SlideShare a Scribd company logo
1 of 140
Download to read offline
Phase Locked Loops
Theory and Design
Chien-Jung Li
Department of Electronic Engineering
National Taipei University of Technology
Outline
• Frequency Synthesis Techniques
• Frequency Synthesizers based on the
Phase-Locked-Loop (PLL)
• Loop Analysis and Stability
• Components in a PLL
• Noise Analysis
• PLL Architectures
• Simulation Examples
Department of Electronic Engineering, NTUT2/140
Generic Transceiver Front End
Bandpass Filter
LNA
Duplexer
Antenna
v
Frequency
Synthesizer
LO
PA
• Local oscillator (LO) provides the carrier signal for both the receive
and transmit paths.
• If the LO output contains phase noise, both downconverted and
upconverted signals are corrupted.
Department of Electronic Engineering, NTUT3/140
Effect of Phase Noise in Receivers
f
0f
Wanted Signal
LO Output
Wanted Signal
Downconverted
Signal
f
Downconverted
Signals
ff
0f
Wanted Signal
LO Output Interferer
• Reciprocal Mixing
Department of Electronic Engineering, NTUT4/140
Effect of Phase Noise in Transmitters
f
1f
Wanted Signal
Nearby Transmitter
2f
f
0f
Multi-carrier signal (or OFDM)
f
0f
• Receiver Desensitization
• Orthogonality
Department of Electronic Engineering, NTUT5/140
Frequency Synthesis
 v t
t
• Meaning of frequency synthesis
Generation of a frequency or frequencies that are exact multiples of a
reference frequency. Usually the reference is very precise and the synthesized
frequencies are selectable over some range of whole-number multiples of a
submultiple of the frequency at
out ref
n
f f
M

where n and M are integers, n varies from Nmin to Nmax, and M is constant.
1T
1
1
f
 V f
f
1f
• Meaning of frequency
reff
Department of Electronic Engineering, NTUT6/140
Transformation to and from Voltage or Current
A B1f
Frequency
Discriminator

C D
d
dt
Voltage Controlled Oscillator
(VCO)
Phase Detector Phase Modulator
1 1v Af
2 1f Bv
  1 1f dt 2 1v C  2 2Dv
3 2
d
f
dt
V/Hz Hz/V
V/rad or V/cycle rad/V or cycle/V
Department of Electronic Engineering, NTUT7/140
Demonstration of the Transfer Functions
 
 
      
 
rms rms rms rms rms
1 rad 2 V rad rad 1
1 V 2 V 2 V V 0.32 V
V cycle cycle 2 rad
AV
Phase Modulator
1 rad/V
Phase Detector
2 V/Cycle
220 MHz VCO
1.5 MHz/V
1 k
200 MHz ICO
1 MHz/mA
100 MHz
signal
Low-pass Filter
50 MHz Cut-off
Frequency
Discriminator
5 V/MHz
A
B
D
• RMS voltage at point A:
Modulation voltage
(1 Vrms at 10 kHz)
   1 rms
MHz
0.32 V 1.5 0.48 MHz
V
f    

rms
2
0.32 V MHz
1 0.32 MHz
1 k mA
f
    rms
5 V
0.48 MHz-0.32 MHz 0.8 V
MHz
DV
C
Department of Electronic Engineering, NTUT8/140
Mathematical Operations on Frequency (I)
• Addition and Subtraction: The Mixer RF
LO
IF
   cos 2RF RF RFv t A f t  
         cos 2 cos 2IF RF LO RF RF LO LOv t v t v t A f t B f t        
For the practical mixer with nonlinear operation:
IF RF LOf mf nf 
Department of Electronic Engineering, NTUT9/140
   cos 2LO LO LOv t B f t  
        cos 2 cos 2
2
RF LO RF LO RF LO RF LO
AB
f f t f f t                  
      cos2 cos2 for 0
2
RF LO RF LO RF LO
AB
f f t f f t        
   , cosIF m nv t K m n   2 RF RFf t    2 LO LOf t   where and
or we can say the intermediate frequency is:
Mathematical Operations on Frequency (II)
• Frequency Dividers
 Subharmonically synchronized oscillators
 Digital dividers
• Frequency Multiplier
 Full-wave rectifier (frequency doubler)
 Harmonically tuned class-C amplifier
 Step-recovery diode (SRD)
1
powerG
N

10/140 Department of Electronic Engineering, NTUT
Frequency Synthesis Techniques
• Direct Analog Synthesis (DAS)
• Direct Digital Synthesis (DDS)
• Indirect Synthesis
- Phase-Locked Loops (PLLs)
• Hybrid DDS/PLL
Department of Electronic Engineering, NTUT11/140
Direct Analog Synthesis (DAS) I
• Frequency generated by mixed frequencies
1f
2f
3f
2Nf
1Nf
Nf
outf
filter1
filter2
filter3
filterN-2
filterN-1
filterN
out a bf mf nf 
Department of Electronic Engineering, NTUT12/140
Direct Analog Synthesis (DAS) II
• More stages are required for flexibly frequency planning.
1f
2f
3f
2Nf
1Nf
Nf
filter1
filter2
filter3
filterN-2
filterN-1
filterN
filter1
filter2
filter3
filterN-2
filterN-1
filterN
outf
1f 2f 3f 
 2Nf 
 1Nf Nf
Department of Electronic Engineering, NTUT13/140
Direct Digital Synthesis (DDS) I
• Waveform construction is based on the lookup table (LUT)
and a digital to analog converter (DAC)
• Direct synthesis
• Generated frequency is lower than input frequency
ref cf f
Department of Electronic Engineering, NTUT14/140
Direct Digital Synthesis (DDS) II
• Hardware technique to reduce the spur level of a DDS
• Reduce bandwidth
1000MHz
100-150MHz 1100-1150MHz 110-115MHz
div-by-10
DDS Filter
Frequency
Divider
0f
outf
BW=50MHz BW=15MHz
reff
Department of Electronic Engineering, NTUT15/140
Hybrid DDS/DAS
• Scheme to increase a DDS output bandwidth
1f 2f 3f 
 2Nf 
 1Nf Nf
outf
filter1
filter2
filter3
filterN-2
filterN-1
filterN
DDS
Frequency
Divider
reff
Department of Electronic Engineering, NTUT16/140
Indirect Frequency Synthesis (PLL) II
PFD LPF
Frequency Divider
reff outf
/N
• The main goal of the PLL is to sync the divided oscillator
frequency with the reference frequency outf N reff
 out reff N f out reff N f 
VCO
Department of Electronic Engineering, NTUT17/140
Fractional-N Frequency Synthesis
• Lower division ratio N to reduce inband phase-noise gain
• Effectively produce a fractional division value
• Generally employee a delta-sigma modulator for division ratio
dithering
PFD LPF
Dual-modulus
Frequency Divider
reff outf
/N, (N+1)
FCW
Department of Electronic Engineering, NTUT18/140
Principle of PLL Operation
vco
con
out reff f
Department of Electronic Engineering, NTUT19/140
• The main goal of the PLL is to sync the divided oscillator
signal with the reference signal (usually a pure sinusoid).
Phase-Locked Loop Analysis
The Phase-Locked Loop
• PFD: Phase Frequency Detector
• LPF: Loop Filter
• VCO: Voltage Controlled Oscillator
PFD LPF
Frequency Divider
reff outf
/N
VCO
• /N: Divied-by-N Frequency Divider
Department of Electronic Engineering, NTUT21/140
Feedback System
 iV s  oV s  G s
 H s
error
         o i oV s V s V s H s G s   
         i oG s V s V s G s H s 
 
 
 
   1
o
i
V s G s
V s G s H s


Department of Electronic Engineering, NTUT22/140
Closed-loop
transfer function
G(s)H(s) is the
open-loop transfer function
Loop Analysis – Use Frequency as I/O
Frequency Divider
 reff s  outf s
1
s
pK  F s
vK
1
N
Phase differenceFrequency difference
 outf s
N
• Relation between Input and Output Frequencies
   p
v
K
G s F s K
s

 
1
H s
N

 
 
 
   
 
 
11
1
p
v
out
pref
v
K
F s Kf s G s s
Kf s G s H s
F s K
N s
 


Department of Electronic Engineering, NTUT23/140
Loop Analysis – Use Phase as I/O
Frequency Divider
 ref s  out s pK  F s
vK
s
1
N
• Relation between Input and Output Phases
Phase difference Frequency to Phase
    v
p
K
G s K F s
s

 
1
H s
N

 
 
 
   
 
 
11 1
v
p
out
vref
p
K
K F ss G s s
Ks G s H s K F s
N s


 
 
Department of Electronic Engineering, NTUT24/140
Loop Transfer Functions
 
 
 
 
 
 
   
0 0
0 01 1
p po
i p p
K F s K s K F s K G s
T s
K F s K Ns Ns K F s K G s H s


   
  
 T(s) : closed-loop PLL transfer function
 G(s) : forward-path transfer function
 F(s) : loop filter transfer function
 Kp: phase detector gain
 K0/s: VCO transfer function
   1 0G s H s 
• A PLL is unstable when
    1 0 dB@ 180G s H s      
The condition of unity open loop gain and a phase angle of 180 degrees must
be avoided.
 H(s) : feedback-path transfer function
 G(s)H(s) : open-loop transfer function
or
Department of Electronic Engineering, NTUT25/140
PLL Response without a Loop Filter (I)
  0 0
0 01
F
p LPFo
Fi p LPF
K
K K K s NT s N N
KK K K Ns ss
N
 
 
   
 
• 3 dB cutoff frequency is KF/N = KpKLPFKo/N
  LPFF s K
• Without the loop filter, the feedback loop is equivalent to a DC gain of
N plus a low-pass filter with cutoff at .0
log
dB
0
FK
N
  
20logN
3 dB
0
Department of Electronic Engineering, NTUT26/140
PLL Response without a Loop Filter (II)
• The open loop gain has a slope of -6dB/octave or -20dB/decade for
all frequencies.
• The phase angle is always -90 degrees at all frequencies. Hence
with no low-pass filter, the PLL is always stable. But the main
drawback is that designers loose control over the loop.
• The simplest PLL is called a type-I loop because the open-loop gain
has one pole at DC (pure integration). It is also a first-order loop
because the open-loop gain has one significant pole.
   
 p vK F s K
G s H s
Ns

Department of Electronic Engineering, NTUT27/140
Single Pole Loop Filter
• The function of the LPF is to filter out any high frequency harmonics in
the loop that might cause the loop to go out of lock, and also to
stabilize the loop.
• Adding a LPF also affects the loop response including parameters such
as the loop time response, bandwidth, and the damping factor.
 
 1
LPF
p
K
F s
s 


• If we add a low-pass filter with a pole located at , the loop will be
still type-I, but it will become a second-order loop.
   
1 1
p LPF v F
p p
K K K K
N NG s H s
s s
s s
 
 
   
       
   
p
Department of Electronic Engineering, NTUT28/140
Bode Plot of Forward-path Transfer Function
minL
log m
 mG 
6 dB/oct
1020log FK
10 max20log N
10 min20log N
maxL
p1m 
90 
135 
180 
 mG 
12 dB/oct
• Where the curves cross, the open-loop gain equals unity.
   
 
1
G s
G s H s
N
   G s N (forward-loop gain )
Department of Electronic Engineering, NTUT29/140
Bode Plot of Open-loop Transfer Function
log m
   m mG H 
6 dB/oct
1020log FK
N
0 dB
L
p1m 
90 
135 
180 
 mG 
12 dB/oct
• Where the curves cross, the open-loop gain equals unity.
   
