SlideShare a Scribd company logo
1 of 33
Download to read offline
‫ر‬َ‫ـد‬ْ‫ق‬‫ِـ‬‫ن‬،،،‫لما‬‫اننا‬ ‫نصدق‬ْْ‫ق‬ِ‫ن‬‫ر‬َ‫د‬
LECTURE (5)
Analysis and Design of Control
Systems using Frequency Response
Assist. Prof. Amr E. Mohamed
Agenda
 Introduction
 Frequency Response
 Bode Plots
 Gain and Phase Margins
 Stability Analysis
 Bandwidth and Cutoff Frequency
 Compensation and Controller Design in the Frequency Domain
2
Frequency Response
 For a stable, linear, time-invariant (LTI) system, the steady state
response to a sinusoidal input is a sinusoid of the same frequency but
possibly different magnitude and different phase.
 Sinusoids are the Eigenfunctions of convolution.
 If input is 𝐴 𝑐𝑜𝑠(𝜔 𝑜 𝑡 + 𝜃) and steady-state output is 𝐵 cos(𝜔 𝑜 𝑡 + 𝜑),
then the complex number
𝐵
𝐴
𝑒 𝑗(𝜑−𝜃) is called the frequency response of
the system at frequency 𝜔 𝑜.
3
)(
)(
jT
sT 𝐶(𝑠)
𝐶(𝑗𝜔)
𝑅(𝑠)
𝑅(𝑗𝜔)
4
L.T.I system
tAtr sin)(  )sin()(   tBty
Magnitude: Phase:
A
B 
G(s)
H(s)
+
-
)(ty)(tr
)()(1
)(
)(
)(
sHsG
sG
sR
sY

  jsjs 
Magnitude: Phase:
)()(1
)(


jHjG
jG
 )]()(1[
)(


jHjG
jG


Steady state response
Bode Plots
 The Bode form is a method for the frequency domain analysis.
 The Bode plot of the function G(jω) is composed Bode of two plots:
 One with the magnitude of G(jω) plotted in decibels (dB) versus log10(jω).
 The other with the phase of G(jω) plotted in degree versus log10(ω).
 Feature of the Bode Plots
 Since the magnitude of G(jω) in the Bode plot is expressed in dB, products and
division factors in G() become additions and subtraction, respectively
 The phase relations are also added and subtracted from each other algebraically.
 The magnitude plot of Bode of G(jω) can be approximated by straight-lines
segments which allow the simple sketching of the bode plot without detailed
computation.
5
6
1
2
10log


