSingle phase full bridge inverter
Single phase full bridge inverterNisarg Amin
 
Unit 4 inverters (part-1)
Unit 4 inverters (part-1)Unit 4 inverters (part-1)
Unit 4 inverters (part-1)johny renoald
 
Power electronics
Power electronicsPower electronics
Power electronicspsksiva13
 
INVERTERS PRESENTATION
INVERTERS PRESENTATIONINVERTERS PRESENTATION
INVERTERS PRESENTATIONRajesh V
 
Current commutated chopper
Current commutated chopperCurrent commutated chopper
Current commutated chopperJyoti Singh
 
Unit- 4 inverters (part-2)
Unit- 4 inverters (part-2)Unit- 4 inverters (part-2)
Unit- 4 inverters (part-2)johny renoald
 

What's hot (20)

Unit-2 AC-DC converter
Unit-2 AC-DC converter Unit-2 AC-DC converter
Unit-2 AC-DC converter
 
half wave, full wave, pushpull single pahse inverter and 3 phase inverter
half wave, full wave, pushpull single pahse inverter and 3 phase inverterhalf wave, full wave, pushpull single pahse inverter and 3 phase inverter
half wave, full wave, pushpull single pahse inverter and 3 phase inverter
 
AC-AC voltage covertors (Cycloconvertors)
AC-AC voltage covertors (Cycloconvertors)AC-AC voltage covertors (Cycloconvertors)
AC-AC voltage covertors (Cycloconvertors)
 
power-electronics
power-electronicspower-electronics
power-electronics
 
Commutation techniques in power electronics
Commutation techniques in power electronicsCommutation techniques in power electronics
Commutation techniques in power electronics
 
Unit 2
Unit  2Unit  2
Unit 2
 
Power electronics phase control rectifier
Power electronics phase control rectifierPower electronics phase control rectifier
Power electronics phase control rectifier
 
Silicon Control Rectifier Phase Control
Silicon Control Rectifier Phase ControlSilicon Control Rectifier Phase Control
Silicon Control Rectifier Phase Control
 
Voltage controllers
Voltage controllersVoltage controllers
Voltage controllers
 
Power electronics Phase Controlled Rectifiers - SCR
Power electronics   Phase Controlled Rectifiers - SCRPower electronics   Phase Controlled Rectifiers - SCR
Power electronics Phase Controlled Rectifiers - SCR
 
DC-DC power processing
DC-DC power processingDC-DC power processing
DC-DC power processing
 
Unit2
Unit2Unit2
Unit2
 
Voltage commutated chopper
Voltage commutated chopperVoltage commutated chopper
Voltage commutated chopper
 
Single phase full bridge inverter
Single phase full bridge inverterSingle phase full bridge inverter
Single phase full bridge inverter
 
Chapter5
Chapter5Chapter5
Chapter5
 
Unit 4 inverters (part-1)
Unit 4 inverters (part-1)Unit 4 inverters (part-1)
Unit 4 inverters (part-1)
 
Power electronics
Power electronicsPower electronics
Power electronics
 
INVERTERS PRESENTATION
INVERTERS PRESENTATIONINVERTERS PRESENTATION
INVERTERS PRESENTATION
 
Current commutated chopper
Current commutated chopperCurrent commutated chopper
Current commutated chopper
 
Unit- 4 inverters (part-2)
Unit- 4 inverters (part-2)Unit- 4 inverters (part-2)
Unit- 4 inverters (part-2)
 

Viewers also liked

power electronics(ii)
power electronics(ii)power electronics(ii)
power electronics(ii)Darya khan
 
controlled rectifiers
controlled rectifierscontrolled rectifiers
controlled rectifiersAnkur Mahajan
 
Presentation on half and full wave ractifier.ppt
Presentation on half and full wave ractifier.pptPresentation on half and full wave ractifier.ppt
Presentation on half and full wave ractifier.pptKawsar Ahmed
 
3 phase diode rectifiers/power electronics
3 phase diode rectifiers/power electronics3 phase diode rectifiers/power electronics
3 phase diode rectifiers/power electronicsNitish Kumar
 
Power electronics note
Power electronics notePower electronics note
Power electronics noteravalgautu
 
Three phase full wave rectifier
Three phase  full wave rectifierThree phase  full wave rectifier
Three phase full wave rectifierVinay Singh
 
Space Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM InverterSpace Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM InverterPurushotam Kumar
 
24 pulse rectifier realization by 3 phase to four 3 phase transformation usin...
24 pulse rectifier realization by 3 phase to four 3 phase transformation usin...24 pulse rectifier realization by 3 phase to four 3 phase transformation usin...
24 pulse rectifier realization by 3 phase to four 3 phase transformation usin...Asoka Technologies
 
Chapter1 131114022851-phpapp02 (2)
Chapter1 131114022851-phpapp02 (2)Chapter1 131114022851-phpapp02 (2)
Chapter1 131114022851-phpapp02 (2)neomindx
 
Modulation seminar report
Modulation seminar reportModulation seminar report
Modulation seminar reportAmit Sahu
 