 
1
G s
G s H s
N
   G s N (forward-loop gain )
Phase margin
Department of Electronic Engineering, NTUT30/140
Natural Frequency and Damping ratio
 
 
   
 
 
0
0
1
1 1 1 1
1
F
ppo F
Fi p
F
p
p
K
ss
K F s K sG s NK
T s
KG s H s K F s K Ns sNs K
sNs




 
 
     
          
 
0
F p
n p
K
N

   
0
1 1 1
2 2 2
p p
p
n F
N
K
 
 
 
  
is geometric mean of the loop bandwidth in the absence
of a filter and the filter corner frequency.
2
2 2 2 2
2 2 2
p F p F n
p F n n n n
p
K K
N
K s s s s
s s
N
  
    

  
   
 
Characteristics equation
• Prototype second-order equation
•Natural frequency
•Damping ratio
Department of Electronic Engineering, NTUT31/140
Closed-Loop Gain for Large Damping Ratio
As long as damping ratio is greater than one, the poles are real and a
tangential plot of closed loop gain looks
20logN
6 dB/oct
12 dB/oct
log m
 out
ref
f
s
f
2 2
0 2 1 1 1      
 
2
1 1 1
2
p
    
 
The characteristics are similar to the case with no loop filter, except for the
increasing rate of attenuation in fout/fref beyond approximately the filter
corner frequency .
2
1p n ns      • The poles of the closed-loop function are located at
0
p
Department of Electronic Engineering, NTUT32/140
p
Close-loop Responses
0
F p
n p
K
N

   
0
1 1 1
2 2 2
p p
p
n F
N
K
 
 
 
  
• As decreases toward , the damping ratio decreases and the phase shift
at increases. Correspondingly, the transient response of the loop becomes
less damped (more ringing) and the response peaks near .
p 0
0
n
m n  0m 
• For large damping, the response is similar to that for no filter but, as the
damping ratio decreases, the response peaks and the peak moves to a lower
frequency relative to .0
Department of Electronic Engineering, NTUT33/140
Relative Stability – Phase Margin
• Left figure shows the phase margin
(relative stability) as a function of the
damping factor. More highly damped
loops are safer, in that more
parameter variation is allowable
before instability occurs.
log m
   m mG H 
6 dB/oct
1020log FK
N
0 dB
L
p1m 
90 
135 
180 
 mG 
12 dB/oct
Phase margin
• With a single-pole low-pass filter, the
loop is inherently stable, sine -180o
phase shift cannot be attained for any
finite frequency. (not always true practically)
Department of Electronic Engineering, NTUT34/140
Transient Response
reff outf  G s
1 N
e
1N
2N
1 refN f
2 refN f
 2 1N N
e
1
2
1 ref
N
f
N
 
 
 
t
0t  t
oldf
newf
Synthesizer
output frequency
A
B
C
D
Overshot
Ringing • Lower damping ratio brings
a higher percent overshoot
can cause the loop to go
out of lock. (more unstable)
• Narrower bandwidth with
smaller damping ratio and
longer settling time.
Department of Electronic Engineering, NTUT35/140
Settling Time
• Settling Time
The frequency error changes one decade approximately each 2.3 time constant,
that is,
 
 0
02.3
log
f
T
f T



oldf
newf
 0f
0t  t T
 f T
• Example (no filter)
3 -1
1 MHz/cycle 10 secFK  
10 kHzreff 
11 MHz 10 MHzoutf  
Find the settling time for the output frequency of 10.1 MHz is attained.
6
0
10
1000
1000
FK
N
   
0
2.3 1
log 2.3 ms
0.1
T


Department of Electronic Engineering, NTUT36/140
A Pole-Zero Filter
• A pole-zero filter is a low pass filter with a pole frequency and a
zero frequency . The addition of a pole in the transfer function
causes the transfer function slope to drop at a rate of 6 dB per octave
whereas the addition of a zero in the PLL transfer function has the
opposite effect. The pole-zero filter transfer response is given by
 
 
 





1
1
z
p
s
F s
s
• The open loop transfer function is:
   
   
 
1
1
p v zp v
p
K K sK F s K
G s H s
Ns Ns s


   
  
p
z
6 dB/oct
12 dB/oct
log m
zp
6 dB/oct
• The closed-loop transfer function is:
 
 
 
0
01
po
i p
K F s K s
T s
K F s K Ns


 

Department of Electronic Engineering, NTUT37/140
Open-Loop Gain with a Pole-Zero LPF
• In this case, the location of the pole is always before the zero
frequency. Given the pole frequency location, a zero can be placed
after the so as to avoid the magnitude from crossing the unity gain
axis at a slope of 12 dB per octave, and therefore avoiding
instability. To determine the closed loop response, simply plot T(s),
 
 
2
1
1
p F
z
p F p F
p
z
K
s
NT s N
K K
s s
N N


 




 
   
 
0
F
n p p
K
N
    
1
2
p n
n z
 

 
 
  
 
6 dB/oct
12 dB/oct
log m
zp
6 dB/oct
 2
2 2
1
2
z
n
n n
s
N
s s


 


 
Department of Electronic Engineering, NTUT38/140
Open-Loop Gain with a Pole-Zero LPF
• From the results, selecting the pole frequency sets the natural
frequency (and subsequently the loop bandwidth) and selecting the
zero (based on the pole location in the open loop gain response)
determines the desired percentage overshoot. Therefore, a pole-zero
filter allows the designer to select the loop bandwidth and the
damping factor independently and still achieve stability.
0
F
n p p
K
N
    
1
2
p n
n z
 

 
 
  
 
Department of Electronic Engineering, NTUT39/140
Components in PLLs
Phase Detector (PD) – Mixer
 1 2cosd dv A   
2i i if   
 1 2coss sv A   
• The balanced mixer
IF d sv v v 
   1 2 1 1 2cos cos 4IF d sv A A f t        
1 2f fFor filtered-out by the LPF
 1 2 
2
 1 2
2

     
IF dv A    
and is very small
1 1 12 f   
2 2 22 f   
IFv
Phase of signal 1
Phase of signal 2
Department of Electronic Engineering, NTUT41/140
A B C
0 0 0
0 1 1
1 0 1
1 1 0
Phase Detector (PD) – EXOR
A
B
C
1
0
1
0
T

A
B
ppV C A B 
average
value
of
v(C)
ppV
1.0 0.5 0 0.5 1.0
T
• The exclusive-OR
1
0
1
0
T
A
B
ppV C A B 
Department of Electronic Engineering, NTUT42/140
Phase Detector (PD) – SR-FF
S
R
QA
B
C
T
Av
Bv
ppV

Cv
0 1 2
average
value
of
v(C)
T
ppV
A B C
0 0 N
0 1 0
1 0 1
1 1 X
• S-R Flip-Flops
Department of Electronic Engineering, NTUT43/140
Phase/Frequency Detector (PFD)
A lagging B ( same )
• Detectable range : -2π~ 2π
CLK
D
Q
CLR
Q
D
CLR
CLK
A
B
1
QA
QB
A
B
QA
QB
A BQ Q
2 4
24

 A leading B ( same )
A
B
QA
QB

Department of Electronic Engineering, NTUT44/140
Two General Types of PFD
T
t
ref(t)
div(t)
ref/2(t)
div/2(t)
e(t)
1
-1
• XOR-Based PFD
ref(t)
div(t)
up(t)
dn(t)
e(t)
1
0
-1 T
t
• Tri-state PFD
Department of Electronic Engineering, NTUT45/140
Typical Dead-Zone for Various PFDs
Type Dead Zone
Conventional ~800ps
NC-PFD ~160ps
TSPC-PFD ~210ps
MPTPFD ~10ps
• Commercial product Motorola MC4044 using conventional PFD
introduce 30 degree dead-zone@20MHz (~400ps).
• The first XOR-based dead-zone free design was proposed by Analog
Device (AD9901).
1f
2f
UP
UP
DN
DN
Department of Electronic Engineering, NTUT46/140
Dead-zone Problem of PFDs
• In a PLL, the contribution of every block is essential to the
total phase noise if a high-quality frequency synthesizer is
the goal.
• If the input frequency reference to be compared is as high as
several MHz, the linearity of the phase detector becomes
essential.
• In the passband of the PLL, the output phase noise depends
on noise contribution from the phase detector, loop filter and
frequency divider.
• In charge pump based PLL, there are more problems.
Department of Electronic Engineering, NTUT47/140
The Principle of PFD and Dead-Zone Problem
• The PFD operates as a frequency detector initially and as
phase detector finally to achieve loop lock.
• The dead-zone problem:
- When two signals have the same frequency and almost identical
phase, the PFD block is not able to generate a proper output signal
so that an identical phase may be obtain.
- This uncertainty leads to phase noise (jitter in time domain) and
generation of spurious at the output of VCO.
AND gate switch threshold
ref(t)
div(t)
up(t) dn(t)
1
0
1
0
ref(t)
div(t)
up(t)
1
0
1
0
dn(t)
ref(t)
div(t)
1
0
1
0
up(t)
dn(t)


Department of Electronic Engineering, NTUT48/140
Solve the Dead-Zone Problem
• Delayed reset path
• Inphase operation
• Need accurate timing analysis
• Low spurious tones
• Bad linearity
• Alternatively current output
• Non-inphase operation
• More power consumption at lock state
• Current mismatch with CP is the issue
• High spurious tones
• Good linearity
• XOR-Based PFD
• Tri-state PFD
Department of Electronic Engineering, NTUT49/140
Improvement of PFD Linearity
22
2 0
 0
22 0
Department of Electronic Engineering, NTUT50/140
Charge-Pump Phase Detector
• The most popular phase-detector type is both a charge-pump (CP)
detector and a phase-frequency detector (PFD), the terms, the
charge-pump PD and PFD, are sometimes interchangeably.
• The PFD acts as a phase detector during lock and provides a
frequency-sensitive signal to aid acquisition when the loop is out of
lock.
• The charge pump is so named because it is supposed to deliver a
charge proportional to phase error to the loop filter.
PFD
Charge
Pump
Switched Output
(analog)
Charge Up
Charge Down
CU (digital)
CD (digital)
RD
VD
Department of Electronic Engineering, NTUT51/140
Charge Pump PFD
PFD
AQ
BQ pC
DDV
A leading B ( same )
RD
VD
QA
QB

VCP
VCP
t
Department of Electronic Engineering, NTUT52/140
RD
VD
Charging Current
RD
VD
CU
CD
Current Out
Department of Electronic Engineering, NTUT53/140
Charge Pump (Current Source and Sink)
PFD
AQ
BQ
DDV
RD
VD
LZ
oV
DDV
R
1M 2M
1
1
W
L
2
2
W
L
2D oI I1DI
GSV
oV
sink current
 
21
1
2
DD GS
D GS thn
V V
I V V
R
 
  
 
22
2
2
D GS thnI V V

 
2 2 2 2 2
1 1 1 1 1
D
D
I W L W
I W L W


  
DDV
R
1M 2M1
1
W
L
2
2
W
L
2D oI I
1DI
SGV
oV
source current
 
2
1
1
2
DD SG
D SG thp
V V
I V V
R
 
  
 
2
2
2
2
D SG thpI V V

 
2 2 2 2 2
1 1 1 1 1
D
D
I W L W
I W L W


  
• Saturation region:
DS GS thnV V V 
GS thnV V
• Saturation region:
SD SG thpV V V 
SG thpV V
Department of Electronic Engineering, NTUT54/140
Early Effect
DDV
R
1M 2M
1
1
W
L
2
2
W
L
2D oI I1DI
GSV
oV
sink current
   22
2 ,1
2
D GS thn DS DS satI V V V V

     
1
L
 
• Channel length modulation and Early effect
DI
DS oV V
(prefer a long channel length)
2
1 1A
o
D o D
V
r
I I I 
   (prefer a high output resistance)
Department of Electronic Engineering, NTUT55/140
Cascode Connection and Switch
 3 3 2 21o o m o oR r g r r  
DI
DS oV V
• Cascode connection increases
output resistance
PFD
AQ
BQ
DDV
RD
VD
LZ
oV
DDV
R
1M 2M
1
1
W
L
2
2
W
L
2D oI I1DI
GSV
oV
sink current
BQ
switch
3M
2 thnV V 
• Need excess gate-source
voltage V
BQ is a digital signal (0~VDD)
thnV
Cascoded (with switch)
Department of Electronic Engineering, NTUT56/140
Current Mismatch
DI
DS oV V
Department of Electronic Engineering, NTUT57/140
Spurs and CP Non-ideal Effect
tsource
toff
tsink
Isink
Isource
tcomp
• Reference Spurs
- current leakage
- current source mismatch
(a) current mismatch with different
output node voltage
(b) unequal switching time
• Non-reference Spurs
- crosstalk
(a) dual loop
(b) interferences
- non-crosstalk
(a) fractional spurs
(b) interferences
(c) dual loop references mixing
(d) prescaler miss counting
Department of Electronic Engineering, NTUT58/140
Charge-Pump Switching Time
• When the charge-pump(CP) based PLL is used, the CP is
also the bottle neck since the PFD can’t distinguish input
edges separated by less than the CP switching time.
CPI
CPI
PFD
PFD
CP
CP
Department of Electronic Engineering, NTUT59/140
Dead-Zone Elimination and Spurs
• In conventional PFD, the problem of the CP current sources mismatch
is amplified by the number of additional delays in the reset path.
ref(t)
div(t)
1
0
1
0
up(t)
dn(t)


ref(t)
div(t)
1
0
1
0
up(t) dn(t)


periodic output!
+ICP
-ICP
Department of Electronic Engineering, NTUT60/140
Dead-Zone Issues
• In charge pump based PLL, the dead-zone problem is not
only considered in PFD design but charge pump.
• As reference frequency goes higher, the dead-zone issue is
more serious, because the linearity highly depends on the
dead-zone.
• In charge pump design, it’s hard to achieve low power
consumption, fast current switching and perfect current
mismatch.
Department of Electronic Engineering, NTUT61/140
Frequency Divider
PFD LPFreff outf
/N
VCO
divf inf
 / 1M M 
Prescaler
P
S
inf
divf
Program counter
Swallow counter
Reset
Modulus control
Channel selection
•Pulse Swallow Frequency Divider
1
in
in
T
f
 1 inM T
 1 inS M T
  inP S MT
     1div in in inT S M T P S MT S PM T     
(1) Start with divided-by-(M+1)
Total counts of program counter = P cycles
(2) Change to divided-by-M
1
div
div
T
f