decDecade :
1
2
2log


octOctave :
1 10 100
Logarithmic coordinate
2 3 4 20
dB

Mag
(dB)
Phase
(deg)
1 1 1 1 1 1
This is a sheet of 5 cycle, semi-log paper.
This is the type of paper usually used for
preparing Bode plots.
 (rad/sec)
 (rad/sec)
7
A number to decibel conversion
)number(log20 10
decade
8
Bode Plots
 In order to simplify the Bode plot, it is convenient to use the so-called Bode form
 Given: the open loop T.F 𝐺 𝑠 𝐻(𝑠) =
𝐴 𝑠+𝑧1 𝑠+𝑧2 … 𝑠+𝑧 𝑚
𝑠 𝑞 𝑠+𝑝1 𝑠+𝑝2 …(𝑠+𝑝 𝑛)(𝑠2+𝑎𝑠+𝜔 𝑜
2)
 Where A, m, q and n are real constants
 The bode form can be expressed as:
𝐺 𝑠 𝐻(𝑠) =
𝐾 1 +
𝑠
𝑧1
1 +
𝑠
𝑧2
… 1 +
𝑠
𝑧 𝑚
𝑠 𝑞 1 +
𝑠
𝑝1
1 +
𝑠
𝑝2
… 1 +
𝑠
𝑝 𝑛
1 +
𝑎
𝜔 𝑜
𝑠 +
𝑠
𝜔 𝑜
2
𝐺 𝑗𝜔 𝐻 𝑗𝜔 =
𝐾 1 +
𝑗𝜔
𝑧1
1 +
𝑗𝜔
𝑧2
… 1 +
𝑗𝜔
𝑧 𝑚
𝑗𝜔 𝑞 1 +
𝑗𝜔
𝑝1
1 +
𝑗𝜔
𝑝2
… 1 +
𝑗𝜔
𝑝 𝑛
1 +
𝑎
𝜔 𝑜
𝑗𝜔 +
𝑗𝜔
𝜔 𝑜
2
9
Basic Terms
 Constant gain G s H s = K or G jω 𝐻 jω = K
 Integral factors G s H s =
1
𝑠
or G jω 𝐻 jω =
1
jω
 Derivative factors G s H s = 𝑠 or G jω 𝐻 jω = jω
 First order factors G s H s = 1 +
𝑠
𝑎
±1
or G jω 𝐻 jω = 1 +
𝑗𝜔
𝑎
±1
 Quadratic factors G s H(𝑠) = 1 +
2z
𝑤 𝑛
𝑠 +
𝑠
𝑤 𝑛
2 ±1
or
G jω 𝐻 jω = 1 +
2z
𝑤 𝑛
𝑗𝜔 +
𝑗𝜔
𝑤 𝑛
2 ±1
10
The Bode Plot for a constant gain K
)( jT
4K
4/1K
4K
4/1K
|G(jω)H(jω)| = 20𝑙𝑜𝑔10 𝐾
zerojj  ))H(G( 
11
The Bode Plot for a derivative factor
 3
j
 3
j
 2
j
 2
j
j
j
dB/decade20 nslope
 90n
1
12
The Bode Plot for an integral factor
  3
j
1
  2
j
  1
j
  3
j
  2
j
  1
j
dB/decade20 nslope
 90n
13
The Bode Plot for a first order factor 𝟏 +
𝑠
𝑎
Magnitude:
Phase:
])(1log[10
)(1log20)1(
2
2
a
aa
j
dB




aa
j
 1
tan)1( 

01log100  dB
a
a

 
adB
a
dB
aa
ja
log20log20
log201




 
o
GH
a
a 00tan0 1
 
 
o
GH
a
a 90tan 1
 
 
01.32log1011  dBja
14
The Bode Plot for a Second order factor















2
2
1)()(
nn
j
jjHjG




z











1,)log(40
1,)2log(20
1,0
)()(


nn
n
n
jHjG




















1,180
1,90
1,0
)()( 0
0


n
o
n
n
jHjG







2
12
22
2
10
2
)(1
2
tan)()(2))(1()()(
2)(1log20)()(2))(1()()(
n
n
nn
nn
dB
nn
jHjGjjHjG
jHjGjjHjG























































2
2
1)()(
nn
s
ssHsG

z
15
The Bode Plot for a Second order factor
16















2
2
1)()(
nn
j
jjHjG




z

Bode plots for
 𝐺 𝑠 𝐻(𝑠) = 𝑠;
 𝐺(𝑠)𝐻(𝑠) =
1
𝑠
;
 𝐺(𝑠)𝐻(𝑠) = 1 +
𝑠
𝑎
 𝐺(𝑠)𝐻(𝑠) =
1
1 +
𝑠
𝑎
17
Example 5.1: Draw the Bode plot for a system transfer function T(s)
 
  
 
  
































1
2
1
1
3
5.1
)()(
1
2
12
1
3
3
)()(
21
3
)()(
s
ss
s
sHsG
s
ss
s
sHsG
sss
s
sHsG
Bode Mag. plot for Example 5.1:
a. components;
b. composite 18
Example 5.1: Draw the Bode plot for a system transfer function T(s)
Bode phase plot for Example 5.1:
a. components;
b. composite 19
 
  
 
  
































1
2
1
1
3
5.1
)()(
1
2
12
1
3
3
)()(
21
3
)()(
s
ss
s
sHsG
s
ss
s
sHsG
sss
s
sHsG
Example 5.2: Draw the Bode plot for a system transfer function T(s)
Bode Mag. plot for Example 5.2:
a. components;
b. composite
 
