SlideShare a Scribd company logo
1 of 38
B2 Desence
Lesson Learn
Jay Chang
VALUE1_VALUE2_VALUE3_VALUE4
AVAGO default: NM_2.7n_0.5p_22p
Chuck: NM_22p_0.5p_2.7n
Case 1: NM_22p_NM_2.7n (solve BC1 output power ?)
Case 2: NM_22p
B2 PAE
B2 Gain
AVAGO default
NM_2.7n_0.5p_22p
Chuck
NM_22p_0.5p_2.7n
Case 1(Thru)
NM_22p_NM_22p
Case 2(Thru and let mid-channel 50 Ω)
NM_22p_8.2n_22p
Case 3(try to turn left to PAE optimized, but useless)
NM_22p_5.6n_22p
Case 4(try to let BC1 output power bigger and keep Chuck’s topology)
NM_22p_NM_2.7n
Case 5(WCDMA B2 mid-channel sensitivity has 1dB better)
NM_3.5n_NM_22p
Case 6(PAE optimized)
8.2n_3n_1p_22p
NM_22p_NM_22p
default
Cu
Butterworth Pi LC HPF
RAL122 = 22p
5.6n_1.8p_5.6n_22p6.2n_22p
Butterworth Pi LC HPF
http://www.calculatoredge.com/electronics/bw%2
0pi%20high%20pass.htm
RAL124 = NM
Butterworth Tee LC HPF
http://www.calculatoredge.com/electronics/bw%2
0tee%20high%20pass.htm
RAL122 = 22p
Chebyshev Pi LC HPF
http://www.calculatoredge.com/electronics/ch%2
0pi%20high%20pass.htm
7.5n_2.2p_7.5n_22p
Chebyshev Tee LC HPF
RAL124 = NM
http://www.calculatoredge.com/electronics/ch%2
0tee%20high%20pass.htm
NM_3.5p_5.6n_3.5p
10[ ] 174 10logSensitivity dBm BW loss RxNF C N     
Technology GSM CDMA WCDMA TD-SCDMA LTE
BW [MHz] 0.2 1.23 3.84 1.28 9
C/N [dB] 4.75 -2 -9.5 -5.5 -1
RxNF [dB] 2.3-3.5 2.3-3 2.3-3 2.3-3 2.3-3
loss = total loss before LNA.
RxNF = receiver noise figure (ex: WTR3925)
80-NH379-121
80-NH379-42
32 4
1
1 1 2 1 2 3
11 1
...total
FF F
F F
G G G G G G
 
    
1 2 31 1 2
1 2 3 4
1 1
...
3 3 3 3 3total
G G GG G G
IIP IIP IIP IIP IIP
    
我們已知 用火XD
Type Trace ASM iLNA others
Stage Stage1 Stage2 Stage3 Stage4
NF [dB] 3 1 0.85 4
Gain [dB] -3 -1 15 -4
NF 2 1.26 1.22 2.51
Gain 0.5 0.79 31.62 0.4
10
1.26 1 1.22 1 2.51 1
2 3.19
0.5 0.5 0.79 0.5 0.79 31.62
10log (3.19) 5.04 [dB].
total
total
F
F
  
    
  
 
我們先假設一種情況 w/o eLNA
w/o eLNA
Type ASM eLNA Trace iLNA others
Stage Stage1 Stage2 Stage3 Stage4 Stage5
NF [dB] 1 0.85 3 0.85 4
Gain [dB] -1 15 -3 15 -4
NF 1.26 1.22 2 1.22 2.51
Gain 0.79 31.62 0.5 31.62 0.4
10
1.22 1 2 1 1.22 1 2.51 1
1.26 1.59
0.79 0.79 31.62 0.79 31.62 0.5 0.79 31.62 0.5 31.62
10log (1.59) 2.02 [dB].
total
total
F
F
   
     
     
 
比較最好的情況w/ eLNA
w/ eLNA
代入理論公式太麻煩, 看能不能省去甚麼…
我們發現, LNA後方Stage會因分母有LNA的Gain, 其值會變很小因此省略計算
10
1.26 1 1.22 1 2.51 1
2 3.08
0.5 0.5 0.79 0.5 0.79 31.62
10log (3.08) 4.88 [dB].
total
total
F
F
  
    
  
 
10
1.22 1 2 1 1.22 1 2.51 1
1.26 1.54
0.79 0.79 31.62 0.79 31.62 0.5 0.79 31.62 0.5 31.62
10log (1.54) 1.88 [dB].
total
total
F
F
   
     
     