Three Phase Controlled Rectifier Study in Terms of firing angle variations
Three Phase Controlled Rectifier Study in Terms of firing angle variationsThree Phase Controlled Rectifier Study in Terms of firing angle variations
Three Phase Controlled Rectifier Study in Terms of firing angle variationsIDES Editor
 
International Journals of Power Electronics Controllers and Converters vol 2 ...
International Journals of Power Electronics Controllers and Converters vol 2 ...International Journals of Power Electronics Controllers and Converters vol 2 ...
International Journals of Power Electronics Controllers and Converters vol 2 ...JournalsPub www.journalspub.com
 
controlled Full Bridge Rectifier
controlled Full Bridge Rectifiercontrolled Full Bridge Rectifier
controlled Full Bridge RectifierJen Trần
 
Three Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatThree Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatVIVEK AHLAWAT
 

Viewers also liked (20)

power electronics(ii)
power electronics(ii)power electronics(ii)
power electronics(ii)
 
simulink
simulinksimulink
simulink
 
controlled rectifiers
controlled rectifierscontrolled rectifiers
controlled rectifiers
 
Presentation on half and full wave ractifier.ppt
Presentation on half and full wave ractifier.pptPresentation on half and full wave ractifier.ppt
Presentation on half and full wave ractifier.ppt
 
3 phase diode rectifiers/power electronics
3 phase diode rectifiers/power electronics3 phase diode rectifiers/power electronics
3 phase diode rectifiers/power electronics
 
Rectifiers new
Rectifiers newRectifiers new
Rectifiers new
 
Rectifier
RectifierRectifier
Rectifier
 
Power electronics note
Power electronics notePower electronics note
Power electronics note
 
Three phase full wave rectifier
Three phase  full wave rectifierThree phase  full wave rectifier
Three phase full wave rectifier
 
Space Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM InverterSpace Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM Inverter
 
24 pulse rectifier realization by 3 phase to four 3 phase transformation usin...
24 pulse rectifier realization by 3 phase to four 3 phase transformation usin...24 pulse rectifier realization by 3 phase to four 3 phase transformation usin...
24 pulse rectifier realization by 3 phase to four 3 phase transformation usin...
 
Chapter1 131114022851-phpapp02 (2)
Chapter1 131114022851-phpapp02 (2)Chapter1 131114022851-phpapp02 (2)
Chapter1 131114022851-phpapp02 (2)
 
Modulation seminar report
Modulation seminar reportModulation seminar report
Modulation seminar report
 
Three Phase Controlled Rectifier Study in Terms of firing angle variations
Three Phase Controlled Rectifier Study in Terms of firing angle variationsThree Phase Controlled Rectifier Study in Terms of firing angle variations
Three Phase Controlled Rectifier Study in Terms of firing angle variations
 
Dc–Dc converters
Dc–Dc convertersDc–Dc converters
Dc–Dc converters
 
Unit iii
Unit iiiUnit iii
Unit iii
 
International Journals of Power Electronics Controllers and Converters vol 2 ...
International Journals of Power Electronics Controllers and Converters vol 2 ...International Journals of Power Electronics Controllers and Converters vol 2 ...
International Journals of Power Electronics Controllers and Converters vol 2 ...
 
controlled Full Bridge Rectifier
controlled Full Bridge Rectifiercontrolled Full Bridge Rectifier
controlled Full Bridge Rectifier
 
Three Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatThree Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek Ahlawat
 
Prashant k11922
Prashant k11922Prashant k11922
Prashant k11922
 

Similar to AC to DC Conversion Techniques Explained

Chapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfChapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfLiewChiaPing
 
pwm three phase rectifier nptel 0729.ppt
pwm three phase rectifier nptel 0729.pptpwm three phase rectifier nptel 0729.ppt
pwm three phase rectifier nptel 0729.pptPeopleFinder
 
Chapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfChapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfLiewChiaPing
 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxLiewChiaPing
 
Chapter 20
Chapter 20Chapter 20
Chapter 20Tha Mike
 
Chapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfChapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfLiewChiaPing
 
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsauthelectroniccom
 
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsAUTHELECTRONIC
 
Silicon Controlled Rectifier priyanka patel.pptx
Silicon Controlled Rectifier priyanka patel.pptxSilicon Controlled Rectifier priyanka patel.pptx
Silicon Controlled Rectifier priyanka patel.pptxPRIYANKA PATEL
 
Topic 2 - Switch Realization.pptx
Topic 2 - Switch Realization.pptxTopic 2 - Switch Realization.pptx
Topic 2 - Switch Realization.pptxVanJasperCastillo
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.pptShivamChaturvedi67
 
power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxdivakarrvl
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorSimen Li
 

Similar to AC to DC Conversion Techniques Explained (20)

2.ppt
2.ppt2.ppt
2.ppt
 
5
55
5
 
Unit 5 inverters
Unit 5 invertersUnit 5 inverters
Unit 5 inverters
 
Chapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfChapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdf
 
pwm three phase rectifier nptel 0729.ppt
pwm three phase rectifier nptel 0729.pptpwm three phase rectifier nptel 0729.ppt
pwm three phase rectifier nptel 0729.ppt
 
Chapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfChapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdf
 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptx
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
Ppt 2
Ppt 2Ppt 2
Ppt 2
 
Chapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfChapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdf
 
4606
46064606
4606
 
Datasheet lm358
Datasheet lm358Datasheet lm358
Datasheet lm358
 
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
 
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
 
Exp 4
Exp 4 Exp 4
Exp 4
 
Silicon Controlled Rectifier priyanka patel.pptx
Silicon Controlled Rectifier priyanka patel.pptxSilicon Controlled Rectifier priyanka patel.pptx
Silicon Controlled Rectifier priyanka patel.pptx
 
Topic 2 - Switch Realization.pptx
Topic 2 - Switch Realization.pptxTopic 2 - Switch Realization.pptx
Topic 2 - Switch Realization.pptx
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.ppt
 
power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptx
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 

Recently uploaded

SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 

Recently uploaded (20)

SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 

AC to DC Conversion Techniques Explained

  • 1. Chapter 2 AC to DC Converters Outline 2.1 Single-phase controlled rectifier 2.2 Three-phase controlled rectifier 2.3 Effect of transformer leakage inductance on rectifier circuits 2.4 Capacitor-filtered uncontrolled rectifier 2.5 Harmonics and power factor of rectifier circuits 2.6 High power controlled rectifier 2.7 Inverter mode operation of rectifier circuit 2.8 Thyristor-DC motor system 2.9 Realization of phase-control in rectifier
  • 2. 2.1 Single- phase controlled (controllable) rectifier 2.1.1 Single-phase half-wave controlled rectifier Resistive load T VT R a) u1 u2 uVT ud id 0 ωt1 π 2π ωt u2 ug ud uVT α θ 0 b) c) d) e) 0 0 ωt ωt ωt ∫ + =+== π α α α π ωω π 2 cos1 45.0)cos1( 2 2 )(sin2 2 1 2 2 2d U U ttdUU (2-1)
  • 3. Inductive (resistor-inductor) load a) u1 T VT R L u2 uVT ud id u2 0 ωt1 π 2π ω t ug 0 ud 0 id 0 uVT 0 θ α b) c) d) e) f) + + ω t ω t ω t ω t
  • 4. Basic thought process of time-domain analysis for power electronic circuits The time- domain behavior of a power electronic circuit is actually the combination of consecutive transients of the different linear circuits when the power semiconductor devices are in different states. a) b) VT R L VT R L u2 u2 tURi t i L ωsin2 d d 2d d =+ ω t= a ,id=0 )sin( 2 )sin( 2 2 )( 2 d ϕωϕα αω ω −+−−= −− t Z U e Z U i t L R (2-2) (2-3)
  • 5. Single- phase half- wave controlled rectifier with freewheeling diode load (L is large enough) Inductive a) L T VT R u1 u2 uVT ud VDR idiVD u2 ud id uVT iVT Id Id ωtO O O O O O π-α π+α b) iVDR ωt ωt ωt ωt ωt g) c) e) f) d) ωT1
  • 6. Maximum forward voltage, maximum reverse voltage Disadvantages: –Only single pulse in one line cycle –DC component in the transformer current ddVT 2 II π απ− = d 2 dVT 2 )( 2 1 ItdII π απ ω π π α − == ∫ d 2 2 dVD 2 )( 2 1 R ItdII π απ ω π απ π + == ∫ + ddVD 2 R II π απ+ = (2-5) (2-6) (2-7) (2-8)
  • 7. 2.1.2 Single- phase bridge fully-controlled rectifier • Resistive load π ω t 0 0 0 i2 ud id b) c) d) ud (id ) α α R T u1 u2 a) i2 a b VT3 ud id uVT 1,4 ω t ω t VT4 VT1 VT2
  • 8. Average output (rectified) voltage: Average output current: For thyristor: For transformer: ∫ + = + == π α αα π ωω π 2 cos1 9.0 2 cos122 )(dsin2 1 2 2 2d U U ttUU (2-9) (2-10) 2 cos1 9.0 2 cos122 22d d αα π + = + == R U R U R U I (2-11)2 cos1 45.0 2 1 2 ddVT α+ == R U II π απ α π ωω π π α − +== ∫ 2sin 2 1 2 )(d)sin 2 ( 2 1 222 VT R U tt R U I (2-12) π απ α π ωω π π α − +=== ∫ 2sin 2 1 )()sin 2 ( 1 222 2 R U tdt R U II (2-13)
  • 9. • Inductive load (L is large enough) ω t ω t ω t ω t ω t ω t ω t ο ο ο ο ο ο ο u2 ud id Id Id Id Id Id iVT1,4 iVT2,3 uVT1,4 i2 , b) R T u1 u2 a) i2 a b VT3 ud id VT4 VT1 VT2