  
































108.0
5
1
2
1
3
06.0
)()(
2522
3
)()(
2
2
s
ss
s
sHsG
sss
s
sHsG
20
Example 5.2: Draw the Bode plot for a system transfer function T(s)
Bode phase plot for Example 5.2:
a. components;
b. composite
21
 
  
































108.0
5
1
2
1
3
06.0
)()(
2522
3
)()(
2
2
s
ss
s
sHsG
sss
s
sHsG
Relative stability (Gain and Phase Margins)
 A transfer function is called minimum phase when all the poles and zeros
are LHP and non-minimum-phase when there are RHP poles or zeros.
 The phase margin (PM): is that amount of additional phase lag at the gain
crossover frequency required to bring the system to the verge of instability.
𝑃𝑀 = 180 + phase of GH measured at the gain crossover frequency 0 𝑑𝐵
 The gain margin (GM): is the reciprocal of the magnitude |G(jw)| at the
frequency at which the phase angle is
𝐺𝑀 = 0 − 𝑑𝐵 𝑜𝑓 𝐺𝐻 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 −180
Minimum phase system Stable
22
23
Open loop transfer function :
Closed-loop transfer function :
)()( sHsG
)()(1 sHsG
Open loop Stability  poles of in LHP)()( sHsG
)0,0()0,1(
Re
Im
RHP
Closed-loop Stability 
poles of in left side of (-1,0))()( sHsG
Gain and Phase Margins (Cont.)
 The gain margin indicates the system gain can be increased by a factor of GM
before the stability boundary is reached.
 The phase margin is the amount of phase shift of the system at unity
magnitude that will result instability
Fig. 5.17 Phase and gain margin definition
(a) Stable system (b) Unstable system
24
Example 5.3:
 For the system shown in Fig.5.18, determine the gain margin, phase
margin, phase-crossover frequency, and gain-crossover frequency.
 Solution:
 The Bode plot for this system is shown in Fig. 5.19.
)(sR )(sC
  1025
)1(20
2


ssss
s
25
Example 5.3:
4.0131
9.9293 dB
0.4426
103.6573º
 The gain margin = 9.929 and the phase margin = 103.7 degree
26
Bandwidth and Cutoff Frequency
-3 dB
cutoff frequency
bandwidth
27
Using Matlab For Frequency Response
 Instruction: We can use Matlab to run the frequency response for the
previous example. We place the transfer function in the form:
 The Matlab Program
28
>> num = [5000 50000];
>> den = [1 501 500];
>> Bode (num,den)
]500501[
]500005000[
)500)(1(
)10(5000
2





ss
s
ss
s
Relationship between System Type and Log-Magnitude Curve
 Consider the unity-feedback control system. The static position,
velocity, and acceleration error constants describe the low-frequency
behavior of type 0, type 1, and type 2 systems, respectively.
 For a given system, only one of the static error constants is finite and
significant.
 The type of the system determines the slope of the log-magnitude
curve at low frequencies.
 Thus, information concerning the existence and magnitude of the
steady-state error of a control system to a given input can be
determined from the observation of the low-frequency region of the
log-magnitude curve.
29
Determination of Static Position Error Constants.
 Consider the type-0
unity-feedback control
system,
30
Determination of Static Position Error Constants.
 Consider the type-1
unity-feedback control
system,
31
Determination of Static Position Error Constants.
 Consider the type-2
unity-feedback control
system,
32
33

More Related Content

What's hot

STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space AnalysisHussain K
 
Lyapunov stability analysis
Lyapunov stability analysisLyapunov stability analysis
Lyapunov stability analysisVanshVarshney
 
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...Amr E. Mohamed
 
ppt on Time Domain and Frequency Domain Analysis
ppt on Time Domain and Frequency Domain Analysisppt on Time Domain and Frequency Domain Analysis
ppt on Time Domain and Frequency Domain Analysissagar_kamble
 
Modern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsModern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsAmr E. Mohamed
 