 
做個table比較一下
NF 理論 NF 化簡
w/o eLNA 5.04 dB 4.88 dB
w/ eLNA 2.02 dB 1.88 dB
化簡公式還要除, 還是覺得有點麻煩…看能不能更直觀 !!
直接將LNA input Stage的NF總和 [dB], 與從天線下來遇到的第一顆LNA自身的NF [dB], 兩個相加 
NFtot [dB] = LNA pre-loss [dB] + LNA NF [dB]
再做個table比較一下
NF 理論 NF 化簡 NF 直觀
w/o eLNA 5.04 dB 4.88 dB 4.85 dB
w/ eLNA 2.02 dB 1.88 dB 1.85 dB
w/o eLNA
w/ eLNA
差不多, 計算方便, 又直觀
But 與理論有些微誤差.
LTE B2 FE ASM Duplexer LNA Rx SAW DPDT Trace loss Loss before WTR Rx NF Rx BW CN Sensitivity
Typ 1.24 0.68 1.9 0.4 0.5 4.72 2.3 9 -1 -98.44
Max 1.62 0.83 3.5 0.4 0.8 7.15 3 9 -1 -95.31
For SXMX
LNA都先給他thru (w/o eLNA), 計算sensitivity
WCDMA B2 FE ASM Duplexer LNA Rx SAW DPDT Trace loss Loss before WTR Rx NF Rx BW CN Sensitivity
Typ 1.24 0.68 1.9 0.4 0.5 4.72 2.3 3.84 -9.5 -110.64
Max 1.62 0.83 3.5 0.4 0.8 7.15 3 3.84 -9.5 -107.51
BC1 FE ASM Duplexer LNA Rx SAW DPDT Trace loss Loss before WTR Rx NF Rx BW CN Sensitivity
Typ 1.24 0.68 1.9 0.4 0.5 4.72 2.3 1.23 -2 -108.08
Max 1.62 0.83 3.5 0.4 0.8 7.15 3 1.23 -2 -104.95
For SXMX
掛LNA (w/ eLNA), 計算sensitivity
由上頁知, NFtot [dB] = LNA pre-loss [dB] + LNA NF [dB]
Datasheet Infineon B2 LNA NF = 0.6-1.2, 再來我們忽略 RxSAW 與 DPDT 的NF.
LTE B2 FE ASM Duplexer LNA Rx SAW DPDT Trace loss Loss before WTR Rx NF Rx BW CN Sensitivity
Typ 1.24 0.68 1.9 0.6 0.5 4.92 2.3 9 -1 -98.24
Max 1.62 0.83 3.5 1.2 0.8 7.95 3 9 -1 -94.51
WCDMA B2 FE ASM Duplexer LNA Rx SAW DPDT Trace loss Loss before WTR Rx NF Rx BW CN Sensitivity
Typ 1.24 0.68 1.9 0.6 0.5 4.92 2.3 3.84 -9.5 -110.44
Max 1.62 0.83 3.5 1.2 0.8 7.95 3 3.84 -9.5 -106.71
BC1 FE ASM Duplexer LNA Rx SAW DPDT Trace loss Loss before WTR Rx NF Rx BW CN Sensitivity
Typ 1.24 0.68 1.9 0.6 0.5 4.92 2.3 1.23 -2 -107.88
Max 1.62 0.83 3.5 1.2 0.8 7.95 3 1.23 -2 -104.15
所以LNA掛WTR附近是沒有作用的.
Type FEL + ASM + Dup Trace eLNA Trace + RxSAW iLNA
Stage Stage1 Stage2 Stage3 Stage4 Stage5
NF [dB] 5.95 0.8 1.2 0.4 3
Gain [dB] -5.95 -0.8 14.3 -0.4 35.12
NF 3.94 1.2 1.32 1.1 2
Gain 0.25 0.83 26.9 0.91 3250.87
那我們現在來計算一下LTE B2的NF
And loss use max value to calculate
B2 FE ASM Duplexer
Typ 1.24 0.68 1.9
Max 1.62 0.83 3.5
32 4
1
1 1 2 1 2 3
6
10
11 1
... 8.09 dB.
[ ] 174 10log 9 10 8.09 ( 1) 97.4
total
FF F
F F
G G G G G G
Sensitivity dBm
 
     
        
照理說最爛0dBm sensitivity也有-97.4以上
Gain mode G0 Min Typ Max Unit
Voltage conversion gain 49 53 57 dBV/V
PS WTR3925 LTE Gain mode 0 define by Voltage Conversion Gain need to translation to power gain
RxSAW
1.8
3.1
10
10 10
10log
10log 20log 2
IFOUT
RFIN
IFOUT IFOUT
RFIN RFIN
V
VCG
V
P V
VCG
P V

  
Type FEL + ASM + LPF +
Dup + SP6T + Trace
eLNA Trace + RxSAW iLNA
Stage Stage1 Stage2 Stage3 Stage4
NF [dB] 4.6 1.37 2.3 2.3
Gain [dB] -4.6 11.9 -2.3 35.12
NF 2
Gain 3250.87
那我們現在來計算一下LTE B12/17的NF
And loss use max value to calculate
32 4
1
1 1 2 1 2 3
6
10
11 1
... 6.34 dB.
[ ] 174 10log 9 10 6.34 ( 1) 99.1
total
FF F
F F
G G G G G G
Sensitivity dBm
 
     
        
LTE B12_17 FE ASM LPF Duplexer SP6T
Typ 0.73 0.45 0.56 1.65 0.4
Max 0.98 0.55 0.56 2.35 0.5
Gain mode G0 Min Typ Max Unit
Voltage conversion gain 49 53 57 dBV/V
PS WTR3925 LTE Gain mode 0 define by Voltage conversion gain need to translation to power gain
RxSAW
1.6
2.5
w/ eLNA
Type FEL + ASM + LPF + Dup + SP6T
+ Trace = loss before WTR
iLNA
Stage Stage1 Stage4
NF [dB] 5.46 2.3
Gain [dB] -5.46 35.12
NF 2
Gain 3250.87
那我們現在來計算一下LTE B12/17的NF
And loss use max value to calculate
32 4
1
1 1 2 1 2 3
6
10
11 1
... 7.76 dB.
[ ] 174 10log 9 10 7.76 ( 1) 97.7
total
FF F
F F
G G G G G G
Sensitivity dBm
 
     
        