 
1 1
div in inf f f
S PM N
 

2, 8, 4 4 8 2 20M P S N       
Department of Electronic Engineering, NTUT62/140
Asynchronous Divider
J Q
K
C
J Q
K
C
J Q
K
C
1
1
1
1
1
1
inf
2
inf
4
inf
8
inf
inf
2inf
4inf
8inf
outf
inf
2inf
4inf
8inf
outf
Department of Electronic Engineering, NTUT63/140
Synchronous Divider (2 versions)
J Q
K
C
J Q
K
C
J Q
K
C
J Q
K
C
J Q
K
C
1
1
2inf 4inf
8inf
16inf
16inf
Department of Electronic Engineering, NTUT64/140
Spikes in Synchronous Divider
2inf
4inf
8inf
outf
2inf
4inf
8inf
outf
2inf late
8inf early
• Racing in synchronous divider producing output spikes
Department of Electronic Engineering, NTUT65/140
Synchronous Divider w/ Enable
J Q
K
C
J Q
K
C
J Q
K
C
J Q
K
C
J Q
K
C
J Q
K
C
1
1
J Q
K
C
J Q
K
C
J Q
K
C
J Q
K
C
J Q
K
C
J Q
K
C
1
1
•Parallel Enable
•Serial Enable
Department of Electronic Engineering, NTUT66/140
Direct Variable Frequency Divider
Department of Electronic Engineering, NTUT67/140
Type and Order of the Loop
Frequency Divider
 ref s  out s pK  F s
vK
s
1
N
 
 
   
 
 1
G s N s
T s
G s H s D s
 

• The simplest PLL is the type-I loop because the open-loop gain has
one pole at DC (pure integration). It is also a first-order loop because
the open-loop gain has one significant pole.
  1
1 0
n n
n nN s a s a s a
   
  1
1 0
m m
m mD s b s b s b
   
Order = m (m roots)
Type = n (n roots at DC)
Department of Electronic Engineering, NTUT68/140
Filter First-order Type 1
• First order, type I (no filter)
1R
iv ov
2R
L
log m0 dB
G
6 / .dB oct
2
1 2
o
LPF
i
v R
G
v R R
 

A
3R
iv
4R
ov
 A
4
3
o
LPF
i
v R
G
v R

   
Department of Electronic Engineering, NTUT69/140
Filter Second-order Type I
• Second order, type I (Lag-and-lead filter)
1R
iv ov
2R
1C
A
3R
iv
5R
ov
2C
4R
L
log m0 dB
G
12 / .dB oct
6 / .dB oct
zp





1
1
z
LPF
p
s
G
s
 
2 1
1
z
R C 1 2 1
1
p
R R C
 

1
1
z
LPF
p
s
G
s




 


4 5
2
4 5
1
z
R R
C
R R
 

 
5 2
1
p
R C
Department of Electronic Engineering, NTUT70/140
Filter Second-order Type 1
• Second order, type I (Lag filter)
1R
iv ov
2R 1C
L
log m0 dB
G
6 / .dB oct
p
12 / .dB oct
A
3R
iv
4R
ov
2C
 A



 
2
1 2
1
1
LPF
p
R
G
sR R

  


4
3
1
1
LPF
p
R
G
sR

 
  
 1 1 2
1 1 1
p
C R R
 
4 2
1
p
R C
Department of Electronic Engineering, NTUT71/140
Filter Second-order Type II
• Second order, type II (Integrator and lead filter)
L
log m0 dB
G
12 / .dB oct
6 / .dB oct
z
A
1R
iv
2R
ov
C
 A


  
1 1
1
1 z
LPF
s
G
R C s
 
2
1
z
R C
Department of Electronic Engineering, NTUT72/140
Filter Third-order Type II
• Third order, type II (Integrator plus lead-lag filter)
L
log m0 dB
G
12 / .dB oct
p
12 / .dB oct
6 / .dB oct
z
A
1R
iv
2R
ov
2C
1C
 A
A
3R
iV
4R
oV
3C
5R
4C A
1 1
1
1
1
z
LPF
p
s
G
R C s
s



  
 
  
 




  
 
   
3 3
1
1
1
z
LPF
p
s
G
R C s
s
 
 
2 1 2
1
z
R C C
 
2 2
1
p
R C
 
4 3
1
z
R C
 
5 4
1
p
R C
Department of Electronic Engineering, NTUT73/140
Filter Third-order Type II
• Third order, type I (imperfect integrator plus lead-lag filter)
L
log m0 dB
G
6 / .dB oct
 2p
12 / .dB oct
6 / .dB oct
z 1p
12 / .dB oct
A
1oA R
A
 A
Department of Electronic Engineering, NTUT74/140
Oscillator
• Oscillator provides a sinusoidal signal
 v t
t
1
1
f
 V f
f
1f
 v t
t
1
1
f
 V f
f
1f
Department of Electronic Engineering, NTUT75/140
Voltage Controlled Oscillator (VCO)
• VCO is an oscillator of which frequency is controlled by a
tuning voltage
• VCO is a simple FM modulator
vcof
tuneV
tuneV
Department of Electronic Engineering, NTUT76/140
VCO Sensitivity and Tuning Linearity
• Frequency Range
• Frequency tuning characteristics
- Sensitivity (Hz/Volt)
- Linearity
VK f V  
vcof
tunev
,0tv
0f
maxf
minf
,mintv ,maxtv
v
f
Ideal (perfect)
Piecewise good
Piecewise good
Poor
Department of Electronic Engineering, NTUT77/140
Important Figures
• Output Power (@50 Ohm)
• Frequency Stability: frequency drifting
• Pushing and Pulling Figures
• Harmonics
• Phase Noise (Jitter)
Department of Electronic Engineering, NTUT78/140
Phase Noise and Jitter
 
   1 Hz
10log 10log dBc Hz
2
noise
carrier
S fP
L f
P
 
  
• Phase Noise
• Jitter
 Cycle jitter
cn nT T T    
2
1
1
lim
N
c cn
n
n
T
N



 
 Cycle-to-cycle jitter
1ccn n nT T T    
2
1
1
lim
N
c ccn
n
n
T
N



 
 Absolute jitter (long-term jitter, accumulated jitter) of N cycles
     
1 1
N N
abs n cn
n n
T N T T T
 
       
2
1
1
lim
N
c ccn
n
n
T
N



 
for white noise sources   0
2
abs cc
f
T t t    and 2cc c 
Department of Electronic Engineering, NTUT79/140
Relation of Phase Noise and Jitter
• Relationship between the SSB phase noise and the rms cycle jitter:
(Weigandt et al.)
 
 
3 2
0
2
cf
L f
f

 

• Relationship between the SSB phase noise and the rms cycle jitter:
(Herzel and Razavi)
 
 
   
3 2
0
22 3 4
0
4
8
cc
cc
L
  

   
 
 
• Self-referred jitter and phase noise with white noise:
(Demir et al.)
 
 
2
0
2 2 4 2
0
f c
L f
f f c
 
 
 2
t t c     20
2
cc
f
c 
Department of Electronic Engineering, NTUT80/140
Oscillator Design (I)
• Feedback : Barkhausen’s Criteria
 
 
( )
( )
1 ( ) ( )
o
f
i
V G s
G s
V G s H s
 ( ) ( ) 1G s H s (Phase is 0 deg. or multiple of 360 deg.)
Department of Electronic Engineering, NTUT81/140
Oscillator Design (II)
  '
11 1G S
  '
22 1L S
If the two-port network is oscillating at one port, it must be simultaneously
oscillating at the other port.
• Two Port Reflection
Sine the resonator is passive, thus 1G 
Department of Electronic Engineering, NTUT82/140
Oscillator Design (III)
0)()(   DRR
0)()(   DXX
• One-port Negative Resistance
Department of Electronic Engineering, NTUT83/140
Common Oscillator Configurations
bi
ci
C
E
B
1C
2C
3L
bi
ci
C
E
B
1L
2L
3C
bi
ci
C
E
B
1C
2C
3L
bi
ci
C
E
B
1C
2C
3L
Colpitts Hartley
Clapp Siler
Department of Electronic Engineering, NTUT84/140
Effects of Internal Noise Source
• The nonlinearities in the circuit cause K1 or K2 to have a value such
that the loop gain is unity, a condition for stable oscillation.
• The other condition is that there be 360o phase shift around the loop.
This occurs at the resonant frequency of the tank circuit.
2K
RC L1 2i K v

1v
nv
2v
• If no feedback, the noise will appear at the output, amplified by K2.
Department of Electronic Engineering, NTUT85/140
Small Noise Introduced
• But what effect does the feedback have?
(1) Far from spectral center: the output contains amplified circuit noise
(2) Close to spectral center: the feedback has an important effect


 
 
  
 
1
1 1
i
T
v
Z
i
j C
R L
Phase shift of this factor is
 

   
   
  
1 1
tanT R C
L
2K
RC L1 2i K v

1v
nv
2v
Department of Electronic Engineering, NTUT86/140
Tank Phase Shift
0 0
2Td Q
d 

 
 
Q is the loaded quality factor of the frequency-determining circuit.
• For modulation rates small compared to one-half of
the resonant bandwidth of ZT, a change in
frequency causes a phase change in the
transfer function, where the two changes are
2
osc
Q

   
0
1
0
0
1
tan 0T R C
L 
 



  
    
  

0
 
T
0
TH
1


Department of Electronic Engineering, NTUT87/140
Phase Perturbations
• The loop responds to a phase perturbation of by producing an
equal and opposite phase change to maintain the required zero phase
shift around the loop in the presence of modulation due to noise. This
is done by shift the frequency.
• A phase modulation with peak deviation due to noise vn
necessitates frequency modulation of the oscillator output with peak
deviation by

  
2
osc
n n
Q
n
n
0
T
n
n
n
Department of Electronic Engineering, NTUT88/140
Closed-Loop Noise

 
 

   2
2
oscn
n
m mQ
where is the noise modulation frequency.

2
osc
Q 
1
m
 n
 n
 2
• The phase noise would ordinarily appear at the output due to circuit
noise is accentuated by a factor . 2osc mf Qf
m
2
osc
m
f
f
Q

log mf
Open loop
Closed loop
logS
 2
rad Hz
Department of Electronic Engineering, NTUT89/140
Oscillator Phase Noise
f
0f mff 0
1 Hz
R
P
V avs
avsRMS 
R
FkT
VnRMS 11 Hz
R
FkT
VnRMS 2
• The input phase noise in a 1-Hz bandwidth at any frequency
from the carrier produces a phase deviation.
0 mf f
sP
nP

Department of Electronic Engineering, NTUT90/140
Noise
Noise Caused Phase Deviation
  1nRMS
peak
avsRMS avs
V FkT
V P
 1
1
2
RMS
avs
FkT
P
 RMS total
avs
FkT
P
Noise
 2
1
2
RMS
avs
FkT
P
(total phase deviation)
12 nRMSV
m
2 avsRMSV
0
 peak
Department of Electronic Engineering, NTUT91/140
Lesson’s Model (I)
avs
RMSm
P
FkTB
fS  2
)( 
1)(BdBm/Hz174 kTB
S
cf
mf
avsP
FkTB
1)(B1)( 






m
c
avs
m
f
f
P
FkTB
fS
• The spectral density of phase noise :
(theoretical noise floor of the amplifier)
• Flicker Noise
The purity of signal is degraded by the flicker noise at the frequencies close to
the carrier.
noise floor
flicker noise
Department of Electronic Engineering, NTUT92/140
Lesson’s Model (II)
)
2
(1
1
)(
0


loadm
m
Qj
L



in
Equivalent lowpass for
resonator
out
+
)( min f
)(
2
0
min
mL
f
Qj









• The oscillator may be modeled as an amplifier with feedback
0
1
( )
2
1
L m
L m
H
Q
j




 
  
 
0
2 2L
B
Q


0
( ) 1 ( )
2
out m in m
L m
f f
j Q

 

 
     
 
2
0
2
1
( ) 1 ( )
2
out m in m
m L
f
S f S f
f Q
 
  
    
   
( ) 1 c
in m
avs m
fFkTB
S f
P f

 
   
 
( )L mH
Department of Electronic Engineering, NTUT93/140
Lesson’s Model (III)
2
2
3 2 2
1 1
L( ) 1
2 4 2
o c o c
m
avs m L m L m
f f f fFkTB
f
P f Q f Q f
  
     
   
Up-convert 1/f
noise
Thermal FM
noise
Flicker noise
Thermal noise floor
• Lesson’s Oscillator Model:
slope
f
cf
f
1
Thermal Noise Floor
1/f noise at carrier
0f
C

  
    
   
2
0
2
1 1
L( ) 1 ( )
2 2
m in m
m L
f
f S f
f Q 
 
   
 
( ) 1 c
in m
avs m
fFkTB
S f
P f
Open-loop amp.Closed-loop with resonator
Department of Electronic Engineering, NTUT94/140
Lesson’s Model (IV)
1
mf
1
mf 0
mf
3
mf
1
mf
2
mf
3
mf
0
mf
cf
cf
cf
cf
Q
fo
2 Q
fo
2
avsP
FkTB
avsP
FkTB
2
avsP
FkTB
High Q Oscillator
Phase perturbation
Low Q Oscillator
Phase perturbation
Resulting phase noise Resulting phase noise
Department of Electronic Engineering, NTUT95/140
Noise Analysis
PLL Phase Noise Model
Frequency Divider
,ref n
out
1
N
PFD   LPF
,pfd nV ,op nV