  • 10. • Electro- motive-force (EMF) load With resistor ∫ + === απ α αα π ωω π cos9.0cos 22 )(dsin2 1 222d UUttUU (2-15) a) b) R E id ud id O E ud ωt Id O ωt α θ δ
  • 11. • With resistor and inductor When L is large enough, the output voltage and current waveforms are the same as ordinary inductive load. When L is at a critical value O ud 0 E id ω t ω t π δ α θ =π dmin 23 dmin 2 1087.2 22 I U I U L − ×== πω (2-17)
  • 12. 2.1.3 Single- phase full- wave controlled rectifier a) b) u1 T R u2 u2 i1 VT1 VT2 ud ud i1 O O α ω t ω t
  • 13. 2.1.4 Single- phase bridge half-controlled rectifier a) T a b R L O b) u2 i2 ud id VT1 VT2 VD3 VD4 VDR u2 O ud id Id O O O O O i2 Id Id Id Id Id α ωt ωt ωt ωt ωt ωt ωt α π−α π−α iVT 1iVD 4 iVT 2iVD 3 iVD R
  • 14. • Another single- phase bridge half-controlled rectifier Comparison with previous circuit: –No need for additional freewheeling diode –Isolation is necessary between the drive circuits of the two thyristors load T u2 VT2 VT4 VT1 VT3
  • 15. Summary of some important points in analysis When analyzing a thyristor circuit, start from a diode circuit with the same topology. The behavior of the diode circuit is exactly the same as the thyristor circuit when firing angle is 0. A power electronic circuit can be considered as different linear circuits when the power semiconductor devices are in different states. The time- domain behavior of the power electronic circuit is actually the combination of consecutive transients of the different linear circuits. Take different principle when dealing with different load – For resistive load: current waveform of a resistor is the same as the voltage waveform –For inductive load with a large inductor: the inductor current can be considered constant
  • 16. 2.2 Three- phase controlled (controllable) rectifier 2.2.1 Three- phase half- wave controlled rectifier Resistive load, α= 0º a b c T R ud id VT2 VT1 VT3 u2 O O O uab uac O iVT1 uVT1 ω t ω t ω t ω t ω t u a u b u c u G u d ω t1 ω t2 ω t3 Common-cathode connection Natural commutation point
  • 17. Resistive load, α= 30º u2 ua ub uc O O O ωt O ωt O ωt uG ud uab uac ωt1 iVT1 uVT1 uac ωt ωt a b c T R ud id VT2 VT1 VT3
  • 18. Resistive load, α= 60º ωt u2 ua ub uc O O O O uG ud iVT 1 ωt ωt ωt a b c T R ud id VT2 VT1 VT3
  • 19. Resistive load, quantitative analysis When α≤ 30º , load current id is continuous. When α > 30º , load current id is discontinuous. Average load current Thyristor voltages αα π ωω π α π α π cos17.1cos 2 63 )(sin2 3 2 1 22 6 5 6 2d UUttdUU === ∫ + + (2-18)       ++=      ++== ∫ + ) 6 cos(1675.0) 6 cos(1 2 23 )(sin2 3 2 1 2 6 2d α π α π π ωω π π α π UttdUU (2-19) R U I d d = (2-20) 0 30 60 90 120 150 0.4 0.8 1.2 1.17 3 2 1 α/(°) Ud/U2
  • 20. • Inductive load, L is large enough T R L ud eL id VT3 ud ia ua ub uc ib ic id uac uab uac O O O O O O ω tα uVT 1 ω t ω t ω t ω t ω t a b c VT2
  • 21. Thyristor voltage and currents, transformer current : αα π ωω π α π α π cos17.1cos 2 63 )(sin2 3 2 1 22 6 5 6 2d UUttdUU === ∫ + + (2-18) ddVT2 577.0 3 1 IIII === d VT VT(AV) 368.0 57.1 I I I == 2RMFM 45.2 UUU == (2-23) (2-25) (2-24)
  • 22. 2.2.2 Three- phase bridge fully-controlled rectifier Circuit diagram Common- cathode group and common- anode group of thyristors Numbering of the 6 thyristors indicates the trigger sequence. b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 23. Resistive load, α= 0º b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 24. u2 ud1 ud2 u2L ud uab uac uab uac ubc uba uca ucb uab uac uab uac ubc uba uca ucb uab uac I II III IV V VI ua ucub ωt1O ωt O ωt O ωt O ωt α= 0° iVT 1 uVT 1
  • 25. Resistive load, α= 30º b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 26. ud1 ud2 α=30¡ ã ia O O O O ωt ud uab uac ua ub uc ωt1 uab uac ubc uba uca ucb uab uac І II III IV V VI uab u ac ubc uba u ca ucb u ab u acuVT 1 ωt ωt ωt