LTE B12_17 FE ASM LPF Duplexer SP6T
Typ 0.73 0.45 0.56 1.65 0.4
Max 0.98 0.55 0.56 2.35 0.5
Gain mode G0 Min Typ Max Unit
Voltage conversion gain 49 53 57 dBV/V
PS WTR3925 LTE Gain mode 0 define by Voltage conversion gain need to translation to power gain
RxSAW
1.6
2.5
w/o eLNA
這篇講到說升高LNA的Vcc有助於降低LNA的NF
A Single Chip Silicon Bipolar Receiver for GPS/GLONASS Applications
https://www.maximintegrated.com/en/app-notes/index.mvp/id/640
不過我們用MIPI控制的, 除非Layout, grounding沒走好造成IR drop否則應該是2.7V ?
接下來討論IIP3
w/o eLNA 整體的 IIP3
Type Trace ASM iLNA others
Stage Stage1 Stage2 Stage3 Stage4
IIP3 [dBm] 100 80 5 -15.5
Gain [dB] -3 -1 15 -4
IIP3 [mW] 1010 108 3.16 0.028
Gain 0.5 0.79 31.62 0.4
1 2 31 1 2
1 2 3 4
1 1
...
3 3 3 3 3
3 26.5 [dBm].
total
total
G G GG G G
IIP IIP IIP IIP IIP
IIP
    
 w/o eLNA
Type ASM eLNA Trace iLNA others
Stage Stage1 Stage2 Stage3 Stage4 Stage5
IIP3 [dBm] 80 5 100 5 -15.5
Gain [dB] -1 15 -3 15 -4
IIP3 [mW] 108 3.162 1010 3.162 0.028
Gain 0.79 31.62 0.5 31.62 0.4
比較最好的情況w/ eLNA 整體的 IIP3
w/ eLNA
1 2 31 1 2
1 2 3 4
8 10
1 1
...
3 3 3 3 3
1
3 41.6 [dBm].
1 0.79 0.79 31.62 0.79 31.62 0.5 0.79 31.62 0.5 31.62
10 3.162 10 3.162 0.028
total
total
G G GG G G
IIP IIP IIP IIP IIP
IIP
    
  
     
   
比之前degrade~15dB
Type FEL + ASM + LPF +
Dup + SP6T + Trace
eLNA Trace + RxSAW iLNA
Stage Stage1 Stage2 Stage3 Stage4
IIP3 [dBm] 80 -2 100 -10
Gain [dB] -4.6 11.9 -2.3 35.12
IIP3 [mW]
Gain
那我們現在來計算一下LTE B12/17的IIP3
And loss use max value to calculate
LTE B12_17 FE ASM LPF Duplexer SP6T
Typ 0.73 0.45 0.56 1.65 0.4
Max 0.98 0.55 0.56 2.35 0.5
Gain mode G0 Min Typ Max Unit
Voltage conversion gain 49 53 57 dBV/V
PS WTR3925 LTE Gain mode 0 define by Voltage conversion gain need to translation to power gain
RxSAW
1.6
2.5
1 2 31 1 2
1 2 3 4
1 1
...
3 3 3 3 3
3 15.1 [dBm].
total
total
G G GG G G
IIP IIP IIP IIP IIP
IIP
    
 
w/ eLNA
Type FEL + ASM + LPF + Dup + SP6T
+ Trace = before WTR
iLNA
Stage Stage1 Stage4
IIP3 [dBm] 80 -10
Gain [dB] -5.46 35.12
IIP3 [mW]
Gain
那我們現在來計算一下LTE B12/17的IIP3
And loss use max value to calculate
LTE B12_17 FE ASM LPF Duplexer SP6T
Typ 0.73 0.45 0.56 1.65 0.4
Max 0.98 0.55 0.56 2.35 0.5
Gain mode G0 Min Typ Max Unit
Voltage conversion gain 49 53 57 dBV/V
PS WTR3925 LTE Gain mode 0 define by Voltage conversion gain need to translation to power gain
RxSAW
1.6
2.5
1 2 31 1 2
1 2 3 4
1 1
...
3 3 3 3 3
3 [dBm].
total
total
G G GG G G
IIP IIP IIP IIP IIP
IIP
    
 
w/o eLNA
1. 由此可知eLNA可以提升sensitivity, 但是連帶的也會降低linearity(IIP3變爛).
2. 其中IIP3 degrade = eLNA Gain.
eLNA Gain vs cascade NF & IIP3
1. eLNA的Gain對於sensitivity的改善其實是有極限的.
2. Transceiver整體IIP3的下降是來自於eLNA的Gain, Gain每多增加1dB, Transceiver整體的IIP3就會降1dB.
0 10 20 30 40 50
5
6
7
8
9
10
CascadeNF(dB)
CascadeIIP3(dBm)
-60
-40
-20
0
CascadeIIP3(dBm)
CascadeNF(dB)
eLNA Gain (dB)
System Band Test Item Ch Cell Power Lower Upper Unit Result Judgement
WCDMA 1 6.2 Sensitivity Level 9613 -106.7 None 0.1 % 0 PASS
WCDMA 1 6.3 MaxInput Level 9613 -25.7 None 0.1 % 0 PASS
System Band Test Item Ch Cell Power Lower Upper Unit Result Judgement
LTE-FDD 4 7.3 Reference sensitivity level;10MHZ; 20000 -96.3 95 None % 100 PASS
LTE-FDD 4 RSRP;10MHZ; 20000 -96.3 None None None 16 None
LTE-FDD 4 7.4 Maximuminput level;10MHZ; 20000 -25.7 95 None % 100 PASS
 Sensitivity: 是在測試BER能接受情況下, 所能接收的最小輸入訊號.
 Maximum Input Level: 顧名思義則是在測試BER能接受情況下, 所能接收的最大輸入訊號.
 以Dynamic Range(DR)來解釋, Sensitivity是在測DR的下限, 而Maximum Input Level則是在測DR的上限.
 整體來說Sensitivity, Maximum Input Level便是在量測整體Rx電路的P1dB.
在來我們討論SAW Filter and Linearity的影響
換言之就是計算有SAW情況下的IIP3
因為若Receiver整體的IIP2跟IIP3越大(越線性), 其抑制IMD2跟IMD3的能力就越好.
[1] Guidelines for achieving best-in-class RX Diversity Performance in your Smartphone
Applications, Infineon
[2] Understanding and Enhancing Sensitivity in Receivers for Wireless Applications, TI
[3] Improving Receiver Sensitivity with External LNA, Maxim Integrated
[4] A Single Chip Silicon Bipolar Receiver for GPS/GLONASS Applications
[5] 80-NH379-121
[6] 80-NH379-42
[7] ATF-531P8 1900 MHz High Linearity Amplifier, AVAGO
[8] Integration of an External Low-noise Amplifier Improving the sensitivity of the Receiver, Atmel
[9] Increasing the Sensitivity of the TDA52xx Receivers, Infineon
[10] Signal Chain Noise Figure Analysis, TI
[11] Use Selectivity to Improve Receiver Intercept Point, Maxim
references
To be continued…