,vco n

,div n
VCO
Xtal
Department of Electronic Engineering, NTUT97/140
Noise Transfer Functions (I)
 
      , , , , , ,out n pfd n op n ref n div n e vco n
d
T s
V V T s H s
K
       
 
 
   1
G s
T s
G s H s


 
   
1
1
eH s
G s H s


 
 
     
for
for1
c
c
NG s
T s
G sG s H s
 
 

  
 
 
   
 
for1
for1
1
c
e
c
N
G sH s
G s H s
 
 


  
 

Department of Electronic Engineering, NTUT98/140
Noise Transfer Functions (II)
c
log m
 
   1
G s
G s H s
N
 G s
Transfer function multiplying all sources except VCO
c
log m
   
1
1 G s H s
1
   
1
G s H s
Transfer function for VCO
c
log m
20logN
 G s
 dB
0
Department of Electronic Engineering, NTUT99/140
Typical VCO and PLL Noise Performance
Department of Electronic Engineering, NTUT100/140
PLL Design with Sheets
http://www.peregrine-semi.com
Department of Electronic Engineering, NTUT101/140
Phase-Locked Loop Architectures
• Integer-N PLL
• Fractional-N PLL
• Offset PLL
• DDS Offset PLL
• Dual Loop PLL
• Multi-Loop PLL
Department of Electronic Engineering, NTUT102/140
Offset PLL
out ref offsetf N f f  
• Lower division ratio N to reduce inband phase-noise gain
?
PFD LPF
Frequency Divider
reff outf
/N
offsetf
• Extend bandwidth with different offsetf
• Avoid LO pulling
Department of Electronic Engineering, NTUT103/140
Dual-Loop PLL (I)
PFD LPF
Frequency Divider
reff outf
/N
offsetf
PFD LPF outf
/M
2nd loop
Department of Electronic Engineering, NTUT104/140
Dual-loop PLL (II)
PFD LPF
Frequency Divider
1reff
outf/N
1f
PFD LPF
2f
/M
2nd loop
2reff
Department of Electronic Engineering, NTUT105/140
Multi-Loop PLL
3rd loop
2nd loop
foffset1
PFD LPF
/N
foutVCOfref
PFD LPF
/M
VCO
foffset2
PFD LPF
/P
VCO
foffset3
Department of Electronic Engineering, NTUT106/140
DDS Offset PLL
PFD LPF
Frequency Divider
reff outf
/N
offsetf
DDS
Department of Electronic Engineering, NTUT107/140
Fractional-N Frequency Synthesis
• Lower division ratio N to reduce inband phase-noise gain
• Effectively produce a fractional division value
• Generally employee a delta-sigma modulator for division
ratio dithering
PFD LPF
Dual-modulus
Frequency Divider
reff outf
/N, (N+1)
FCW
Department of Electronic Engineering, NTUT108/140
DDS-Driven Fractional-N Synthesizer
• DDS acts a reference source or phase/frequency modulator
• A variable reference frequency source can drive a fractional
frequency output.
PFD LPF
Frequency Divider
reff outf
/N
DDS
FCW
Hybrid DDS/PLL
Department of Electronic Engineering, NTUT109/140
DDS-Feedback Fractional-N Synthesizer
• DDS acts a frequency divider
• DDS output frequency
Hybrid DDS/PLL
PFD LPF
Frequency Divider
reff outf
DDS
FCW
2
out ref offsetn
M
f f f  
Department of Electronic Engineering, NTUT110/140
Comparison of Frequency Synthesizers
DDS
Single-Loop
PLL
Multi-Loop
PLL
DDS/DAS
DDS Offset
PLL
DDS Driven
PLL
BW
(output)
Narrow
< 100MHz
Broad
> 1GHz
Broad
> 1GHz
Broad
> DDS
Broad
(carefully
design)
Broad
Resolution
Extremely
Fine
< 0.02 Hz
Very Course
> 250kHz
(typical)
Medium
> 1kHz
(typical)
Extremely
Fine
< 0.01 Hz
Extremely
Fine
< 0.01 Hz
Extremely
Fine
< 1Hz
Switching
Time
Very Fast
< 100 ns
Fast
< 100us
(typical)
Very Slow
> 1ms
(typical)
Very Fast
< 1us
(limited by
RF switch)
Fast
< 100us
(typical)
Trade-off vs
close-in
spurious
tones
Spurious
Noise
< 75dBc
(limited by
DAC)
Very Good
Good
(carefully
design)
Minimum
Close-in
Spurious
Minimum
Close-in
Spurious
Excellent
over Broad
Bandwidth
Phase
Noise
Better than
clock
reference
Very Good Very Good Very Good Very Good Good
Circuitry Simple Simple Very Complex Moderate Moderate Moderate
Department of Electronic Engineering, NTUT111/140
PLL Simulation
• ADS Circuit Envelope Simulation Basics
• Integer-N Frequency Synthesizer Simulation
• Fractional-N Frequency Synthesizer Simulation
• Closed-In Phase Noise Characteristics
Department of Electronic Engineering, NTUT112/140
Circuit Envelope Simulation Technique
• Time samples the modulation envelope (not carrier)
• Compute the spectrum at each time sample
• Output a time-varying spectrum
• Use equations on the data
• Faster than HB or SPICE in many case
• Integrates with System Simulation & HP Ptolemy
Department of Electronic Engineering, NTUT113/140
What Test Can it Perform?
• Test circuits with realistic signals
Simulation can include:
• Adjacent Channel Power Ratio
• Noise Power Ratio
• Error Vector Magnitude
• Power Added Efficiency
• Bit Error Rate
Also, it can be used for PLL simulation:
• Locking time
• Spurious signal
• Modulation in the loop
• Phase noise
Features of Circuit Envelope Simulation
Department of Electronic Engineering, NTUT114/140
• Time sample the envelope and then perform Harmonic
Balance on the samples. V(t) can be complex – am, fm or
pm
Circuit Envelope Sampling
Department of Electronic Engineering, NTUT115/140
Spectrum Computation
Department of Electronic Engineering, NTUT116/140
Envelope
Env1
Step=1 nsec
Stop=100 nsec
Order[1]=3
Freq[1]=1.0 GHz
ENVELOPETime step
– Determines bandwidth of Circuit Envelope simulation
– Small enough to capture highest modulation frequency
Stop time
– Determines resolution bandwidth of output spectrum
– Large enough to resolve spectral components of interest
Frequency Span and Resolution Bandwidth
Department of Electronic Engineering, NTUT117/140
Vin Vout
Envelope
Env1
Step=1 nsec
Stop=50 nsec
Order[1]=1
Freq[1]=900 MHz
ENVELOPE
R
R1
R=50 Ohm
PtRF_Pulse
PORT1
Period=100 nsec
Width=30 nsec
Fall=10 nsec
Rise=5 nsec
Delay=0 nsec
OffRatio=0
Freq=900 MHz
P=dbmtow(0)
Z=50 Ohm
Num=1 Amplifier
AMP1
S12=0
S22=dbpolar(-50,0)
S11=dbpolar(-50,0)
S21=dbpolar(10,0)
Circuit Envelope Simulation Example (I)
Department of Electronic Engineering, NTUT118/140
m2
time=5.000nsec
real(Vout[1])=1.000
m1
time=0.0000 sec
real(Vout[1])=0.000
m2
time=5.000nsec
real(Vout[1])=1.000
m1
time=0.0000 sec
real(Vout[1])=0.000
10 20 30 400 50
-0.5
0.0
0.5
-1.0
1.0
time, nsec
real(Vin[1])
real(Vout[1])
m2
m1
ts(Vout),V
m2
time=5.000nsec
real(Vout[1])=1.000
m1
time=0.0000 sec
real(Vout[1])=0.000
m2
time=5.000nsec
real(Vout[1])=1.000
m1
time=0.0000 sec
real(Vout[1])=0.000
10 20 30 400 50
-0.5
0.0
0.5
-1.0
1.0
time, nsec
real(Vin[1])
real(Vout[1])
m2
m1
ts(Vout),V
m2
time=10.00nsec
real(Vout[1])=1.000
m1
time=0.0000 sec
real(Vout[1])=0.000
m2
time=10.00nsec
real(Vout[1])=1.000
m1
time=0.0000 sec
real(Vout[1])=0.000
10 20 30 400 50
-0.5
0.0
0.5
-1.0
1.0
time, nsec
real(Vin[1])
real(Vout[1])
m2
m1
ts(Vout),V
m2
time=0.0000 sec
real(Vout[1])=0.000
m1
time=0.0000 sec
real(Vout[1])=0.000
m2
time=0.0000 sec
real(Vout[1])=0.000
m1
time=0.0000 sec
real(Vout[1])=0.000
10 20 30 40 500 60
-0.5
0.0
0.5
-1.0
1.0
time, nsec
real(Vin[1])
real(Vout[1])
m2m1
ts(Vout),V
Circuit Envelope Simulation Example (II)
Department of Electronic Engineering, NTUT119/140
Tstep = 1 ns Tstep = 5 ns
Tstep = 10 ns Tstep = 20 ns
Integer-N Frequency Synthesizer
    0out ch reff f k f M f    0out ch reff f k f M f
For channel 1 (k=0)
  0out L reff f M f
   , 0,1,2, ,LM M k k N
ch reff fch reff f
Architecture of Integer-N Frequency Synthesizer
1 MHzreff 
0 2.4 GHzf 
2400N 
Department of Electronic Engineering, NTUT121/140
vtune
VCOfreq
VCOout
Envelope
Env1
Other=
Step=Tstep
Stop=4000*Tstep
SweepOffset=0
StatusLevel=2
Order[1]=1
Freq[1]=fvco
ENVELOPE
V_1Tone
SRC3
Freq=1 MHz
V=polar(1,-90) V
VAR
VAR1
Tstep=1/(5*fref)
DeltaN=(fvco+Deltaf)/fref -N0
Deltaf=0 MHz
N0=fvco/fref
fref=1 MHz
fvco=2.4 GHz
Eqn
Var VtStep
SRC4
Rise=1/fref
Delay=0 nsec
Vhigh=DeltaN V
Vlow=0 Vt
MeasEqn
meas2
VCOfreqGHz=real(VCOfreq[0])
VCOphase=phase(VCOout[1])
fund=VCOout[1]
Vtune=real(vtune[0])
Eqn
Meas
VCO_DivideByN
VCO1
Delay=0
Power=dbmtow(10)
Rout=50 Ohm
N=N0
F0=fvco
VCO_Freq=50 MHz * _v1
f r eq
VCO
.
vcon
- N.
VCO
t une
dN
C
C3
C=100 pF
R
R3
R=50 Ohm
R
R4
R=50 Ohm
ResetSwitch
SWITCH1
t>0
t=0
C
C2
C=16.4 nF
R
R1
R=3.3 kOhmC
C1
C=1 nF
R
R2
R=15 kOhmPhaseFreqDetCP
PFD1
Ilow=1 mA
Ihigh=1 mA
FREQ/CP
I low
I high
PHASE/
VCO
r ef
Schematic of Integer-N Frequency Synthesizer
PFD LPF VCO & Divider
Output load
Modulus
Divided signal
Department of Electronic Engineering, NTUT122/140
-2 -1 0 1 2-3 3
-100
-50
0
-150
50
freq, MHz
spectrum
Reference Spurs (I)
Reference spurs
Department of Electronic Engineering, NTUT123/140
Reference Spurs (II)
Department of Electronic Engineering, NTUT124/140
A
B
UP
DN
A
B
AQ
BQ
Gate Delay (comparison transition)
100 200 300 400 500 600 7000 800
2.3999995
2.4000000
2.4000005
2.3999990
2.4000010
time, usec
VCOfreqGHz
0 100
-0.000015
-0.000010
-0.000005
0.000000
0.000005
0.000010
-0.000020
0.000015
time, usec
Vtune
Improper LPF Design and Discrete Effect
Department of Electronic Engineering, NTUT125/140
m1
time=570.0000000usec
VCOfreqGHz=2.401000000
m1
time=570.0000000usec
VCOfreqGHz=2.401000000
100 200 300 400 5000 600
2.40
2.41
2.42
2.43
2.39
2.44
time, usec
VCOfreqGHz
m1
100 200 300 400 5000 600
0.0
0.2
0.4
0.6
-0.2
0.8
time, usec
Vtune
Eqn spectrum=dBm(fs(fund))
m2
freq=1000.kHz
spectrum=10.00
m2
freq=1000.kHz
spectrum=10.00
-2 -1 0 1 2-3 3
-150
-100
-50
0
-200
50
freq, MHz
spectrum
m2
VCO output spectrum at steady-state,
jump from fcenter at 2.4GHz to 2.401GHz
  1 MHzf
PLL Transient Response (I)
Department of Electronic Engineering, NTUT126/140
m1
time=539.4000000usec
VCOfreqGHz=2.410000000
m1
time=539.4000000usec
VCOfreqGHz=2.410000000
100 200 300 400 5000 600
2.41
2.42
2.43
2.40
2.44
time, usec
VCOfreqGHz
m1
100 200 300 400 5000 600
0.2
0.4
0.6
0.0
0.8
time, usec
Vtune
m1
time=590.4000000usec
VCOfreqGHz=2.480000000
m1
time=590.4000000usec
VCOfreqGHz=2.480000000
100 200 300 400 5000 600
2.42
2.44
2.46
2.48
2.40
2.50
time, usec
VCOfreqGHz
m1
100 200 300 400 5000 600
0.5
1.0
1.5
0.0
2.0
time, usec
Vtune
  10 MHzf   80 MHzf
PLL Transient Response (II)
Department of Electronic Engineering, NTUT127/140
Fractional-N Frequency Synthesizer
( 1) ( )A N M A N A
N
M M
    