Time Response Analysis
Time Response AnalysisTime Response Analysis
Time Response AnalysisManthan Kanani
 
Root locus method
Root locus methodRoot locus method
Root locus methodRavi Patel
 
Chapter 4 time domain analysis
Chapter 4 time domain analysisChapter 4 time domain analysis
Chapter 4 time domain analysisBin Biny Bino
 
Meeting w3 chapter 2 part 1
Meeting w3   chapter 2 part 1Meeting w3   chapter 2 part 1
Meeting w3 chapter 2 part 1mkazree
 
block diagram representation of control systems
block diagram representation of  control systemsblock diagram representation of  control systems
block diagram representation of control systemsAhmed Elmorsy
 
Frequency response analysis I
Frequency response analysis IFrequency response analysis I
Frequency response analysis IMrunal Deshkar
 
digital control Chapter1 slide
digital control Chapter1 slidedigital control Chapter1 slide
digital control Chapter1 slideasyrafjpk
 
digital control Chapter 2 slide
digital control Chapter 2 slidedigital control Chapter 2 slide
digital control Chapter 2 slideasyrafjpk
 
Week 10 part 1 pe 6282 Block Diagrams
Week  10 part 1 pe 6282   Block DiagramsWeek  10 part 1 pe 6282   Block Diagrams
Week 10 part 1 pe 6282 Block DiagramsCharlton Inao
 
Z Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And SystemsZ Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And SystemsMr. RahüL YøGi
 
Ch5 transient and steady state response analyses(control)
Ch5  transient and steady state response analyses(control)Ch5  transient and steady state response analyses(control)
Ch5 transient and steady state response analyses(control)Elaf A.Saeed
 

What's hot (20)

STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space Analysis
 
Lyapunov stability analysis
Lyapunov stability analysisLyapunov stability analysis
Lyapunov stability analysis
 
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
 
ppt on Time Domain and Frequency Domain Analysis
ppt on Time Domain and Frequency Domain Analysisppt on Time Domain and Frequency Domain Analysis
ppt on Time Domain and Frequency Domain Analysis
 
Modern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsModern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of Systems
 
Time Response Analysis
Time Response AnalysisTime Response Analysis
Time Response Analysis
 
Root locus method
Root locus methodRoot locus method
Root locus method
 
Control chap4
Control chap4Control chap4
Control chap4
 
Chapter 4 time domain analysis
Chapter 4 time domain analysisChapter 4 time domain analysis
Chapter 4 time domain analysis
 
Control chap6
Control chap6Control chap6
Control chap6
 
Meeting w3 chapter 2 part 1
Meeting w3   chapter 2 part 1Meeting w3   chapter 2 part 1
Meeting w3 chapter 2 part 1
 
block diagram representation of control systems
block diagram representation of  control systemsblock diagram representation of  control systems
block diagram representation of control systems
 
Frequency response analysis I
Frequency response analysis IFrequency response analysis I
Frequency response analysis I
 
digital control Chapter1 slide
digital control Chapter1 slidedigital control Chapter1 slide
digital control Chapter1 slide
 
digital control Chapter 2 slide
digital control Chapter 2 slidedigital control Chapter 2 slide
digital control Chapter 2 slide
 
Week 10 part 1 pe 6282 Block Diagrams
Week  10 part 1 pe 6282   Block DiagramsWeek  10 part 1 pe 6282   Block Diagrams
Week 10 part 1 pe 6282 Block Diagrams
 
Control system
Control systemControl system
Control system
 
Root Locus
Root Locus Root Locus
Root Locus
 
Z Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And SystemsZ Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And Systems
 
Ch5 transient and steady state response analyses(control)
Ch5  transient and steady state response analyses(control)Ch5  transient and steady state response analyses(control)
Ch5 transient and steady state response analyses(control)
 

Similar to Modern Control - Lec 05 - Analysis and Design of Control Systems using Frequency Response