More Related Content

What's hot

What's hot (20)

Filtering Requirements for FDD + TDD CA Scenarios
Filtering Requirements for FDD + TDD CA ScenariosFiltering Requirements for FDD + TDD CA Scenarios
Filtering Requirements for FDD + TDD CA Scenarios
 
How to solve ACLR issue
How to solve ACLR issueHow to solve ACLR issue
How to solve ACLR issue
 
OXX B66 Rx sensitivity and desense analysis issue debug
OXX B66 Rx sensitivity and desense analysis issue debugOXX B66 Rx sensitivity and desense analysis issue debug
OXX B66 Rx sensitivity and desense analysis issue debug
 
Sensitivity or selectivity - How does eLNA impact the receriver performance
Sensitivity or selectivity  - How does eLNA impact the receriver performanceSensitivity or selectivity  - How does eLNA impact the receriver performance
Sensitivity or selectivity - How does eLNA impact the receriver performance
 
DDR Desense Issue
DDR Desense IssueDDR Desense Issue
DDR Desense Issue
 
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power AmplifiersChallenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
 
CDMA Zero-IF Receiver Consideration
CDMA  Zero-IF Receiver ConsiderationCDMA  Zero-IF Receiver Consideration
CDMA Zero-IF Receiver Consideration
 
Performance requirement and lessons learnt of LTE terminal---transmitter part
Performance requirement and lessons learnt of LTE terminal---transmitter partPerformance requirement and lessons learnt of LTE terminal---transmitter part
Performance requirement and lessons learnt of LTE terminal---transmitter part
 
System(board level) noise figure analysis and optimization
System(board level) noise figure analysis and optimizationSystem(board level) noise figure analysis and optimization
System(board level) noise figure analysis and optimization
 
RF Issue Due To PA Timing
RF Issue Due To PA TimingRF Issue Due To PA Timing
RF Issue Due To PA Timing
 
RF Matching Guidelines for WIFI
RF Matching Guidelines for WIFIRF Matching Guidelines for WIFI
RF Matching Guidelines for WIFI
 
System(board level) noise figure analysis and optimization
System(board level) noise figure analysis and optimizationSystem(board level) noise figure analysis and optimization
System(board level) noise figure analysis and optimization
 
Why Ferrite Beads Aggravates ACLR
Why Ferrite Beads Aggravates ACLRWhy Ferrite Beads Aggravates ACLR
Why Ferrite Beads Aggravates ACLR
 
WIFI Spectrum Emission Mask Issue
WIFI Spectrum Emission Mask IssueWIFI Spectrum Emission Mask Issue
WIFI Spectrum Emission Mask Issue
 
Reverse IMD
Reverse IMDReverse IMD
Reverse IMD
 
Introduction to PAMiD
Introduction to PAMiDIntroduction to PAMiD
Introduction to PAMiD
 
ABCs of Carrier Aggregation
ABCs of Carrier Aggregation ABCs of Carrier Aggregation
ABCs of Carrier Aggregation
 
One Case Study For GSM Unstable Output Power Issue
One Case Study For GSM Unstable Output  Power IssueOne Case Study For GSM Unstable Output  Power Issue
One Case Study For GSM Unstable Output Power Issue
 
1 RB sensitivity at middle RBs poor than other RBs
1 RB sensitivity at middle RBs poor than other RBs1 RB sensitivity at middle RBs poor than other RBs
1 RB sensitivity at middle RBs poor than other RBs
 
Introduction to differential signal -For RF and EMC engineer
Introduction to differential signal -For RF and EMC engineerIntroduction to differential signal -For RF and EMC engineer
Introduction to differential signal -For RF and EMC engineer
 

Viewers also liked

Viewers also liked (19)

Differential stripline impedance calculate
Differential stripline impedance calculateDifferential stripline impedance calculate
Differential stripline impedance calculate
 
Pcb calculator
Pcb calculatorPcb calculator
Pcb calculator
 
Passive component z versus freq
Passive component z versus freqPassive component z versus freq
Passive component z versus freq
 
Saw filters
Saw filtersSaw filters
Saw filters
 
Receiver design
Receiver designReceiver design
Receiver design
 
Diplexer duplexer
Diplexer duplexerDiplexer duplexer
Diplexer duplexer
 
Lte-u note
Lte-u noteLte-u note
Lte-u note
 
Nonlinearity
NonlinearityNonlinearity
Nonlinearity
 
Avermedia + Youtube 超簡易懶人包
Avermedia + Youtube 超簡易懶人包Avermedia + Youtube 超簡易懶人包
Avermedia + Youtube 超簡易懶人包
 
LTE introduction part1
LTE introduction part1LTE introduction part1
LTE introduction part1
 
GPS RF Front End Considerations
GPS RF Front End ConsiderationsGPS RF Front End Considerations
GPS RF Front End Considerations
 
Introduction to differential signal -For RF and EMC engineer
Introduction to differential signal -For RF and EMC engineerIntroduction to differential signal -For RF and EMC engineer
Introduction to differential signal -For RF and EMC engineer
 
UC Davis gyrotron cavity simulation
UC Davis gyrotron cavity simulationUC Davis gyrotron cavity simulation
UC Davis gyrotron cavity simulation
 