  • 27. Resistive load, α= 60º b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 28. α= 60º ud1 ud2 ud uac uac uab uab uac ubc uba uca ucb uab uac ua I II III IV V VI ub uc O ωt1 O ωt O uVT 1 ωt ωt
  • 29. Resistive load, α= 90º b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 30. ud1 ud2 ud ua ub uc ua ub ωt O O O O O ia id uab uac ubc uba uca ucb uab uac ubc uba iVT1 ωt ωt ωt ωt
  • 31. Inductive load, α= 0º b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 32. ud1 u2 ud2 u2L ud id O O O ωtO uaα = 0 ub uc ωt1 uab uac ubc uba uca ucb uab uac I II III IV V VI iVT 1 ωt ωt ωt º
  • 33. Inductive load, α= 30º b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 34. ud1 α= 30 ud2 ud uab uac ubc uba uca ucb uab uac I II III IV V VI ωtO ωtO ωtO ωtO id ia ωt1 ua ub uc °
  • 35. Inductive load, α= 90º b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 36. α = 90° ud1 ud2 uac ubc uba uca ucb uab uac uab I II III IV V VI ud uac uab uac ωtO ωtO ωtO ub uc ua ωt1 uVT 1
  • 37. Quantitative analysis Average output voltage: For resistive load, When a > 60º, load current id is discontinuous. everage output current (load current): Transformer current: αωω π α π α π cos34.2)(sin6 3 1 2 3 2 3 2d UttdUU == ∫ + + (2-26) (2-27)    ++== ∫ + ) 3 cos(134.2)(sin6 3 2 3 2d α π ωω π π α π UttdUU R U I d d = (2-20) dddd IIIII 816.0 3 2 3 2 )( 3 2 2 1 22 2 ==      ×−+×= ππ π (2-28)
  • 38. 2.3 Effect of transformer leakage inductance on rectifier circuits In practical, the transformer leakage inductance has to be taken into account. Commutation between thyristors, thus can not happen instantly,but with a commutation process. a b c T Lud ic ib iaLB LB LB ik VT1 VT2 VT3 R id O γ ic ia ib ic ia Id ud ωt ua ub uc α ωt O
  • 39. Commutation process analysis Circulating current ik during commutation Output voltage during commutation ik: 0 Id ub-ua = 2·LB·dia/dt ia = Id-ik : Id ib = ik : 0 Id 0 2d d d d bak Bb k Bad uu t i Lu t i Luu + =−=+= (2-30)
  • 40. Quantitative calculation Reduction of average output voltage due to the commutation process Calculation of commutation angle – Id ↑,γ↑ – XB↑, γ↑ – For α ≤ 90۫, α↓, γ↑ dB 0 B 6 5 6 5 B 6 5 6 5 Bbb 6 5 6 5 dbd 2 3 d 2 3 )(d d d 2 3 )(d)] d d ([ 2 3 )(d)( 3/2 1 IXiLt t i L t t i LuutuuU I π ω π ω π ω π ω π π γα π α π γα π α π γα π α === −−=−=∆ ∫∫ ∫∫ ++ + ++ + ++ + d k k k (2-31) 2 dB 6 2 )cos(cos U IX =+− γαα (2-36)
  • 41. Summary of the effect on rectifier circuits Circuits Single- phase Full wave Single- phase bridge Three- phase half wave Three- phase bridge m-pulse recfifier dU∆ d B I X π d B2 I X π d B 2 3 I X π d B3 I X π d B 2 I mX π )cos(cos γαα +− 2 Bd 2U XI 2 Bd 2 2 U XI 2 dB 6 2 U IX 2 dB 6 2 U IX m U XI π sin2 2 Bd
  • 42. • Conclusions –Commutation process actually provides additional working states of the circuit. –di/dt of the thyristor current is reduced. –The average output voltage is reduced. –Positive du/dt – Notching in the AC side voltag
  • 43. 2.4 Capacitor- filtered uncontrolled (uncontrollable) rectifier 2.4.1 Capacitor- filtered single- phase uncontrolled rectifier Single-phase bridge, RC load: a) + RCu1 u2 i2 VD1 VD3 VD2 VD4 id iC iR ud b) 0 i ud θ δ π 2π ω t i,ud
  • 44. Single-phase bridge, RLC load a) b) - + R C L + u1 u2 i2 ud uL id iC iR VD2 VD4 VD1 VD3 u2 ud i2 0 δ θ π ωt i2,u2,ud
  • 45. 2.4.2 Capacitor- filtered three- phase uncontrolled rectifier Three-phase bridge, RC load a) + a b c T ia RCud id iC iR VD2 b) O ia ud id uduab uac 0δ θ ππ 3 ωtVD6VD4 VD1VD3VD5 ωt
  • 46. Three- phase bridge, RC load Waveform when ωRC≤1.732 a) b) ωt ωt ωtωt ia id ia id O O O O a)ωRC= • b)ωRC<3 3
  • 47. Three- phase bridge, RLC load a) b) c) + a b c T ia RCud id iC iR VD4 VD6 VD1 VD3 VD5 VD2 ia ia O O ωt ωt
  • 48. 2.5 Harmonics and power factor of rectifier circuits 2.5.1 Basic concepts of harmonics and reactive power For pure sinusoidal waveform For periodic non-sinusoidal waveform where