Module iv sp
Module iv spModule iv sp
Module iv spVijaya79
 
Ct2 2013 14
Ct2 2013 14Ct2 2013 14
Ct2 2013 14dana53
 
An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsLily Rose
 
control engineering revision
control engineering revisioncontrol engineering revision
control engineering revisionragu nath
 
lecture1 (6).pptx
lecture1 (6).pptxlecture1 (6).pptx
lecture1 (6).pptxHebaEng
 
HW3 – Nichols plots and frequency domain specifications FORM.docx
HW3 – Nichols plots and frequency domain specifications FORM.docxHW3 – Nichols plots and frequency domain specifications FORM.docx
HW3 – Nichols plots and frequency domain specifications FORM.docxsheronlewthwaite
 
Sjhddhdjdkdkkdkdkfjdjdksksnsnsh hdhd.pdf
Sjhddhdjdkdkkdkdkfjdjdksksnsnsh hdhd.pdfSjhddhdjdkdkkdkdkfjdjdksksnsnsh hdhd.pdf
Sjhddhdjdkdkkdkdkfjdjdksksnsnsh hdhd.pdfChinnichinni92
 
Multiple Choice Questions on Frequency Response Analysis
Multiple Choice Questions on Frequency Response AnalysisMultiple Choice Questions on Frequency Response Analysis
Multiple Choice Questions on Frequency Response AnalysisVijayalaxmiKumbhar
 

Similar to Modern Control - Lec 05 - Analysis and Design of Control Systems using Frequency Response (20)

frequency responce.ppt
frequency responce.pptfrequency responce.ppt
frequency responce.ppt
 
Chapter5
Chapter5Chapter5
Chapter5
 
Module iv sp
Module iv spModule iv sp
Module iv sp
 
Bode Plots
Bode Plots Bode Plots
Bode Plots
 
Chapter 7 1
Chapter 7 1Chapter 7 1
Chapter 7 1
 
Ct2 2013 14
Ct2 2013 14Ct2 2013 14
Ct2 2013 14
 
An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transforms
 
control engineering revision
control engineering revisioncontrol engineering revision
control engineering revision
 
lecture1 (6).pptx
lecture1 (6).pptxlecture1 (6).pptx
lecture1 (6).pptx
 
FinalReport
FinalReportFinalReport
FinalReport
 
bode_plot By DEV
 bode_plot By DEV bode_plot By DEV
bode_plot By DEV
 
Ec gate 13
Ec gate 13Ec gate 13
Ec gate 13
 
Pixel rf
Pixel rfPixel rf
Pixel rf
 
HW3 – Nichols plots and frequency domain specifications FORM.docx
HW3 – Nichols plots and frequency domain specifications FORM.docxHW3 – Nichols plots and frequency domain specifications FORM.docx
HW3 – Nichols plots and frequency domain specifications FORM.docx
 
ACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docxACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docx
 
Sjhddhdjdkdkkdkdkfjdjdksksnsnsh hdhd.pdf
Sjhddhdjdkdkkdkdkfjdjdksksnsnsh hdhd.pdfSjhddhdjdkdkkdkdkfjdjdksksnsnsh hdhd.pdf
Sjhddhdjdkdkkdkdkfjdjdksksnsnsh hdhd.pdf
 
E 2017 1
E 2017 1E 2017 1
E 2017 1
 
time response analysis
time response analysistime response analysis
time response analysis
 
frequency response
frequency responsefrequency response
frequency response
 
Multiple Choice Questions on Frequency Response Analysis
Multiple Choice Questions on Frequency Response AnalysisMultiple Choice Questions on Frequency Response Analysis
Multiple Choice Questions on Frequency Response Analysis
 

More from Amr E. Mohamed

Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingAmr E. Mohamed
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systemsAmr E. Mohamed
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transformAmr E. Mohamed
 
Dcs lec01 - introduction to discrete-time control systems
Dcs   lec01 - introduction to discrete-time control systemsDcs   lec01 - introduction to discrete-time control systems
Dcs lec01 - introduction to discrete-time control systemsAmr E. Mohamed
 
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsDDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignAmr E. Mohamed
 
SE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsSE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsAmr E. Mohamed
 
SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)Amr E. Mohamed
 
SE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsSE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsAmr E. Mohamed
 
Selenium - Introduction
Selenium - IntroductionSelenium - Introduction
Selenium - IntroductionAmr E. Mohamed
 
SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)Amr E. Mohamed
 
SE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingSE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsAmr E. Mohamed
 
SE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignSE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignAmr E. Mohamed
 

More from Amr E. Mohamed (20)

Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systems
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transform
 
Dcs lec01 - introduction to discrete-time control systems
Dcs   lec01 - introduction to discrete-time control systemsDcs   lec01 - introduction to discrete-time control systems
Dcs lec01 - introduction to discrete-time control systems
 
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsDDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
 
SE2018_Lec 17_ Coding
SE2018_Lec 17_ CodingSE2018_Lec 17_ Coding
SE2018_Lec 17_ Coding
 
SE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsSE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-Tools
 
SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)
 
SE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsSE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design Patterns
 
Selenium - Introduction
Selenium - IntroductionSelenium - Introduction
Selenium - Introduction
 
SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)
 
SE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingSE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software Testing
 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital Filters
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
 
SE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignSE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software Design
 

Recently uploaded

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 

Recently uploaded (20)

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 

Modern Control - Lec 05 - Analysis and Design of Control Systems using Frequency Response