The ABCs of ADCs Understanding How ADC Errors Affect System Performance
The ABCs of ADCs Understanding How ADC Errors Affect System PerformanceThe ABCs of ADCs Understanding How ADC Errors Affect System Performance
The ABCs of ADCs Understanding How ADC Errors Affect System Performance
 
SAW-less Direct Conversion Receiver Consideration
SAW-less Direct Conversion Receiver ConsiderationSAW-less Direct Conversion Receiver Consideration
SAW-less Direct Conversion Receiver Consideration
 
PA Output Notch Filter Consideration
PA Output Notch Filter ConsiderationPA Output Notch Filter Consideration
PA Output Notch Filter Consideration
 
EVM Degradation in LTE systems by RF Filtering
EVM Degradation in LTE systems by RF Filtering EVM Degradation in LTE systems by RF Filtering
EVM Degradation in LTE systems by RF Filtering
 
Introduction to 3 terminal capacitor
Introduction to 3 terminal capacitorIntroduction to 3 terminal capacitor
Introduction to 3 terminal capacitor
 
Introduction to I/Q signal
Introduction to I/Q signalIntroduction to I/Q signal
Introduction to I/Q signal
 

Similar to B2 desence

Lect2 up290 (100328)
Lect2 up290 (100328)Lect2 up290 (100328)
Lect2 up290 (100328)
aicdesign
 
7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC wi...
7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC wi...7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC wi...
7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC wi...
Kentaro Yoshioka
 
IMS-2010 Presentation
IMS-2010 PresentationIMS-2010 Presentation
IMS-2010 Presentation
Sushil Kumar
 

Similar to B2 desence (20)

GPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationGPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF consideration
 
LNA Sensitivity for Receivers
LNA Sensitivity for ReceiversLNA Sensitivity for Receivers
LNA Sensitivity for Receivers
 
AD8351.pdf
AD8351.pdfAD8351.pdf
AD8351.pdf
 
Fundamentals of the RF Transmission and Reception of Digital Signals
Fundamentals of the RF Transmission and Reception of Digital SignalsFundamentals of the RF Transmission and Reception of Digital Signals
Fundamentals of the RF Transmission and Reception of Digital Signals
 
3 g basics
3 g basics3 g basics
3 g basics
 
Lect2 up290 (100328)
Lect2 up290 (100328)Lect2 up290 (100328)
Lect2 up290 (100328)
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and Linearities
 
7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC wi...
7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC wi...7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC wi...
7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC wi...
 
Receiver sensitivity Design Trade-Offs
Receiver sensitivity Design Trade-OffsReceiver sensitivity Design Trade-Offs
Receiver sensitivity Design Trade-Offs
 
Real 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxReal 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptx
 
Sfp(ft 9001 g-m-lc02)-datasheet_ver_1.1
Sfp(ft 9001 g-m-lc02)-datasheet_ver_1.1Sfp(ft 9001 g-m-lc02)-datasheet_ver_1.1
Sfp(ft 9001 g-m-lc02)-datasheet_ver_1.1
 
10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...
10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...
10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...
 
Elm327 at commands
Elm327 at commandsElm327 at commands
Elm327 at commands
 
IMS-2010 Presentation
IMS-2010 PresentationIMS-2010 Presentation
IMS-2010 Presentation
 
LMV221 sdx
LMV221 sdxLMV221 sdx
LMV221 sdx
 
3 g interview question & answer by telsol360
3 g interview question & answer  by telsol3603 g interview question & answer  by telsol360
3 g interview question & answer by telsol360
 
10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...
10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...
10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...
 
Lpc662
Lpc662Lpc662
Lpc662
 
000930
000930000930
000930
 
xfp-10g-er-1550-40km-transceiver-module-141156.pdf
xfp-10g-er-1550-40km-transceiver-module-141156.pdfxfp-10g-er-1550-40km-transceiver-module-141156.pdf
xfp-10g-er-1550-40km-transceiver-module-141156.pdf
 

More from Pei-Che Chang

More from Pei-Che Chang (20)

PLL Note
PLL NotePLL Note
PLL Note
 
Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1
 
NTHU Comm Presentation
NTHU Comm PresentationNTHU Comm Presentation
NTHU Comm Presentation
 
Introduction to Compressive Sensing in Wireless Communication
Introduction to Compressive Sensing in Wireless CommunicationIntroduction to Compressive Sensing in Wireless Communication
Introduction to Compressive Sensing in Wireless Communication
 
Distributed Architecture of Subspace Clustering and Related
Distributed Architecture of Subspace Clustering and RelatedDistributed Architecture of Subspace Clustering and Related
Distributed Architecture of Subspace Clustering and Related
 
PMF BPMF and BPTF
PMF BPMF and BPTFPMF BPMF and BPTF
PMF BPMF and BPTF
 
Distributed ADMM
Distributed ADMMDistributed ADMM
Distributed ADMM
 
Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)
 
Patch antenna
Patch antennaPatch antenna
Patch antenna
 
Antenna basic
Antenna basicAntenna basic
Antenna basic
 
PAPR Reduction
PAPR ReductionPAPR Reduction
PAPR Reduction
 
Channel Estimation
Channel EstimationChannel Estimation
Channel Estimation
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDM
 
The Wireless Channel Propagation
The Wireless Channel PropagationThe Wireless Channel Propagation
The Wireless Channel Propagation
 
MIMO Channel Capacity
MIMO Channel CapacityMIMO Channel Capacity
MIMO Channel Capacity
 
Digital Passband Communication
Digital Passband CommunicationDigital Passband Communication
Digital Passband Communication
 
Digital Baseband Communication
Digital Baseband CommunicationDigital Baseband Communication
Digital Baseband Communication
 
The relationship between bandwidth and rise time
The relationship between bandwidth and rise timeThe relationship between bandwidth and rise time
The relationship between bandwidth and rise time
 
Millimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesMillimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphones
 
Introduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOCIntroduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOC
 