  • 49. • Harmonics-related specifications Take current harmonics as examples Content of nth harmonics In is the effective (RMS) value of nth harmonics. I1 is the effective (RMS) value of fundamental component. Total harmonic distortion Ih is the total effective (RMS) value of all the harmonic components. %100 1 ×= I I HRI n n (2-57) %100 1 ×= I I THD h i (2-58)
  • 50. • Definition of power and power factor for sinusoidal circuits Active power Reactive power Apparent power Power factor ∫ == π ϕω π 2 0 cos)( 2 1 UItuidP (2-59) Q=U I sinϕ (2-61) S=UI (2-60) 222 QPS += (2-63) S P =λ (2-62) λ =cos ϕ (2-64)
  • 51. • Definition of power and power factor For non- sinusoidal circuit Active power: Power factor: Distortion factor (fundamental- component factor): Displacement factor (power factor of fundamental component): Definition of reactive power is still in dispute P=U I1 cosϕ1 (2-65) (2-66)11 111 coscos cos ϕνϕ ϕ λ ==== I I UI UI S P ν =I1 / I λ =cos ϕ1 1
  • 52. • Review of the reactive power concept The reactive power Q does not lead to net transmission of energy between the source and load. When Q ≠ 0, the rms current and apparent power are greater than the minimum amount necessary to transmit the average power P. Inductor: current lags voltage by 90°, hence displacement factor is zero. The alternate storing and releasing of energy in an inductor leads to current flow and nonzero apparent power, but P = 0. Just as resistors consume real (average) power P, inductors can be viewed as consumers of reactive power Q. Capacitor: current leads voltage by 90°, hence displacement factor is zero. Capacitors supply reactive power Q. They are often placed in the utility power distribution system near inductive loads. If Q supplied by capacitor is equal to Q consumed by inductor, then the net current (flowing from the source into the capacitor- inductive- load combination) is in phase with the voltage, leading to unity power factor and minimum rms current magnitude.
  • 53. 2.5.2 AC side harmonics and power factor of controlled rectifiers with inductive load • Single- phase bridge fully-controlled rectifier R T u1 u2 a) i2 a b VT3 ud id VT4 VT1 VT2 ωt ωt ωt ωt ωt ωt ωt ο ο ο ο ο ο ο u2 ud id Id Id Id Id Id iVT1,4 iVT2,3 uVT1,4 i2 , b)
  • 54. AC side current harmonics of single- phase bridge fully-controlled rectifier with inductive load Where Conclusions –Only odd order harmonics exist – In∝1/n – In / I1 = 1/n ∑∑ == == +++=   ,5,3,1,5,3,1 d d2 sin2sin 14 )5sin 5 1 3sin 3 1 (sin 4 n n n tnItn n I tttIi ωω π ωωω π (2-72) πn I In d22 = n=1,3,5,… (2-73)
  • 55. • A typical gate triggering control circuit 220V 36V + B TP +15V A VS +15V - 15V - 15VX Y Disable R Q uts VD1 VD2 C1 R2 R4 TS V2 R5 R8 R6 R7 R3 R9 R10 R11 R12 R13 R14 R16 R15 R18 R17 RP1 uco up C2 C3 C3 C5 C6C7 R1 RP2 V1 I1c V3 V4 V6 V5 V7 V8 VD4 VD10 VD5 VD6 VD7 VD9 VD8 VD15 VD11 ~VD14
  • 56. • Three- phase bridge fully-controlled rectifier b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 57. ud1 α= 30 ud2 ud uab uac ubc uba uca ucb uab uac I II III IV V VI ωtO ωtO ωtO ωtO id ia ωt1 ua ub uc °
  • 58. • AC side current harmonics of three- phase bridge fully- controlled rectifier with inductive load where ∑∑ = ±= = ±= −+=−+= −++−−=   3,2,1 16 1 3,2,1 16 dd da sin2)1(sin2sin 1 )1( 32 sin 32 ]13sin 13 1 11sin 11 1 7sin 7 1 5sin 5 1 [sin 32 k kn n k k kn k tnItItn n ItI tttttIi ωωω π ω π ωωωωω π (2-79) (2-80)        =±== = ,3,2,1,16, 6 6 d d1 kknI n I II n π π
  • 59. 2.5.3 AC side harmonics and power factor of capacitor- filtered uncontrolled rectifiers Situation is a little complicated than rectifiers with inductive load. Some conclusions that are easy to remember: –Only odd order harmonics exist in single- phase circuit, and only 6k±1 (k is positive integer) order harmonics exist in three- phase circuit. –Magnitude of harmonics decreases as harmonic order increases. –Harmonics increases and power factor decreases as capacitor increases. –Harmonics decreases and power factor increases as inductor increases.