 
( ) ( )out ref ref
A
f N f N f
M
     
Architecture of Fractional-N Frequency Synthesizer
Department of Electronic Engineering, NTUT129/140
deltaN
vtune
VCOfreq
VCOout
VAR
VAR1
Tstep=1/(5*fref)
Num=Denom*fraction
Denom=20
fraction=DeltaN-intDeltaN
intDeltaN=int(DeltaN)
DeltaN=(fvco+Deltaf)/fref -N0
Deltaf=0.75 MHz
N0=fvco/fref
fref=1 MHz
fvco=2.4 GHz
Eqn
Var
MeasEqn
meas2
VCOfreqGHz=real(VCOfreq[0])
VCOphase=phase(VCOout[1])
fund=VCOout[1]
Vtune=real(vtune[0])
Eqn
Meas
Envelope
Env1
Other=
Step=Tstep
Stop=4000*Tstep
SweepOffset=0*Tstep
StatusLevel=2
Order[1]=1
Freq[1]=fvco
ENVELOPE
C
C3
C=100 pF
R
R2
R=15 kOhm
R
R1
R=3.3 kOhm
C
C2
C=16.4 nF
V_1Tone
SRC3
Freq=1 MHz
V=polar(1,-90) V
VtPulse
SRC5
Period=Denom/fref
Width=Num/fref
Edge=linear
Delay=(Denom-Num)/fref
Vhigh=1 V
Vlow=0 V
t
PhaseFreqDetCP
PFD1
Ilow=1 mA
Ihigh=1 mA
FREQ/CP
I low
I high
PHASE/
VCO
ref
VCO_DivideByN
VCO1
Delay=0
Power=dbmtow(10)
Rout=50 Ohm
N=N0
F0=fvco
VCO_Freq=50 MHz * _v1
f r eq
VCO
.
vcon
- N.
VCO
t une
dN
C
C1
C=1 nF
R
R3
R=50 Ohm
R
R4
R=50 Ohm
ResetSwitch
SWITCH1
t>0
t=0
Schematic of Fractional-N Frequency Synthesizer
Department of Electronic Engineering, NTUT130/140
Denom (M)
Num (A)
VtPulse
SRC5
Period=Denom/fref
Width=Num/fref
Delay=(Denom-Num)/fref
Vhigh=1 V
Vlow=0 V
t
VCO_DivideByN
VCO1
freq
VCO
.
vcon
- N.
VCO
tune
dN
The Simulation Method
Department of Electronic Engineering, NTUT131/140
m1
time=227.000usec
VCOfreqGHz=2.40005
100 200 300 400 500 600 7000 800
2.40
2.41
2.42
2.39
2.43
time, usec
VCOfreqGHz
m1
 0.5 MHz 0.5 MHzreff f  
PLL Transient Response
Department of Electronic Engineering, NTUT132/140
m2
freq=100.0kHz
spectrum=-7.185
m1
freq=50.00kHz
spectrum=9.827
m3
freq=150.0kHz
spectrum=-28.277
m2
freq=100.0kHz
spectrum=-7.185
m1
freq=50.00kHz
spectrum=9.827
m3
freq=150.0kHz
spectrum=-28.277
-2 -1 0 1 2-3 3
-80
-60
-40
-20
0
-100
20
f req, MHz
spectrum
m2
m1
m3
100 200 300 400 500 600 7000 800
2.40004
2.40005
2.40006
2.40003
2.40007
time, usec
VCOfreqGHz
m2
freq=800.0
spectrum=
m1
freq=750.0
spectrum=
m3
freq=850.0
spectrum=
-2 -1 0 1 2-3 3
-60
-40
-20
0
-80
20
freq, MHz
spectrum
m2m1
m3
100 200 300 400 500 600 7000 800
2.40070
2.40075
2.40080
2.40065
2.40085
time, usec
VCOfreqGHz
Fractional Spurs
Department of Electronic Engineering, NTUT133/140
Closed-In Phase Noise Characteristics
m1
freq=10.00kHz
PN_Loop_Div_only=-87.846
m2
freq=100.0kHz
PN_Loop_Div_only=-123.089
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-260
-40
freq, Hz
PN_Loop_Div_only
m1
m2
m1
freq=10.00kHz
PN_Loop_Div_only=-88.255
m2
freq=100.0kHz
PN_Loop_Div_only=-92.859
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-260
-40
freq, Hz
PN_Loop_Div_only
m1
m2
m1
freq=10.00kHz
PN_Loop_Div_only=-112.609
m2
freq=100.0kHz
PN_Loop_Div_only=-155.546
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-260
-40
freq, Hz
PN_Loop_Div_only
m1
m2
(1)
(2) (3)
(1) Loop BW = 1 kHz
(2) Loop BW =10 kHz
(3) Loop BW =100 kHz
Phase Noise with Loop Divider Only
Department of Electronic Engineering, NTUT135/140
(1)
(2) (3)
(1) Loop BW = 1 kHz
(2) Loop BW =10 kHz
(3) Loop BW =100 kHz
m1
freq=10.00kHz
PN_PFD_only=-79.177
m2
freq=100.0kHz
PN_PFD_only=-78.781
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-220
-200
-180
-160
-140
-120
-100
-80
-240
-60
freq, Hz
PN_PFD_only
m1 m2
m1
freq=10.00kHz
PN_PFD_only=-103.531
m2
freq=100.0kHz
PN_PFD_only=-141.468
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-220
-200
-180
-160
-140
-120
-100
-80
-240
-60
freq, Hz
PN_PFD_only
m1
m2
m1
freq=10.00kHz
PN_PFD_only=-78.768
m2
freq=100.0kHz
PN_PFD_only=-109.011
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-220
-200
-180
-160
-140
-120
-100
-80
-240
-60
freq, Hz
PN_PFD_only
m1
m2
Phase Noise with PFD Only
Department of Electronic Engineering, NTUT136/140
(1)
(2) (3)
m1
freq=10.00kHz
PN_Ref_only=-88.246
m2
freq=100.0kHz
PN_Ref_only=-92.857
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-260
-20
freq, Hz
PN_Ref_only
m1
m2
m1
freq=10.00kHz
PN_Ref_only=-112.600
m2
freq=100.0kHz
PN_Ref_only=-155.544
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-260
-20
freq, Hz
PN_Ref_only
m1
m2
m1
freq=10.00kHz
PN_Ref_only=-87.837
m2
freq=100.0kHz
PN_Ref_only=-123.087
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-260
-20
freq, Hz
PN_Ref_only
m1
m2
(1) Loop BW = 1 kHz
(2) Loop BW =10 kHz
(3) Loop BW =100 kHz
Phase Noise with Reference Osc. Only
Department of Electronic Engineering, NTUT137/140
(1)
(2) (3)
m1
freq=10.00kHz
PN_VCO_only=-126.536
m2
freq=100.0kHz
PN_VCO_only=-112.256
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-195
-190
-185
-180
-175
-170
-165
-160
-155
-150
-145
-140
-135
-130
-125
-120
-115
-110
-105
-100
-95
-90
-85
-80
-75
-200
-70
freq, Hz
PN_VCO_only
m1
m2
m1
freq=10.00kHz
PN_VCO_only=-96.380
m2
freq=100.0kHz
PN_VCO_only=-112.580
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-195
-190
-185
-180
-175
-170
-165
-160
-155
-150
-145
-140
-135
-130
-125
-120
-115
-110
-105
-100
-95
-90
-85
-80
-75
-200
-70
freq, Hz
PN_VCO_only
m1
m2
m1
freq=10.00kHz
PN_VCO_only=-96.443
m2
freq=100.0kHz
PN_VCO_only=-112.315
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-195
-190
-185
-180
-175
-170
-165
-160
-155
-150
-145
-140
-135
-130
-125
-120
-115
-110
-105
-100
-95
-90
-85
-80
-75
-200
-70
freq, Hz
PN_VCO_only
m1
m2
(1) Loop BW = 1 kHz
(2) Loop BW =10 kHz
(3) Loop BW =100 kHz
Phase Noise with VCO Only
Department of Electronic Engineering, NTUT138/140
(1)
(2) (3)
m1
freq=1.000kHz
PNTotal=-75.603
m2
freq=10.00kHz
PNTotal=-78.205
m3
freq=1.000kHz
PN_VCO_only=-146.498
m4
freq=10.00kHz
PN_VCO_only=-126.536
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-140
-120
-100
-80
-60
-40
-20
0
-160
20
f req, Hz
PNTotal
m1 m2
PN_VCO_only
m3
m4PN_VCO_FreeRun
m1
freq=1.000kHz
PNTotal=-70.960
m2
freq=10.00kHz
PNTotal=-93.347
m3
freq=1.000kHz
PN_VCO_only=-76.978
m4
freq=10.00kHz
PN_VCO_only=-96.380
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-140
-120
-100
-80
-60
-40
-20
0
-160
20
f req, Hz
PNTotal
m1
m2
PN_VCO_only
m3
m4
PN_VCO_FreeRun
m1
freq=1.000kHz
PNTotal=-75.282
m2
freq=10.00kHz
PNTotal=-76.852
m3
freq=1.000kHz
PN_VCO_only=-106.753
m4
freq=10.00kHz
PN_VCO_only=-96.443
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-140
-120
-100
-80
-60
-40
-20
0
-160
20
f req, Hz
PNTotal
m1 m2
PN_VCO_only
m3
m4
PN_VCO_FreeRun
(1) Loop BW = 1 kHz
(2) Loop BW =10 kHz
(3) Loop BW =100 kHz
VCO in Loop vs. VCO Free-Running
Department of Electronic Engineering, NTUT139/140
(1) N = 2400
(2) N= 1400
m1
freq=1.000kHz
PNTotal=-75.282
m2
freq=10.00kHz
PNTotal=-76.852
m3
freq=1.000kHz
PN_VCO_only=-106.753
m4
freq=10.00kHz
PN_VCO_only=-96.443
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-140
-120
-100
-80
-60
-40
-20
0
-160
20
f req, Hz
PNTotal
m1 m2
PN_VCO_only
m3
m4
PN_VCO_FreeRun
m1
freq=1.000kHz
PNTotal=-83.041
m2
freq=10.00kHz
PNTotal=-83.673
m3
freq=1.000kHz
PN_VCO_only=-114.513
m4
freq=10.00kHz
PN_VCO_only=-103.265
10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M
-140
-120
-100
-80
-60
-40
-20
0
-160
20
f req, Hz
PNTotal
m1 m2
PN_VCO_only
m3
m4
PN_VCO_FreeRun
Phase Noise with Various Modulus N
Department of Electronic Engineering, NTUT140/140

More Related Content

What's hot

Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. SystemsSimen Li
 
Phase Locked Loop (PLL)
Phase Locked Loop (PLL)Phase Locked Loop (PLL)
Phase Locked Loop (PLL)Debayon Saha
 
Study of vco_Voltage controlled Oscillator
Study of vco_Voltage controlled OscillatorStudy of vco_Voltage controlled Oscillator
Study of vco_Voltage controlled OscillatorNeha Mannewar
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierSimen Li
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkSimen Li
 
single stage amplifier Unit 5 AMVLSI
single stage amplifier Unit 5 AMVLSIsingle stage amplifier Unit 5 AMVLSI
single stage amplifier Unit 5 AMVLSIHarsha Raju
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingSimen Li
 
IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)Claudia Sin
 
Introduction to pll
Introduction to pllIntroduction to pll
Introduction to pllsartaj ahmed
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversSimen Li
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power AmplifierSimen Li
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEnandivashishth
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise AmplifierSimen Li
 
RF Matching Guidelines for WIFI
RF Matching Guidelines for WIFIRF Matching Guidelines for WIFI
RF Matching Guidelines for WIFIcriterion123
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsSimen Li
 
Design And Analysis of Charge Pump for PLL at 90nm CMOS technology
Design And Analysis of Charge Pump for PLL at 90nm CMOS technologyDesign And Analysis of Charge Pump for PLL at 90nm CMOS technology
Design And Analysis of Charge Pump for PLL at 90nm CMOS technologyRavi Chandra
 

What's hot (20)

Phase Noise and Jitter Measurements
Phase Noise and Jitter MeasurementsPhase Noise and Jitter Measurements
Phase Noise and Jitter Measurements
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
 