Recently uploaded

DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 

Recently uploaded (20)

Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .ppt
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...
Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...
Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 

B2 desence

  • 2. VALUE1_VALUE2_VALUE3_VALUE4 AVAGO default: NM_2.7n_0.5p_22p Chuck: NM_22p_0.5p_2.7n Case 1: NM_22p_NM_2.7n (solve BC1 output power ?) Case 2: NM_22p
  • 8. Case 2(Thru and let mid-channel 50 Ω) NM_22p_8.2n_22p
  • 9. Case 3(try to turn left to PAE optimized, but useless) NM_22p_5.6n_22p
  • 10. Case 4(try to let BC1 output power bigger and keep Chuck’s topology) NM_22p_NM_2.7n
  • 11. Case 5(WCDMA B2 mid-channel sensitivity has 1dB better) NM_3.5n_NM_22p
  • 14. Butterworth Pi LC HPF RAL122 = 22p 5.6n_1.8p_5.6n_22p6.2n_22p
  • 15. Butterworth Pi LC HPF http://www.calculatoredge.com/electronics/bw%2 0pi%20high%20pass.htm
  • 16. RAL124 = NM Butterworth Tee LC HPF http://www.calculatoredge.com/electronics/bw%2 0tee%20high%20pass.htm
  • 17. RAL122 = 22p Chebyshev Pi LC HPF http://www.calculatoredge.com/electronics/ch%2 0pi%20high%20pass.htm 7.5n_2.2p_7.5n_22p
  • 18. Chebyshev Tee LC HPF RAL124 = NM http://www.calculatoredge.com/electronics/ch%2 0tee%20high%20pass.htm NM_3.5p_5.6n_3.5p
  • 19. 10[ ] 174 10logSensitivity dBm BW loss RxNF C N      Technology GSM CDMA WCDMA TD-SCDMA LTE BW [MHz] 0.2 1.23 3.84 1.28 9 C/N [dB] 4.75 -2 -9.5 -5.5 -1 RxNF [dB] 2.3-3.5 2.3-3 2.3-3 2.3-3 2.3-3 loss = total loss before LNA. RxNF = receiver noise figure (ex: WTR3925) 80-NH379-121 80-NH379-42 32 4 1 1 1 2 1 2 3 11 1 ...total FF F F F G G G G G G        1 2 31 1 2 1 2 3 4 1 1 ... 3 3 3 3 3total G G GG G G IIP IIP IIP IIP IIP      我們已知 用火XD
  • 20. Type Trace ASM iLNA others Stage Stage1 Stage2 Stage3 Stage4 NF [dB] 3 1 0.85 4 Gain [dB] -3 -1 15 -4 NF 2 1.26 1.22 2.51 Gain 0.5 0.79 31.62 0.4 10 1.26 1 1.22 1 2.51 1 2 3.19 0.5 0.5 0.79 0.5 0.79 31.62 10log (3.19) 5.04 [dB]. total total F F              我們先假設一種情況 w/o eLNA w/o eLNA
  • 21. Type ASM eLNA Trace iLNA others Stage Stage1 Stage2 Stage3 Stage4 Stage5 NF [dB] 1 0.85 3 0.85 4 Gain [dB] -1 15 -3 15 -4 NF 1.26 1.22 2 1.22 2.51 Gain 0.79 31.62 0.5 31.62 0.4 10 1.22 1 2 1 1.22 1 2.51 1 1.26 1.59 0.79 0.79 31.62 0.79 31.62 0.5 0.79 31.62 0.5 31.62 10log (1.59) 2.02 [dB]. total total F F                   比較最好的情況w/ eLNA w/ eLNA
  • 22. 代入理論公式太麻煩, 看能不能省去甚麼… 我們發現, LNA後方Stage會因分母有LNA的Gain, 其值會變很小因此省略計算 10 1.26 1 1.22 1 2.51 1 2 3.08 0.5 0.5 0.79 0.5 0.79 31.62 10log (3.08) 4.88 [dB]. total total F F              10 1.22 1 2 1 1.22 1 2.51 1 1.26 1.54 0.79 0.79 31.62 0.79 31.62 0.5 0.79 31.62 0.5 31.62 10log (1.54) 1.88 [dB]. total total F F                   做個table比較一下 NF 理論 NF 化簡 w/o eLNA 5.04 dB 4.88 dB w/ eLNA 2.02 dB 1.88 dB
  • 23. 化簡公式還要除, 還是覺得有點麻煩…看能不能更直觀 !! 直接將LNA input Stage的NF總和 [dB], 與從天線下來遇到的第一顆LNA自身的NF [dB], 兩個相加  NFtot [dB] = LNA pre-loss [dB] + LNA NF [dB] 再做個table比較一下 NF 理論 NF 化簡 NF 直觀 w/o eLNA 5.04 dB 4.88 dB 4.85 dB w/ eLNA 2.02 dB 1.88 dB 1.85 dB w/o eLNA w/ eLNA 差不多, 計算方便, 又直觀 But 與理論有些微誤差.