  • 2. Agenda  Introduction  Frequency Response  Bode Plots  Gain and Phase Margins  Stability Analysis  Bandwidth and Cutoff Frequency  Compensation and Controller Design in the Frequency Domain 2
  • 3. Frequency Response  For a stable, linear, time-invariant (LTI) system, the steady state response to a sinusoidal input is a sinusoid of the same frequency but possibly different magnitude and different phase.  Sinusoids are the Eigenfunctions of convolution.  If input is 𝐴 𝑐𝑜𝑠(𝜔 𝑜 𝑡 + 𝜃) and steady-state output is 𝐵 cos(𝜔 𝑜 𝑡 + 𝜑), then the complex number 𝐵 𝐴 𝑒 𝑗(𝜑−𝜃) is called the frequency response of the system at frequency 𝜔 𝑜. 3 )( )( jT sT 𝐶(𝑠) 𝐶(𝑗𝜔) 𝑅(𝑠) 𝑅(𝑗𝜔)
  • 4. 4 L.T.I system tAtr sin)(  )sin()(   tBty Magnitude: Phase: A B  G(s) H(s) + - )(ty)(tr )()(1 )( )( )( sHsG sG sR sY    jsjs  Magnitude: Phase: )()(1 )(   jHjG jG  )]()(1[ )(   jHjG jG   Steady state response
  • 5. Bode Plots  The Bode form is a method for the frequency domain analysis.  The Bode plot of the function G(jω) is composed Bode of two plots:  One with the magnitude of G(jω) plotted in decibels (dB) versus log10(jω).  The other with the phase of G(jω) plotted in degree versus log10(ω).  Feature of the Bode Plots  Since the magnitude of G(jω) in the Bode plot is expressed in dB, products and division factors in G() become additions and subtraction, respectively  The phase relations are also added and subtracted from each other algebraically.  The magnitude plot of Bode of G(jω) can be approximated by straight-lines segments which allow the simple sketching of the bode plot without detailed computation. 5
  • 6. 6 1 2 10log   decDecade : 1 2 2log   octOctave : 1 10 100 Logarithmic coordinate 2 3 4 20 dB 
  • 7. Mag (dB) Phase (deg) 1 1 1 1 1 1 This is a sheet of 5 cycle, semi-log paper. This is the type of paper usually used for preparing Bode plots.  (rad/sec)  (rad/sec) 7
  • 8. A number to decibel conversion )number(log20 10 decade 8
  • 9. Bode Plots  In order to simplify the Bode plot, it is convenient to use the so-called Bode form  Given: the open loop T.F 𝐺 𝑠 𝐻(𝑠) = 𝐴 𝑠+𝑧1 𝑠+𝑧2 … 𝑠+𝑧 𝑚 𝑠 𝑞 𝑠+𝑝1 𝑠+𝑝2 …(𝑠+𝑝 𝑛)(𝑠2+𝑎𝑠+𝜔 𝑜 2)  Where A, m, q and n are real constants  The bode form can be expressed as: 𝐺 𝑠 𝐻(𝑠) = 𝐾 1 + 𝑠 𝑧1 1 + 𝑠 𝑧2 … 1 + 𝑠 𝑧 𝑚 𝑠 𝑞 1 + 𝑠 𝑝1 1 + 𝑠 𝑝2 … 1 + 𝑠 𝑝 𝑛 1 + 𝑎 𝜔 𝑜 𝑠 + 𝑠 𝜔 𝑜 2 𝐺 𝑗𝜔 𝐻 𝑗𝜔 = 𝐾 1 + 𝑗𝜔 𝑧1 1 + 𝑗𝜔 𝑧2 … 1 + 𝑗𝜔 𝑧 𝑚 𝑗𝜔 𝑞 1 + 𝑗𝜔 𝑝1 1 + 𝑗𝜔 𝑝2 … 1 + 𝑗𝜔 𝑝 𝑛 1 + 𝑎 𝜔 𝑜 𝑗𝜔 + 𝑗𝜔 𝜔 𝑜 2 9
  • 10. Basic Terms  Constant gain G s H s = K or G jω 𝐻 jω = K  Integral factors G s H s = 1 𝑠 or G jω 𝐻 jω = 1 jω  Derivative factors G s H s = 𝑠 or G jω 𝐻 jω = jω  First order factors G s H s = 1 + 𝑠 𝑎 ±1 or G jω 𝐻 jω = 1 + 𝑗𝜔 𝑎 ±1  Quadratic factors G s H(𝑠) = 1 + 2z 𝑤 𝑛 𝑠 + 𝑠 𝑤 𝑛 2 ±1 or G jω 𝐻 jω = 1 + 2z 𝑤 𝑛 𝑗𝜔 + 𝑗𝜔 𝑤 𝑛 2 ±1 10
  • 11. The Bode Plot for a constant gain K )( jT 4K 4/1K 4K 4/1K |G(jω)H(jω)| = 20𝑙𝑜𝑔10 𝐾 zerojj  ))H(G(  11
  • 12. The Bode Plot for a derivative factor  3 j  3 j  2 j  2 j j j dB/decade20 nslope  90n 1 12
  • 13. The Bode Plot for an integral factor   3 j 1   2 j   1 j   3 j   2 j   1 j dB/decade20 nslope  90n 13
  • 14. The Bode Plot for a first order factor 𝟏 + 𝑠 𝑎 Magnitude: Phase: ])(1log[10 )(1log20)1( 2 2 a aa j dB     aa j  1 tan)1(   01log100  dB a a    adB a dB aa ja log20log20 log201       o GH a a 00tan0 1     o GH a a 90tan 1     01.32log1011  dBja 14
  • 15. The Bode Plot for a Second order factor                2 2 1)()( nn j jjHjG     z            1,)log(40 1,)2log(20 1,0 )()(   nn n n jHjG                     1,180 1,90 1,0 )()( 0 0   n o n n jHjG        2 12 22 2 10 2 )(1 2 tan)()(2))(1()()( 2)(1log20)()(2))(1()()( n n nn nn dB nn jHjGjjHjG jHjGjjHjG                                                        2 2 1)()( nn s ssHsG  z 15
  • 16. The Bode Plot for a Second order factor 16                2 2 1)()( nn j jjHjG     z 
  • 17. Bode plots for  𝐺 𝑠 𝐻(𝑠) = 𝑠;  𝐺(𝑠)𝐻(𝑠) = 1 𝑠 ;  𝐺(𝑠)𝐻(𝑠) = 1 + 𝑠 𝑎  𝐺(𝑠)𝐻(𝑠) = 1 1 + 𝑠 𝑎 17