Phase Locked Loop (PLL)
Phase Locked Loop (PLL)Phase Locked Loop (PLL)
Phase Locked Loop (PLL)
 
Study of vco_Voltage controlled Oscillator
Study of vco_Voltage controlled OscillatorStudy of vco_Voltage controlled Oscillator
Study of vco_Voltage controlled Oscillator
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
 
Phase locked loop
Phase locked loopPhase locked loop
Phase locked loop
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
 
single stage amplifier Unit 5 AMVLSI
single stage amplifier Unit 5 AMVLSIsingle stage amplifier Unit 5 AMVLSI
single stage amplifier Unit 5 AMVLSI
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
 
IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)
 
Introduction to pll
Introduction to pllIntroduction to pll
Introduction to pll
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
CMOS Logic
CMOS LogicCMOS Logic
CMOS Logic
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
 
Comparator
ComparatorComparator
Comparator
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
RF Matching Guidelines for WIFI
RF Matching Guidelines for WIFIRF Matching Guidelines for WIFI
RF Matching Guidelines for WIFI
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
 
Design And Analysis of Charge Pump for PLL at 90nm CMOS technology
Design And Analysis of Charge Pump for PLL at 90nm CMOS technologyDesign And Analysis of Charge Pump for PLL at 90nm CMOS technology
Design And Analysis of Charge Pump for PLL at 90nm CMOS technology
 

Viewers also liked

Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterSimen Li
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧Simen Li
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Simen Li
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬Simen Li
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Simen Li
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計Simen Li
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversSimen Li
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Simen Li
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. TableSimen Li
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosSimen Li
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬Simen Li
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版Simen Li
 

Viewers also liked (12)

Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 

Similar to Phase-locked Loops - Theory and Design

RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsSimen Li
 
RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureSimen Li
 
Communicationlabmanual
CommunicationlabmanualCommunicationlabmanual
Communicationlabmanualjkanth26
 
Communicationlabmanual
CommunicationlabmanualCommunicationlabmanual
Communicationlabmanualjkanth26
 
L6_S18_Introduction to PLL.pptx
L6_S18_Introduction to PLL.pptxL6_S18_Introduction to PLL.pptx
L6_S18_Introduction to PLL.pptxAryanKutemate
 
Exp2 passive band pass and band-stop filter
Exp2 passive band pass and band-stop filterExp2 passive band pass and band-stop filter
Exp2 passive band pass and band-stop filterSarah Krystelle
 
Directed decision phase locked loop
Directed decision phase locked loopDirected decision phase locked loop
Directed decision phase locked loopHitham Jleed
 
Introduction to PLL - phase loop lock diagram
Introduction to PLL - phase loop lock diagramIntroduction to PLL - phase loop lock diagram
Introduction to PLL - phase loop lock diagramHai Au
 
Ic apps lab_manual_jwfiles
Ic apps lab_manual_jwfilesIc apps lab_manual_jwfiles
Ic apps lab_manual_jwfilesVijay Kumar
 
Fundamentals of Analog and Digital Modulation PPT.pptx
Fundamentals of Analog and Digital  Modulation PPT.pptxFundamentals of Analog and Digital  Modulation PPT.pptx
Fundamentals of Analog and Digital Modulation PPT.pptxSarmistaSengupta1
 
Real 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxReal 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxSaiGouthamSunkara
 
PLL_tutorial_slides.pdf
PLL_tutorial_slides.pdfPLL_tutorial_slides.pdf
PLL_tutorial_slides.pdfssuser716da4
 
Lic lab manual
Lic lab manualLic lab manual
Lic lab manualAJAL A J
 
Research Report-Kaidi Du-EECE4993
Research Report-Kaidi Du-EECE4993Research Report-Kaidi Du-EECE4993
Research Report-Kaidi Du-EECE4993Kaidi Du
 

Similar to Phase-locked Loops - Theory and Design (20)

RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver Architecture
 
Communicationlabmanual
CommunicationlabmanualCommunicationlabmanual
Communicationlabmanual
 
Communicationlabmanual
CommunicationlabmanualCommunicationlabmanual
Communicationlabmanual
 
محاضرة 6.pdf
محاضرة 6.pdfمحاضرة 6.pdf
محاضرة 6.pdf
 
Comm008 e4 maala
Comm008 e4 maalaComm008 e4 maala
Comm008 e4 maala
 
L6_S18_Introduction to PLL.pptx
L6_S18_Introduction to PLL.pptxL6_S18_Introduction to PLL.pptx
L6_S18_Introduction to PLL.pptx
 
2007_05_Fischette.pdf
2007_05_Fischette.pdf2007_05_Fischette.pdf
2007_05_Fischette.pdf
 
Exp2 passive band pass and band-stop filter
Exp2 passive band pass and band-stop filterExp2 passive band pass and band-stop filter
Exp2 passive band pass and band-stop filter
 
Directed decision phase locked loop
Directed decision phase locked loopDirected decision phase locked loop
Directed decision phase locked loop
 
Chapter 10- Synchronisation.ppt
Chapter 10- Synchronisation.pptChapter 10- Synchronisation.ppt
Chapter 10- Synchronisation.ppt
 
Introduction to PLL - phase loop lock diagram
Introduction to PLL - phase loop lock diagramIntroduction to PLL - phase loop lock diagram
Introduction to PLL - phase loop lock diagram
 
Ic apps lab_manual_jwfiles
Ic apps lab_manual_jwfilesIc apps lab_manual_jwfiles
Ic apps lab_manual_jwfiles
 
Fundamentals of Analog and Digital Modulation PPT.pptx
Fundamentals of Analog and Digital  Modulation PPT.pptxFundamentals of Analog and Digital  Modulation PPT.pptx
Fundamentals of Analog and Digital Modulation PPT.pptx
 
Real 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxReal 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptx
 
PLL_tutorial_slides.pdf
PLL_tutorial_slides.pdfPLL_tutorial_slides.pdf
PLL_tutorial_slides.pdf
 
Comm008 e4 bani
Comm008 e4 baniComm008 e4 bani
Comm008 e4 bani
 
Active filters
Active filtersActive filters
Active filters
 
Lic lab manual
Lic lab manualLic lab manual
Lic lab manual
 
Research Report-Kaidi Du-EECE4993
Research Report-Kaidi Du-EECE4993Research Report-Kaidi Du-EECE4993
Research Report-Kaidi Du-EECE4993
 

More from Simen Li

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)Simen Li
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作Simen Li
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬Simen Li
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬Simen Li
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack FirmwareSimen Li
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack FirmwareSimen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)Simen Li
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言Simen Li
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階Simen Li
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined RadiosSimen Li
 

More from Simen Li (12)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined Radios
 

Recently uploaded

Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixingviprabot1
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 

Recently uploaded (20)

Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixing
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 