  • 24. LTE B2 FE ASM Duplexer LNA Rx SAW DPDT Trace loss Loss before WTR Rx NF Rx BW CN Sensitivity Typ 1.24 0.68 1.9 0.4 0.5 4.72 2.3 9 -1 -98.44 Max 1.62 0.83 3.5 0.4 0.8 7.15 3 9 -1 -95.31 For SXMX LNA都先給他thru (w/o eLNA), 計算sensitivity WCDMA B2 FE ASM Duplexer LNA Rx SAW DPDT Trace loss Loss before WTR Rx NF Rx BW CN Sensitivity Typ 1.24 0.68 1.9 0.4 0.5 4.72 2.3 3.84 -9.5 -110.64 Max 1.62 0.83 3.5 0.4 0.8 7.15 3 3.84 -9.5 -107.51 BC1 FE ASM Duplexer LNA Rx SAW DPDT Trace loss Loss before WTR Rx NF Rx BW CN Sensitivity Typ 1.24 0.68 1.9 0.4 0.5 4.72 2.3 1.23 -2 -108.08 Max 1.62 0.83 3.5 0.4 0.8 7.15 3 1.23 -2 -104.95 For SXMX 掛LNA (w/ eLNA), 計算sensitivity 由上頁知, NFtot [dB] = LNA pre-loss [dB] + LNA NF [dB] Datasheet Infineon B2 LNA NF = 0.6-1.2, 再來我們忽略 RxSAW 與 DPDT 的NF. LTE B2 FE ASM Duplexer LNA Rx SAW DPDT Trace loss Loss before WTR Rx NF Rx BW CN Sensitivity Typ 1.24 0.68 1.9 0.6 0.5 4.92 2.3 9 -1 -98.24 Max 1.62 0.83 3.5 1.2 0.8 7.95 3 9 -1 -94.51 WCDMA B2 FE ASM Duplexer LNA Rx SAW DPDT Trace loss Loss before WTR Rx NF Rx BW CN Sensitivity Typ 1.24 0.68 1.9 0.6 0.5 4.92 2.3 3.84 -9.5 -110.44 Max 1.62 0.83 3.5 1.2 0.8 7.95 3 3.84 -9.5 -106.71 BC1 FE ASM Duplexer LNA Rx SAW DPDT Trace loss Loss before WTR Rx NF Rx BW CN Sensitivity Typ 1.24 0.68 1.9 0.6 0.5 4.92 2.3 1.23 -2 -107.88 Max 1.62 0.83 3.5 1.2 0.8 7.95 3 1.23 -2 -104.15 所以LNA掛WTR附近是沒有作用的.
  • 25. Type FEL + ASM + Dup Trace eLNA Trace + RxSAW iLNA Stage Stage1 Stage2 Stage3 Stage4 Stage5 NF [dB] 5.95 0.8 1.2 0.4 3 Gain [dB] -5.95 -0.8 14.3 -0.4 35.12 NF 3.94 1.2 1.32 1.1 2 Gain 0.25 0.83 26.9 0.91 3250.87 那我們現在來計算一下LTE B2的NF And loss use max value to calculate B2 FE ASM Duplexer Typ 1.24 0.68 1.9 Max 1.62 0.83 3.5 32 4 1 1 1 2 1 2 3 6 10 11 1 ... 8.09 dB. [ ] 174 10log 9 10 8.09 ( 1) 97.4 total FF F F F G G G G G G Sensitivity dBm                  照理說最爛0dBm sensitivity也有-97.4以上 Gain mode G0 Min Typ Max Unit Voltage conversion gain 49 53 57 dBV/V PS WTR3925 LTE Gain mode 0 define by Voltage Conversion Gain need to translation to power gain RxSAW 1.8 3.1 10 10 10 10log 10log 20log 2 IFOUT RFIN IFOUT IFOUT RFIN RFIN V VCG V P V VCG P V    
  • 26. Type FEL + ASM + LPF + Dup + SP6T + Trace eLNA Trace + RxSAW iLNA Stage Stage1 Stage2 Stage3 Stage4 NF [dB] 4.6 1.37 2.3 2.3 Gain [dB] -4.6 11.9 -2.3 35.12 NF 2 Gain 3250.87 那我們現在來計算一下LTE B12/17的NF And loss use max value to calculate 32 4 1 1 1 2 1 2 3 6 10 11 1 ... 6.34 dB. [ ] 174 10log 9 10 6.34 ( 1) 99.1 total FF F F F G G G G G G Sensitivity dBm                  LTE B12_17 FE ASM LPF Duplexer SP6T Typ 0.73 0.45 0.56 1.65 0.4 Max 0.98 0.55 0.56 2.35 0.5 Gain mode G0 Min Typ Max Unit Voltage conversion gain 49 53 57 dBV/V PS WTR3925 LTE Gain mode 0 define by Voltage conversion gain need to translation to power gain RxSAW 1.6 2.5 w/ eLNA
  • 27. Type FEL + ASM + LPF + Dup + SP6T + Trace = loss before WTR iLNA Stage Stage1 Stage4 NF [dB] 5.46 2.3 Gain [dB] -5.46 35.12 NF 2 Gain 3250.87 那我們現在來計算一下LTE B12/17的NF And loss use max value to calculate 32 4 1 1 1 2 1 2 3 6 10 11 1 ... 7.76 dB. [ ] 174 10log 9 10 7.76 ( 1) 97.7 total FF F F F G G G G G G Sensitivity dBm                  LTE B12_17 FE ASM LPF Duplexer SP6T Typ 0.73 0.45 0.56 1.65 0.4 Max 0.98 0.55 0.56 2.35 0.5 Gain mode G0 Min Typ Max Unit Voltage conversion gain 49 53 57 dBV/V PS WTR3925 LTE Gain mode 0 define by Voltage conversion gain need to translation to power gain RxSAW 1.6 2.5 w/o eLNA
  • 28. 這篇講到說升高LNA的Vcc有助於降低LNA的NF A Single Chip Silicon Bipolar Receiver for GPS/GLONASS Applications https://www.maximintegrated.com/en/app-notes/index.mvp/id/640 不過我們用MIPI控制的, 除非Layout, grounding沒走好造成IR drop否則應該是2.7V ?
  • 29. 接下來討論IIP3 w/o eLNA 整體的 IIP3 Type Trace ASM iLNA others Stage Stage1 Stage2 Stage3 Stage4 IIP3 [dBm] 100 80 5 -15.5 Gain [dB] -3 -1 15 -4 IIP3 [mW] 1010 108 3.16 0.028 Gain 0.5 0.79 31.62 0.4 1 2 31 1 2 1 2 3 4 1 1 ... 3 3 3 3 3 3 26.5 [dBm]. total total G G GG G G IIP IIP IIP IIP IIP IIP       w/o eLNA