  • 18. Example 5.1: Draw the Bode plot for a system transfer function T(s)                                           1 2 1 1 3 5.1 )()( 1 2 12 1 3 3 )()( 21 3 )()( s ss s sHsG s ss s sHsG sss s sHsG Bode Mag. plot for Example 5.1: a. components; b. composite 18
  • 19. Example 5.1: Draw the Bode plot for a system transfer function T(s) Bode phase plot for Example 5.1: a. components; b. composite 19                                           1 2 1 1 3 5.1 )()( 1 2 12 1 3 3 )()( 21 3 )()( s ss s sHsG s ss s sHsG sss s sHsG
  • 20. Example 5.2: Draw the Bode plot for a system transfer function T(s) Bode Mag. plot for Example 5.2: a. components; b. composite                                      108.0 5 1 2 1 3 06.0 )()( 2522 3 )()( 2 2 s ss s sHsG sss s sHsG 20
  • 21. Example 5.2: Draw the Bode plot for a system transfer function T(s) Bode phase plot for Example 5.2: a. components; b. composite 21                                      108.0 5 1 2 1 3 06.0 )()( 2522 3 )()( 2 2 s ss s sHsG sss s sHsG
  • 22. Relative stability (Gain and Phase Margins)  A transfer function is called minimum phase when all the poles and zeros are LHP and non-minimum-phase when there are RHP poles or zeros.  The phase margin (PM): is that amount of additional phase lag at the gain crossover frequency required to bring the system to the verge of instability. 𝑃𝑀 = 180 + phase of GH measured at the gain crossover frequency 0 𝑑𝐵  The gain margin (GM): is the reciprocal of the magnitude |G(jw)| at the frequency at which the phase angle is 𝐺𝑀 = 0 − 𝑑𝐵 𝑜𝑓 𝐺𝐻 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 −180 Minimum phase system Stable 22
  • 23. 23 Open loop transfer function : Closed-loop transfer function : )()( sHsG )()(1 sHsG Open loop Stability  poles of in LHP)()( sHsG )0,0()0,1( Re Im RHP Closed-loop Stability  poles of in left side of (-1,0))()( sHsG
  • 24. Gain and Phase Margins (Cont.)  The gain margin indicates the system gain can be increased by a factor of GM before the stability boundary is reached.  The phase margin is the amount of phase shift of the system at unity magnitude that will result instability Fig. 5.17 Phase and gain margin definition (a) Stable system (b) Unstable system 24
  • 25. Example 5.3:  For the system shown in Fig.5.18, determine the gain margin, phase margin, phase-crossover frequency, and gain-crossover frequency.  Solution:  The Bode plot for this system is shown in Fig. 5.19. )(sR )(sC   1025 )1(20 2   ssss s 25
  • 26. Example 5.3: 4.0131 9.9293 dB 0.4426 103.6573º  The gain margin = 9.929 and the phase margin = 103.7 degree 26
  • 27. Bandwidth and Cutoff Frequency -3 dB cutoff frequency bandwidth 27
  • 28. Using Matlab For Frequency Response  Instruction: We can use Matlab to run the frequency response for the previous example. We place the transfer function in the form:  The Matlab Program 28 >> num = [5000 50000]; >> den = [1 501 500]; >> Bode (num,den) ]500501[ ]500005000[ )500)(1( )10(5000 2      ss s ss s
  • 29. Relationship between System Type and Log-Magnitude Curve  Consider the unity-feedback control system. The static position, velocity, and acceleration error constants describe the low-frequency behavior of type 0, type 1, and type 2 systems, respectively.  For a given system, only one of the static error constants is finite and significant.  The type of the system determines the slope of the log-magnitude curve at low frequencies.  Thus, information concerning the existence and magnitude of the steady-state error of a control system to a given input can be determined from the observation of the low-frequency region of the log-magnitude curve. 29
  • 30. Determination of Static Position Error Constants.  Consider the type-0 unity-feedback control system, 30
  • 31. Determination of Static Position Error Constants.  Consider the type-1 unity-feedback control system, 31
  • 32. Determination of Static Position Error Constants.  Consider the type-2 unity-feedback control system, 32
  • 33. 33