Phase-locked Loops - Theory and Design

  • 1. Phase Locked Loops Theory and Design Chien-Jung Li Department of Electronic Engineering National Taipei University of Technology
  • 2. Outline • Frequency Synthesis Techniques • Frequency Synthesizers based on the Phase-Locked-Loop (PLL) • Loop Analysis and Stability • Components in a PLL • Noise Analysis • PLL Architectures • Simulation Examples Department of Electronic Engineering, NTUT2/140
  • 3. Generic Transceiver Front End Bandpass Filter LNA Duplexer Antenna v Frequency Synthesizer LO PA • Local oscillator (LO) provides the carrier signal for both the receive and transmit paths. • If the LO output contains phase noise, both downconverted and upconverted signals are corrupted. Department of Electronic Engineering, NTUT3/140
  • 4. Effect of Phase Noise in Receivers f 0f Wanted Signal LO Output Wanted Signal Downconverted Signal f Downconverted Signals ff 0f Wanted Signal LO Output Interferer • Reciprocal Mixing Department of Electronic Engineering, NTUT4/140
  • 5. Effect of Phase Noise in Transmitters f 1f Wanted Signal Nearby Transmitter 2f f 0f Multi-carrier signal (or OFDM) f 0f • Receiver Desensitization • Orthogonality Department of Electronic Engineering, NTUT5/140
  • 6. Frequency Synthesis  v t t • Meaning of frequency synthesis Generation of a frequency or frequencies that are exact multiples of a reference frequency. Usually the reference is very precise and the synthesized frequencies are selectable over some range of whole-number multiples of a submultiple of the frequency at out ref n f f M  where n and M are integers, n varies from Nmin to Nmax, and M is constant. 1T 1 1 f  V f f 1f • Meaning of frequency reff Department of Electronic Engineering, NTUT6/140
  • 7. Transformation to and from Voltage or Current A B1f Frequency Discriminator  C D d dt Voltage Controlled Oscillator (VCO) Phase Detector Phase Modulator 1 1v Af 2 1f Bv   1 1f dt 2 1v C  2 2Dv 3 2 d f dt V/Hz Hz/V V/rad or V/cycle rad/V or cycle/V Department of Electronic Engineering, NTUT7/140
  • 8. Demonstration of the Transfer Functions              rms rms rms rms rms 1 rad 2 V rad rad 1 1 V 2 V 2 V V 0.32 V V cycle cycle 2 rad AV Phase Modulator 1 rad/V Phase Detector 2 V/Cycle 220 MHz VCO 1.5 MHz/V 1 k 200 MHz ICO 1 MHz/mA 100 MHz signal Low-pass Filter 50 MHz Cut-off Frequency Discriminator 5 V/MHz A B D • RMS voltage at point A: Modulation voltage (1 Vrms at 10 kHz)    1 rms MHz 0.32 V 1.5 0.48 MHz V f      rms 2 0.32 V MHz 1 0.32 MHz 1 k mA f     rms 5 V 0.48 MHz-0.32 MHz 0.8 V MHz DV C Department of Electronic Engineering, NTUT8/140
  • 9. Mathematical Operations on Frequency (I) • Addition and Subtraction: The Mixer RF LO IF    cos 2RF RF RFv t A f t            cos 2 cos 2IF RF LO RF RF LO LOv t v t v t A f t B f t         For the practical mixer with nonlinear operation: IF RF LOf mf nf  Department of Electronic Engineering, NTUT9/140    cos 2LO LO LOv t B f t           cos 2 cos 2 2 RF LO RF LO RF LO RF LO AB f f t f f t                         cos2 cos2 for 0 2 RF LO RF LO RF LO AB f f t f f t            , cosIF m nv t K m n   2 RF RFf t    2 LO LOf t   where and or we can say the intermediate frequency is:
  • 10. Mathematical Operations on Frequency (II) • Frequency Dividers  Subharmonically synchronized oscillators  Digital dividers • Frequency Multiplier  Full-wave rectifier (frequency doubler)  Harmonically tuned class-C amplifier  Step-recovery diode (SRD) 1 powerG N  10/140 Department of Electronic Engineering, NTUT
  • 11. Frequency Synthesis Techniques • Direct Analog Synthesis (DAS) • Direct Digital Synthesis (DDS) • Indirect Synthesis - Phase-Locked Loops (PLLs) • Hybrid DDS/PLL Department of Electronic Engineering, NTUT11/140
  • 12. Direct Analog Synthesis (DAS) I • Frequency generated by mixed frequencies 1f 2f 3f 2Nf 1Nf Nf outf filter1 filter2 filter3 filterN-2 filterN-1 filterN out a bf mf nf  Department of Electronic Engineering, NTUT12/140
  • 13. Direct Analog Synthesis (DAS) II • More stages are required for flexibly frequency planning. 1f 2f 3f 2Nf 1Nf Nf filter1 filter2 filter3 filterN-2 filterN-1 filterN filter1 filter2 filter3 filterN-2 filterN-1 filterN outf 1f 2f 3f   2Nf   1Nf Nf Department of Electronic Engineering, NTUT13/140
  • 14. Direct Digital Synthesis (DDS) I • Waveform construction is based on the lookup table (LUT) and a digital to analog converter (DAC) • Direct synthesis • Generated frequency is lower than input frequency ref cf f Department of Electronic Engineering, NTUT14/140
  • 15. Direct Digital Synthesis (DDS) II • Hardware technique to reduce the spur level of a DDS • Reduce bandwidth 1000MHz 100-150MHz 1100-1150MHz 110-115MHz div-by-10 DDS Filter Frequency Divider 0f outf BW=50MHz BW=15MHz reff Department of Electronic Engineering, NTUT15/140
  • 16. Hybrid DDS/DAS • Scheme to increase a DDS output bandwidth 1f 2f 3f   2Nf   1Nf Nf outf filter1 filter2 filter3 filterN-2 filterN-1 filterN DDS Frequency Divider reff Department of Electronic Engineering, NTUT16/140
  • 17. Indirect Frequency Synthesis (PLL) II PFD LPF Frequency Divider reff outf /N • The main goal of the PLL is to sync the divided oscillator frequency with the reference frequency outf N reff  out reff N f out reff N f  VCO Department of Electronic Engineering, NTUT17/140
  • 18. Fractional-N Frequency Synthesis • Lower division ratio N to reduce inband phase-noise gain • Effectively produce a fractional division value • Generally employee a delta-sigma modulator for division ratio dithering PFD LPF Dual-modulus Frequency Divider reff outf /N, (N+1) FCW Department of Electronic Engineering, NTUT18/140
  • 19. Principle of PLL Operation vco con out reff f Department of Electronic Engineering, NTUT19/140 • The main goal of the PLL is to sync the divided oscillator signal with the reference signal (usually a pure sinusoid).
  • 21. The Phase-Locked Loop • PFD: Phase Frequency Detector • LPF: Loop Filter • VCO: Voltage Controlled Oscillator PFD LPF Frequency Divider reff outf /N VCO • /N: Divied-by-N Frequency Divider Department of Electronic Engineering, NTUT21/140
  • 22. Feedback System  iV s  oV s  G s  H s error          o i oV s V s V s H s G s             i oG s V s V s G s H s           1 o i V s G s V s G s H s   Department of Electronic Engineering, NTUT22/140 Closed-loop transfer function G(s)H(s) is the open-loop transfer function
  • 23. Loop Analysis – Use Frequency as I/O Frequency Divider  reff s  outf s 1 s pK  F s vK 1 N Phase differenceFrequency difference  outf s N • Relation between Input and Output Frequencies    p v K G s F s K s    1 H s N                11 1 p v out pref v K F s Kf s G s s Kf s G s H s F s K N s     Department of Electronic Engineering, NTUT23/140
  • 24. Loop Analysis – Use Phase as I/O Frequency Divider  ref s  out s pK  F s vK s 1 N • Relation between Input and Output Phases Phase difference Frequency to Phase     v p K G s K F s s    1 H s N                11 1 v p out vref p K K F ss G s s Ks G s H s K F s N s       Department of Electronic Engineering, NTUT24/140
  • 25. Loop Transfer Functions                 0 0 0 01 1 p po i p p K F s K s K F s K G s T s K F s K Ns Ns K F s K G s H s           T(s) : closed-loop PLL transfer function  G(s) : forward-path transfer function  F(s) : loop filter transfer function  Kp: phase detector gain  K0/s: VCO transfer function    1 0G s H s  • A PLL is unstable when     1 0 dB@ 180G s H s       The condition of unity open loop gain and a phase angle of 180 degrees must be avoided.  H(s) : feedback-path transfer function  G(s)H(s) : open-loop transfer function or Department of Electronic Engineering, NTUT25/140
  • 26. PLL Response without a Loop Filter (I)   0 0 0 01 F p LPFo Fi p LPF K K K K s NT s N N KK K K Ns ss N           • 3 dB cutoff frequency is KF/N = KpKLPFKo/N   LPFF s K • Without the loop filter, the feedback loop is equivalent to a DC gain of N plus a low-pass filter with cutoff at .0 log dB 0 FK N    20logN 3 dB 0 Department of Electronic Engineering, NTUT26/140
  • 27. PLL Response without a Loop Filter (II) • The open loop gain has a slope of -6dB/octave or -20dB/decade for all frequencies. • The phase angle is always -90 degrees at all frequencies. Hence with no low-pass filter, the PLL is always stable. But the main drawback is that designers loose control over the loop. • The simplest PLL is called a type-I loop because the open-loop gain has one pole at DC (pure integration). It is also a first-order loop because the open-loop gain has one significant pole.      p vK F s K G s H s Ns  Department of Electronic Engineering, NTUT27/140
  • 28. Single Pole Loop Filter • The function of the LPF is to filter out any high frequency harmonics in the loop that might cause the loop to go out of lock, and also to stabilize the loop. • Adding a LPF also affects the loop response including parameters such as the loop time response, bandwidth, and the damping factor.    1 LPF p K F s s    • If we add a low-pass filter with a pole located at , the loop will be still type-I, but it will become a second-order loop.     1 1 p LPF v F p p K K K K N NG s H s s s s s                     p Department of Electronic Engineering, NTUT28/140
  • 29. Bode Plot of Forward-path Transfer Function minL log m  mG  6 dB/oct 1020log FK 10 max20log N 10 min20log N maxL p1m  90  135  180   mG  12 dB/oct • Where the curves cross, the open-loop gain equals unity.       1 G s G s H s N    G s N (forward-loop gain ) Department of Electronic Engineering, NTUT29/140
  • 30. Bode Plot of Open-loop Transfer Function log m    m mG H  6 dB/oct 1020log FK N 0 dB L p1m  90  135  180   mG  12 dB/oct • Where the curves cross, the open-loop gain equals unity.       1 G s G s H s N    G s N (forward-loop gain ) Phase margin Department of Electronic Engineering, NTUT30/140
  • 31. Natural Frequency and Damping ratio             0 0 1 1 1 1 1 1 F ppo F Fi p F p p K ss K F s K sG s NK T s KG s H s K F s K Ns sNs K sNs                            0 F p n p K N      0 1 1 1 2 2 2 p p p n F N K          is geometric mean of the loop bandwidth in the absence of a filter and the filter corner frequency. 2 2 2 2 2 2 2 2 p F p F n p F n n n n p K K N K s s s s s s N                   Characteristics equation • Prototype second-order equation •Natural frequency •Damping ratio Department of Electronic Engineering, NTUT31/140
  • 32. Closed-Loop Gain for Large Damping Ratio As long as damping ratio is greater than one, the poles are real and a tangential plot of closed loop gain looks 20logN 6 dB/oct 12 dB/oct log m  out ref f s f 2 2 0 2 1 1 1         2 1 1 1 2 p        The characteristics are similar to the case with no loop filter, except for the increasing rate of attenuation in fout/fref beyond approximately the filter corner frequency . 2 1p n ns      • The poles of the closed-loop function are located at 0 p Department of Electronic Engineering, NTUT32/140 p
  • 33. Close-loop Responses 0 F p n p K N      0 1 1 1 2 2 2 p p p n F N K          • As decreases toward , the damping ratio decreases and the phase shift at increases. Correspondingly, the transient response of the loop becomes less damped (more ringing) and the response peaks near . p 0 0 n m n  0m  • For large damping, the response is similar to that for no filter but, as the damping ratio decreases, the response peaks and the peak moves to a lower frequency relative to .0 Department of Electronic Engineering, NTUT33/140
  • 34. Relative Stability – Phase Margin • Left figure shows the phase margin (relative stability) as a function of the damping factor. More highly damped loops are safer, in that more parameter variation is allowable before instability occurs. log m    m mG H  6 dB/oct 1020log FK N 0 dB L p1m  90  135  180   mG  12 dB/oct Phase margin • With a single-pole low-pass filter, the loop is inherently stable, sine -180o phase shift cannot be attained for any finite frequency. (not always true practically) Department of Electronic Engineering, NTUT34/140
  • 35. Transient Response reff outf  G s 1 N e 1N 2N 1 refN f 2 refN f  2 1N N e 1 2 1 ref N f N       t 0t  t oldf newf Synthesizer output frequency A B C D Overshot Ringing • Lower damping ratio brings a higher percent overshoot can cause the loop to go out of lock. (more unstable) • Narrower bandwidth with smaller damping ratio and longer settling time. Department of Electronic Engineering, NTUT35/140
  • 36. Settling Time • Settling Time The frequency error changes one decade approximately each 2.3 time constant, that is,    0 02.3 log f T f T    oldf newf  0f 0t  t T  f T • Example (no filter) 3 -1 1 MHz/cycle 10 secFK   10 kHzreff  11 MHz 10 MHzoutf   Find the settling time for the output frequency of 10.1 MHz is attained. 6 0 10 1000 1000 FK N     0 2.3 1 log 2.3 ms 0.1 T   Department of Electronic Engineering, NTUT36/140
  • 37. A Pole-Zero Filter • A pole-zero filter is a low pass filter with a pole frequency and a zero frequency . The addition of a pole in the transfer function causes the transfer function slope to drop at a rate of 6 dB per octave whereas the addition of a zero in the PLL transfer function has the opposite effect. The pole-zero filter transfer response is given by            1 1 z p s F s s • The open loop transfer function is:           1 1 p v zp v p K K sK F s K G s H s Ns Ns s          p z 6 dB/oct 12 dB/oct log m zp 6 dB/oct • The closed-loop transfer function is:       0 01 po i p K F s K s T s K F s K Ns      Department of Electronic Engineering, NTUT37/140
  • 38. Open-Loop Gain with a Pole-Zero LPF • In this case, the location of the pole is always before the zero frequency. Given the pole frequency location, a zero can be placed after the so as to avoid the magnitude from crossing the unity gain axis at a slope of 12 dB per octave, and therefore avoiding instability. To determine the closed loop response, simply plot T(s),     2 1 1 p F z p F p F p z K s NT s N K K s s N N                 0 F n p p K N      1 2 p n n z             6 dB/oct 12 dB/oct log m zp 6 dB/oct  2 2 2 1 2 z n n n s N s s         Department of Electronic Engineering, NTUT38/140
  • 39. Open-Loop Gain with a Pole-Zero LPF • From the results, selecting the pole frequency sets the natural frequency (and subsequently the loop bandwidth) and selecting the zero (based on the pole location in the open loop gain response) determines the desired percentage overshoot. Therefore, a pole-zero filter allows the designer to select the loop bandwidth and the damping factor independently and still achieve stability. 0 F n p p K N      1 2 p n n z             Department of Electronic Engineering, NTUT39/140