  • 30. Type ASM eLNA Trace iLNA others Stage Stage1 Stage2 Stage3 Stage4 Stage5 IIP3 [dBm] 80 5 100 5 -15.5 Gain [dB] -1 15 -3 15 -4 IIP3 [mW] 108 3.162 1010 3.162 0.028 Gain 0.79 31.62 0.5 31.62 0.4 比較最好的情況w/ eLNA 整體的 IIP3 w/ eLNA 1 2 31 1 2 1 2 3 4 8 10 1 1 ... 3 3 3 3 3 1 3 41.6 [dBm]. 1 0.79 0.79 31.62 0.79 31.62 0.5 0.79 31.62 0.5 31.62 10 3.162 10 3.162 0.028 total total G G GG G G IIP IIP IIP IIP IIP IIP                   比之前degrade~15dB
  • 31. Type FEL + ASM + LPF + Dup + SP6T + Trace eLNA Trace + RxSAW iLNA Stage Stage1 Stage2 Stage3 Stage4 IIP3 [dBm] 80 -2 100 -10 Gain [dB] -4.6 11.9 -2.3 35.12 IIP3 [mW] Gain 那我們現在來計算一下LTE B12/17的IIP3 And loss use max value to calculate LTE B12_17 FE ASM LPF Duplexer SP6T Typ 0.73 0.45 0.56 1.65 0.4 Max 0.98 0.55 0.56 2.35 0.5 Gain mode G0 Min Typ Max Unit Voltage conversion gain 49 53 57 dBV/V PS WTR3925 LTE Gain mode 0 define by Voltage conversion gain need to translation to power gain RxSAW 1.6 2.5 1 2 31 1 2 1 2 3 4 1 1 ... 3 3 3 3 3 3 15.1 [dBm]. total total G G GG G G IIP IIP IIP IIP IIP IIP        w/ eLNA
  • 32.
  • 33. Type FEL + ASM + LPF + Dup + SP6T + Trace = before WTR iLNA Stage Stage1 Stage4 IIP3 [dBm] 80 -10 Gain [dB] -5.46 35.12 IIP3 [mW] Gain 那我們現在來計算一下LTE B12/17的IIP3 And loss use max value to calculate LTE B12_17 FE ASM LPF Duplexer SP6T Typ 0.73 0.45 0.56 1.65 0.4 Max 0.98 0.55 0.56 2.35 0.5 Gain mode G0 Min Typ Max Unit Voltage conversion gain 49 53 57 dBV/V PS WTR3925 LTE Gain mode 0 define by Voltage conversion gain need to translation to power gain RxSAW 1.6 2.5 1 2 31 1 2 1 2 3 4 1 1 ... 3 3 3 3 3 3 [dBm]. total total G G GG G G IIP IIP IIP IIP IIP IIP        w/o eLNA
  • 34. 1. 由此可知eLNA可以提升sensitivity, 但是連帶的也會降低linearity(IIP3變爛). 2. 其中IIP3 degrade = eLNA Gain. eLNA Gain vs cascade NF & IIP3 1. eLNA的Gain對於sensitivity的改善其實是有極限的. 2. Transceiver整體IIP3的下降是來自於eLNA的Gain, Gain每多增加1dB, Transceiver整體的IIP3就會降1dB. 0 10 20 30 40 50 5 6 7 8 9 10 CascadeNF(dB) CascadeIIP3(dBm) -60 -40 -20 0 CascadeIIP3(dBm) CascadeNF(dB) eLNA Gain (dB)
  • 35. System Band Test Item Ch Cell Power Lower Upper Unit Result Judgement WCDMA 1 6.2 Sensitivity Level 9613 -106.7 None 0.1 % 0 PASS WCDMA 1 6.3 MaxInput Level 9613 -25.7 None 0.1 % 0 PASS System Band Test Item Ch Cell Power Lower Upper Unit Result Judgement LTE-FDD 4 7.3 Reference sensitivity level;10MHZ; 20000 -96.3 95 None % 100 PASS LTE-FDD 4 RSRP;10MHZ; 20000 -96.3 None None None 16 None LTE-FDD 4 7.4 Maximuminput level;10MHZ; 20000 -25.7 95 None % 100 PASS  Sensitivity: 是在測試BER能接受情況下, 所能接收的最小輸入訊號.  Maximum Input Level: 顧名思義則是在測試BER能接受情況下, 所能接收的最大輸入訊號.  以Dynamic Range(DR)來解釋, Sensitivity是在測DR的下限, 而Maximum Input Level則是在測DR的上限.  整體來說Sensitivity, Maximum Input Level便是在量測整體Rx電路的P1dB.
  • 36. 在來我們討論SAW Filter and Linearity的影響 換言之就是計算有SAW情況下的IIP3 因為若Receiver整體的IIP2跟IIP3越大(越線性), 其抑制IMD2跟IMD3的能力就越好.
  • 37. [1] Guidelines for achieving best-in-class RX Diversity Performance in your Smartphone Applications, Infineon [2] Understanding and Enhancing Sensitivity in Receivers for Wireless Applications, TI [3] Improving Receiver Sensitivity with External LNA, Maxim Integrated [4] A Single Chip Silicon Bipolar Receiver for GPS/GLONASS Applications [5] 80-NH379-121 [6] 80-NH379-42 [7] ATF-531P8 1900 MHz High Linearity Amplifier, AVAGO [8] Integration of an External Low-noise Amplifier Improving the sensitivity of the Receiver, Atmel [9] Increasing the Sensitivity of the TDA52xx Receivers, Infineon [10] Signal Chain Noise Figure Analysis, TI [11] Use Selectivity to Improve Receiver Intercept Point, Maxim references