  • 60. 2.5.4 Harmonic analysis of output voltage and current       − −=+= ∑∑ ∞ = ∞ = tn n k UtnbUu mknmkn n ω π ω cos 1 cos2 1cos 2d0d0d0 (2-85) (2-86)m m UU π π sin2 2d0 = d02 1 cos2 U n k bn − −= π (2-87) u d ωtOπ m π m 2π m U 2 2 Output voltage of m- pulse rectifier when α = 0º
  • 61. Ripple factor in the output voltage Output voltage ripple factor where UR is the total RMS value of all the harmonic components in the output voltage and U is the total RMS value of the output voltage d0 R U U u =γ (2-88) (2-89) 2 d0 22 R UUUU mkn n −== ∑ ∞ =
  • 62. • Harmonics in the output current where )cos(dd n mkn n tndIi ϕω −+= ∑ ∞ = (2-92) (2-93) R EU I − = d0 d 22 )( LnR b z b d n n n n ω+ == R Ln n ω ϕ arctan= (2-94) (2-95)
  • 63. Conclusions for α = 0º Only mk (k is positive integer) order harmonics exist in the output voltage and current of m- pulse rectifiers Magnitude of harmonics decreases as harmonic order increases when m is constant. The order number of the lowest harmonics increases as m increases. The corresponding magnitude of the lowest harmonics decreases accordingly. For α ≠ 0º Quantitative harmonic analysis of output voltage and current is very complicated for α ≠ 0º. As an example,for 3- phase bridge fully- controlled rectifie
  • 64. 2.6 High power controlled rectifier 2.6.1 Double- star controlled rectifier Circuit Waveforms When α= 0º T a b c L R niP LP ud id VT5 ca' b' n1 n2 ' VT4 VT6 VT2VT3 VT1 ud1 ua ub uc ia ud2 ia ' uc' ua ' ub ' uc ' O ω t O ω t O ω t O ω t Id 1 2 Id 1 6 Id 1 2 Id 1 6
  • 65. • Effect of interphase reactor(inductor, transformer) n L R +- +- ud1 LP ub ' ud2 ud n2 n1 iP ua VT1 VT6 uP 1 2 up ud1 ,ud2 O O 60 360° ωt1 ωt ωt b) a) ua ub ucuc ' ua'ub' ub' ° d1d2p uuu −= )( 2 1 2 1 2 1 d2d1pd1pd2d uuUuuuu +=+=−= (2-97) (2-98)
  • 66. Quantitative analysis when α = 0º ]9cos 40 1 6cos 35 2 3cos 4 1 1[ 2 63 2 d1 ⋅⋅⋅−+−+= ttt U u ωωω π ]9cos 40 1 6cos 35 2 3cos 4 1 1[ 2 63 ])60(9cos 40 1 )60(6cos 35 2 )60(3cos 4 1 1[ 2 63 2 2 d2 ⋅⋅⋅−−−= ⋅⋅⋅−°−+°−−°−+= ttt U ttt U u ωωω π ωωω π ]9cos 20 1 3cos 2 1 [ 2 63 2 p ⋅⋅⋅−−−= tt U u ωω π ]6cos 35 2 1[ 2 63 2 d ⋅⋅⋅−−= t U u ω π (2-99) (2-100) (2-101) (2-102)
  • 67. Waveforms when α > 0º Ud=1.17 U2 cos α °90=α °60=α °30=αud ud ud ωtO ωtO ωtO ua ub ucuc ' ua ' ub ' ub uc uc ' ua ' ub ' ub uc uc ' ua ' ub '
  • 68. 2.6.2 Connection of multiple rectifiers Connection of multiple rectifiers To increase the output capacity To improve the AC side current waveform and DC side voltage waveform Larger output voltage: series connection Larger output current: parallel connection
  • 69. • Phase-shift connection of multiple rectifiers Parallel connection M LT VT 1 2 c1 b1 a1 c2 b2 a2 LP 12- pulse rectifier realized by paralleled 3- phase bridge rectifiers
  • 70. Series connection C ? L RB A 1 * ? ? * * 0 30° 3 iA c1 b1 a1 1 c2 b2 a2 iab 2 ua2b2 ua1b1 i a1 id ud I II I III 0 a) b) c) d) ia1 Id ia2 iab2' iA Id iab2 ωt ωt ωt ωt 0 0 0 Id 2 3 3 3 Id 3 3 Id Id3 2 3 (1+ ) Id3 2 3 (1+ )Id3 3 Id 1 3 12- pulse rectifier realized by series 3- phase bridge rectifiers
  • 71. • Sequential control of multiple series-connected rectifiers L i a) l oad Ⅰ Ⅱ Ⅲ u 2 u 2 u 2 Id VT11 u d b) c) i Id 2 Id ud O α π + α VT12 VT13 VT14 VT21 VT22 VT23 VT24 VT31 VT32 VT33 VT34 Circuit and waveforms of series- connected three single-phase bridge rectifiers
  • 72. 2.7 Inverter mode operationof rectifiers • Review of DC generator- motor system c)b)a) MG MG MG E G E M Id R ¡Æ E G E M Id R ¡Æ E G E M Id R ¡Æ Id = EG EM RΣ - Id = EM EG RΣ - should be avoided
  • 73. • Inverter mode operation of rectifiers Rectifier and inverter mode operation of single- phase full- wave converter a) b) R + - engry M 1 0 2 u10 u20 ud id L VT1 VT2 u10ud u20 u10 α O O ωt ωt Id id Ud >EM EM engry M R + - 1 0 2 ud id LVT1 VT2 u10ud u20 u10 O O ωt ωt Id id Ud <EM α EM iVT 1 iVT2 iVT 1 iVT 2 iVT1 iVT2 iVT2 id = +iVT1 iVT2 iVT1 iVT2 iVT1 id = +iVT1 iVT2 Id = Ud EG RΣ - Id = UdEM RΣ -
  • 74. Necessary conditions for the inverter mode operation of controlled rectifiers There must be DC EMF in the load and the direction of the DC EMF must be enabling current flow in thyristors. (In other word EM must be negative if taking the ordinary output voltage direction as positive.) α > 90º so that the output voltage Ud is also negative.
  • 75. • Inverter mode operation of 3- phase bridge rectifier uab uac ubc uba uca ucb uab uac ubc uba uca ucb uab uac ubc uba uca ucb uab uac ubc ua ub uc ua ub uc ua ub uc ua ubu2 ud ωtO ωtO β = π 4 β = π 3 β = π 6 β = π 4 β = π 3 β = π 6 ωt1 ωt3ωt2
  • 76. Inversion angle (extinction angle) β α+ β=180º Inversion failure and minimum inversion angle Possible reasons of inversion failures –Malfunction of triggering circuit –Failure in thyristors –Sudden dropout of AC source voltage –Insufficient margin for commutation of thyristors Minimum inversion angle (extinction angle) βmin= δ + γ+ θ′ ( 2-109 )
  • 78. 2.8 Thyristor- DC motor system 2.8.1 Rectifier mode of operation Waveforms and equations UIREU dMd ∆++= Σ (2-112) where RΣ RM RB 3XB 2π + += (for 3- phase half-wave) u d O id ωt ua ub uc α ud O ia ib icic ωt E Ud idR (Waveforms of 3- phase half- wave rectifier with DC motor load
  • 79. • Speed- torque (mechanic) characteristic when load current is continuous nEM ϕ= Ce (2-113) For 3- phase half-wave UIEM −−= cosα1.17 2U ΣR d ∆ EM = cosα1.17 2U α e d e C UIR C U n ∆+ −= Σcos1.17 2 (2-114) For 3-phase bridge α e d e C IR C U n −= Σcos2.34 2 (2-115) (2-116) O n a1<a2<a3 a3 a2 a1 Id (RB+RM+ ) Id Ce 3XB 2π For 3- phase half-wave
  • 80. • Speed- torque (mechanic) characteristic when load current is discontinuous EMF at no load (taking 3- phase half-wave as example) For α≤ 60º 22UEo= For α>60º )3cos(2 2 πα−UEo= discontinuouts mode continuous mode E E0 E0' O Idmin Id (0.585U2) ( U2)2 For 3- phase half-wave
  • 81. 2.8.2 Inverter mode of operation Equations –are just the same as in the rectifier mode of operation except that Ud, EM and n become negative. E.g., in 3- phase half- wave UIEM −−= cosα1.17 2U ΣR d ∆ α e d e C UIR C U n ∆+ −= Σcos1.17 2 (2-114) (2-115) – Or in another form (2-123) I)0cos β+( ∑RIUE ddM = - (2-122) eC n −= ∑+ RIU dd βcos0 1 rectifier mode n α3 α2 α1 Id α4 β2 β3 β4 β1 α =β = π 2 inverter mode α increasingβ increasing Speed-torque characteristic of a DC motor fed by a thyristor rectifier circuit
  • 82. 2.8.3 Reversible DC motor drive system(4-quadrant operation) L + - + - + - + - + - + - + - + - AC source converter 2converter 1 converter 2 +T- T converter 1 rectifying converter 2 rectifying converter 2 inverting converter 1 inverting forward motoring reverse motoring forward braking(regenerating) reverse braking(regenerating) converter 1 converter 2 EM M a b c a b c +n Id Id Udα M EM Id M EM MEM Id Energ yM EM - n Udβ Udα Udβ O AC source converter 1 Energ y Energ y Energ y converter 2 converter 2converter 1 converter 1 AC source AC source Back-to-back connection of two 3- phase bridge circuits
  • 83. converter 1converter 2 n α3 α2 α1 Id α4 β2 β3 β4 β1 α =β = π 2 α '=β '= π 2 β'3 β'2 β'1 β'4 α'2 α'3 α'4 α'1 α1 =β '1 ;α '1 =β1 α2 =β '2 ;α '2 =β2 α increasingβ increasing β increasingα increasing
  • 84. 2.9 Gate triggering control circuit for thyristor rectifiers A typical gate triggering control circuit 220V 36V + B TP +15V A VS +15V -15V - 15VX Y Disable R Q uts VD1 VD2 C1 R2 R4 TS V2 R5 R8 R6 R7 R3 R9 R10 R11 R12 R13 R14 R16 R15 R 18 R17 RP1 uco up C2 C3 C3 C5 C6C7 R1 RP2 V1 I1c V3 V4 V6 V5 V7 V8 VD4 VD10 VD5 VD6 VD7 VD9 VD8 VD15 VD11 ~VD14