  • 41. Phase Detector (PD) – Mixer  1 2cosd dv A    2i i if     1 2coss sv A    • The balanced mixer IF d sv v v     1 2 1 1 2cos cos 4IF d sv A A f t         1 2f fFor filtered-out by the LPF  1 2  2  1 2 2        IF dv A     and is very small 1 1 12 f    2 2 22 f    IFv Phase of signal 1 Phase of signal 2 Department of Electronic Engineering, NTUT41/140
  • 42. A B C 0 0 0 0 1 1 1 0 1 1 1 0 Phase Detector (PD) – EXOR A B C 1 0 1 0 T  A B ppV C A B  average value of v(C) ppV 1.0 0.5 0 0.5 1.0 T • The exclusive-OR 1 0 1 0 T A B ppV C A B  Department of Electronic Engineering, NTUT42/140
  • 43. Phase Detector (PD) – SR-FF S R QA B C T Av Bv ppV  Cv 0 1 2 average value of v(C) T ppV A B C 0 0 N 0 1 0 1 0 1 1 1 X • S-R Flip-Flops Department of Electronic Engineering, NTUT43/140
  • 44. Phase/Frequency Detector (PFD) A lagging B ( same ) • Detectable range : -2π~ 2π CLK D Q CLR Q D CLR CLK A B 1 QA QB A B QA QB A BQ Q 2 4 24   A leading B ( same ) A B QA QB  Department of Electronic Engineering, NTUT44/140
  • 45. Two General Types of PFD T t ref(t) div(t) ref/2(t) div/2(t) e(t) 1 -1 • XOR-Based PFD ref(t) div(t) up(t) dn(t) e(t) 1 0 -1 T t • Tri-state PFD Department of Electronic Engineering, NTUT45/140
  • 46. Typical Dead-Zone for Various PFDs Type Dead Zone Conventional ~800ps NC-PFD ~160ps TSPC-PFD ~210ps MPTPFD ~10ps • Commercial product Motorola MC4044 using conventional PFD introduce 30 degree dead-zone@20MHz (~400ps). • The first XOR-based dead-zone free design was proposed by Analog Device (AD9901). 1f 2f UP UP DN DN Department of Electronic Engineering, NTUT46/140
  • 47. Dead-zone Problem of PFDs • In a PLL, the contribution of every block is essential to the total phase noise if a high-quality frequency synthesizer is the goal. • If the input frequency reference to be compared is as high as several MHz, the linearity of the phase detector becomes essential. • In the passband of the PLL, the output phase noise depends on noise contribution from the phase detector, loop filter and frequency divider. • In charge pump based PLL, there are more problems. Department of Electronic Engineering, NTUT47/140
  • 48. The Principle of PFD and Dead-Zone Problem • The PFD operates as a frequency detector initially and as phase detector finally to achieve loop lock. • The dead-zone problem: - When two signals have the same frequency and almost identical phase, the PFD block is not able to generate a proper output signal so that an identical phase may be obtain. - This uncertainty leads to phase noise (jitter in time domain) and generation of spurious at the output of VCO. AND gate switch threshold ref(t) div(t) up(t) dn(t) 1 0 1 0 ref(t) div(t) up(t) 1 0 1 0 dn(t) ref(t) div(t) 1 0 1 0 up(t) dn(t)   Department of Electronic Engineering, NTUT48/140
  • 49. Solve the Dead-Zone Problem • Delayed reset path • Inphase operation • Need accurate timing analysis • Low spurious tones • Bad linearity • Alternatively current output • Non-inphase operation • More power consumption at lock state • Current mismatch with CP is the issue • High spurious tones • Good linearity • XOR-Based PFD • Tri-state PFD Department of Electronic Engineering, NTUT49/140
  • 50. Improvement of PFD Linearity 22 2 0  0 22 0 Department of Electronic Engineering, NTUT50/140
  • 51. Charge-Pump Phase Detector • The most popular phase-detector type is both a charge-pump (CP) detector and a phase-frequency detector (PFD), the terms, the charge-pump PD and PFD, are sometimes interchangeably. • The PFD acts as a phase detector during lock and provides a frequency-sensitive signal to aid acquisition when the loop is out of lock. • The charge pump is so named because it is supposed to deliver a charge proportional to phase error to the loop filter. PFD Charge Pump Switched Output (analog) Charge Up Charge Down CU (digital) CD (digital) RD VD Department of Electronic Engineering, NTUT51/140
  • 52. Charge Pump PFD PFD AQ BQ pC DDV A leading B ( same ) RD VD QA QB  VCP VCP t Department of Electronic Engineering, NTUT52/140 RD VD
  • 53. Charging Current RD VD CU CD Current Out Department of Electronic Engineering, NTUT53/140
  • 54. Charge Pump (Current Source and Sink) PFD AQ BQ DDV RD VD LZ oV DDV R 1M 2M 1 1 W L 2 2 W L 2D oI I1DI GSV oV sink current   21 1 2 DD GS D GS thn V V I V V R        22 2 2 D GS thnI V V    2 2 2 2 2 1 1 1 1 1 D D I W L W I W L W      DDV R 1M 2M1 1 W L 2 2 W L 2D oI I 1DI SGV oV source current   2 1 1 2 DD SG D SG thp V V I V V R        2 2 2 2 D SG thpI V V    2 2 2 2 2 1 1 1 1 1 D D I W L W I W L W      • Saturation region: DS GS thnV V V  GS thnV V • Saturation region: SD SG thpV V V  SG thpV V Department of Electronic Engineering, NTUT54/140
  • 55. Early Effect DDV R 1M 2M 1 1 W L 2 2 W L 2D oI I1DI GSV oV sink current    22 2 ,1 2 D GS thn DS DS satI V V V V        1 L   • Channel length modulation and Early effect DI DS oV V (prefer a long channel length) 2 1 1A o D o D V r I I I     (prefer a high output resistance) Department of Electronic Engineering, NTUT55/140
  • 56. Cascode Connection and Switch  3 3 2 21o o m o oR r g r r   DI DS oV V • Cascode connection increases output resistance PFD AQ BQ DDV RD VD LZ oV DDV R 1M 2M 1 1 W L 2 2 W L 2D oI I1DI GSV oV sink current BQ switch 3M 2 thnV V  • Need excess gate-source voltage V BQ is a digital signal (0~VDD) thnV Cascoded (with switch) Department of Electronic Engineering, NTUT56/140
  • 57. Current Mismatch DI DS oV V Department of Electronic Engineering, NTUT57/140
  • 58. Spurs and CP Non-ideal Effect tsource toff tsink Isink Isource tcomp • Reference Spurs - current leakage - current source mismatch (a) current mismatch with different output node voltage (b) unequal switching time • Non-reference Spurs - crosstalk (a) dual loop (b) interferences - non-crosstalk (a) fractional spurs (b) interferences (c) dual loop references mixing (d) prescaler miss counting Department of Electronic Engineering, NTUT58/140
  • 59. Charge-Pump Switching Time • When the charge-pump(CP) based PLL is used, the CP is also the bottle neck since the PFD can’t distinguish input edges separated by less than the CP switching time. CPI CPI PFD PFD CP CP Department of Electronic Engineering, NTUT59/140
  • 60. Dead-Zone Elimination and Spurs • In conventional PFD, the problem of the CP current sources mismatch is amplified by the number of additional delays in the reset path. ref(t) div(t) 1 0 1 0 up(t) dn(t)   ref(t) div(t) 1 0 1 0 up(t) dn(t)   periodic output! +ICP -ICP Department of Electronic Engineering, NTUT60/140
  • 61. Dead-Zone Issues • In charge pump based PLL, the dead-zone problem is not only considered in PFD design but charge pump. • As reference frequency goes higher, the dead-zone issue is more serious, because the linearity highly depends on the dead-zone. • In charge pump design, it’s hard to achieve low power consumption, fast current switching and perfect current mismatch. Department of Electronic Engineering, NTUT61/140
  • 62. Frequency Divider PFD LPFreff outf /N VCO divf inf  / 1M M  Prescaler P S inf divf Program counter Swallow counter Reset Modulus control Channel selection •Pulse Swallow Frequency Divider 1 in in T f  1 inM T  1 inS M T   inP S MT      1div in in inT S M T P S MT S PM T      (1) Start with divided-by-(M+1) Total counts of program counter = P cycles (2) Change to divided-by-M 1 div div T f    1 1 div in inf f f S PM N    2, 8, 4 4 8 2 20M P S N        Department of Electronic Engineering, NTUT62/140
  • 63. Asynchronous Divider J Q K C J Q K C J Q K C 1 1 1 1 1 1 inf 2 inf 4 inf 8 inf inf 2inf 4inf 8inf outf inf 2inf 4inf 8inf outf Department of Electronic Engineering, NTUT63/140
  • 64. Synchronous Divider (2 versions) J Q K C J Q K C J Q K C J Q K C J Q K C 1 1 2inf 4inf 8inf 16inf 16inf Department of Electronic Engineering, NTUT64/140
  • 65. Spikes in Synchronous Divider 2inf 4inf 8inf outf 2inf 4inf 8inf outf 2inf late 8inf early • Racing in synchronous divider producing output spikes Department of Electronic Engineering, NTUT65/140
  • 66. Synchronous Divider w/ Enable J Q K C J Q K C J Q K C J Q K C J Q K C J Q K C 1 1 J Q K C J Q K C J Q K C J Q K C J Q K C J Q K C 1 1 •Parallel Enable •Serial Enable Department of Electronic Engineering, NTUT66/140
  • 67. Direct Variable Frequency Divider Department of Electronic Engineering, NTUT67/140
  • 68. Type and Order of the Loop Frequency Divider  ref s  out s pK  F s vK s 1 N            1 G s N s T s G s H s D s    • The simplest PLL is the type-I loop because the open-loop gain has one pole at DC (pure integration). It is also a first-order loop because the open-loop gain has one significant pole.   1 1 0 n n n nN s a s a s a       1 1 0 m m m mD s b s b s b     Order = m (m roots) Type = n (n roots at DC) Department of Electronic Engineering, NTUT68/140
  • 69. Filter First-order Type 1 • First order, type I (no filter) 1R iv ov 2R L log m0 dB G 6 / .dB oct 2 1 2 o LPF i v R G v R R    A 3R iv 4R ov  A 4 3 o LPF i v R G v R      Department of Electronic Engineering, NTUT69/140
  • 70. Filter Second-order Type I • Second order, type I (Lag-and-lead filter) 1R iv ov 2R 1C A 3R iv 5R ov 2C 4R L log m0 dB G 12 / .dB oct 6 / .dB oct zp      1 1 z LPF p s G s   2 1 1 z R C 1 2 1 1 p R R C    1 1 z LPF p s G s         4 5 2 4 5 1 z R R C R R      5 2 1 p R C Department of Electronic Engineering, NTUT70/140
  • 71. Filter Second-order Type 1 • Second order, type I (Lag filter) 1R iv ov 2R 1C L log m0 dB G 6 / .dB oct p 12 / .dB oct A 3R iv 4R ov 2C  A      2 1 2 1 1 LPF p R G sR R       4 3 1 1 LPF p R G sR        1 1 2 1 1 1 p C R R   4 2 1 p R C Department of Electronic Engineering, NTUT71/140
  • 72. Filter Second-order Type II • Second order, type II (Integrator and lead filter) L log m0 dB G 12 / .dB oct 6 / .dB oct z A 1R iv 2R ov C  A      1 1 1 1 z LPF s G R C s   2 1 z R C Department of Electronic Engineering, NTUT72/140
  • 73. Filter Third-order Type II • Third order, type II (Integrator plus lead-lag filter) L log m0 dB G 12 / .dB oct p 12 / .dB oct 6 / .dB oct z A 1R iv 2R ov 2C 1C  A A 3R iV 4R oV 3C 5R 4C A 1 1 1 1 1 z LPF p s G R C s s                           3 3 1 1 1 z LPF p s G R C s s     2 1 2 1 z R C C   2 2 1 p R C   4 3 1 z R C   5 4 1 p R C Department of Electronic Engineering, NTUT73/140
  • 74. Filter Third-order Type II • Third order, type I (imperfect integrator plus lead-lag filter) L log m0 dB G 6 / .dB oct  2p 12 / .dB oct 6 / .dB oct z 1p 12 / .dB oct A 1oA R A  A Department of Electronic Engineering, NTUT74/140
  • 75. Oscillator • Oscillator provides a sinusoidal signal  v t t 1 1 f  V f f 1f  v t t 1 1 f  V f f 1f Department of Electronic Engineering, NTUT75/140
  • 76. Voltage Controlled Oscillator (VCO) • VCO is an oscillator of which frequency is controlled by a tuning voltage • VCO is a simple FM modulator vcof tuneV tuneV Department of Electronic Engineering, NTUT76/140
  • 77. VCO Sensitivity and Tuning Linearity • Frequency Range • Frequency tuning characteristics - Sensitivity (Hz/Volt) - Linearity VK f V   vcof tunev ,0tv 0f maxf minf ,mintv ,maxtv v f Ideal (perfect) Piecewise good Piecewise good Poor Department of Electronic Engineering, NTUT77/140
  • 78. Important Figures • Output Power (@50 Ohm) • Frequency Stability: frequency drifting • Pushing and Pulling Figures • Harmonics • Phase Noise (Jitter) Department of Electronic Engineering, NTUT78/140
  • 79. Phase Noise and Jitter      1 Hz 10log 10log dBc Hz 2 noise carrier S fP L f P      • Phase Noise • Jitter  Cycle jitter cn nT T T     2 1 1 lim N c cn n n T N       Cycle-to-cycle jitter 1ccn n nT T T     2 1 1 lim N c ccn n n T N       Absolute jitter (long-term jitter, accumulated jitter) of N cycles       1 1 N N abs n cn n n T N T T T           2 1 1 lim N c ccn n n T N      for white noise sources   0 2 abs cc f T t t    and 2cc c  Department of Electronic Engineering, NTUT79/140
  • 80. Relation of Phase Noise and Jitter • Relationship between the SSB phase noise and the rms cycle jitter: (Weigandt et al.)     3 2 0 2 cf L f f     • Relationship between the SSB phase noise and the rms cycle jitter: (Herzel and Razavi)         3 2 0 22 3 4 0 4 8 cc cc L             • Self-referred jitter and phase noise with white noise: (Demir et al.)     2 0 2 2 4 2 0 f c L f f f c      2 t t c     20 2 cc f c  Department of Electronic Engineering, NTUT80/140
  • 81. Oscillator Design (I) • Feedback : Barkhausen’s Criteria     ( ) ( ) 1 ( ) ( ) o f i V G s G s V G s H s  ( ) ( ) 1G s H s (Phase is 0 deg. or multiple of 360 deg.) Department of Electronic Engineering, NTUT81/140
  • 82. Oscillator Design (II)   ' 11 1G S   ' 22 1L S If the two-port network is oscillating at one port, it must be simultaneously oscillating at the other port. • Two Port Reflection Sine the resonator is passive, thus 1G  Department of Electronic Engineering, NTUT82/140
  • 83. Oscillator Design (III) 0)()(   DRR 0)()(   DXX • One-port Negative Resistance Department of Electronic Engineering, NTUT83/140
  • 85. Effects of Internal Noise Source • The nonlinearities in the circuit cause K1 or K2 to have a value such that the loop gain is unity, a condition for stable oscillation. • The other condition is that there be 360o phase shift around the loop. This occurs at the resonant frequency of the tank circuit. 2K RC L1 2i K v  1v nv 2v • If no feedback, the noise will appear at the output, amplified by K2. Department of Electronic Engineering, NTUT85/140
  • 86. Small Noise Introduced • But what effect does the feedback have? (1) Far from spectral center: the output contains amplified circuit noise (2) Close to spectral center: the feedback has an important effect            1 1 1 i T v Z i j C R L Phase shift of this factor is               1 1 tanT R C L 2K RC L1 2i K v  1v nv 2v Department of Electronic Engineering, NTUT86/140
  • 87. Tank Phase Shift 0 0 2Td Q d       Q is the loaded quality factor of the frequency-determining circuit. • For modulation rates small compared to one-half of the resonant bandwidth of ZT, a change in frequency causes a phase change in the transfer function, where the two changes are 2 osc Q      0 1 0 0 1 tan 0T R C L                   0   T 0 TH 1   Department of Electronic Engineering, NTUT87/140
  • 88. Phase Perturbations • The loop responds to a phase perturbation of by producing an equal and opposite phase change to maintain the required zero phase shift around the loop in the presence of modulation due to noise. This is done by shift the frequency. • A phase modulation with peak deviation due to noise vn necessitates frequency modulation of the oscillator output with peak deviation by     2 osc n n Q n n 0 T n n n Department of Electronic Engineering, NTUT88/140
  • 89. Closed-Loop Noise          2 2 oscn n m mQ where is the noise modulation frequency.  2 osc Q  1 m  n  n  2 • The phase noise would ordinarily appear at the output due to circuit noise is accentuated by a factor . 2osc mf Qf m 2 osc m f f Q  log mf Open loop Closed loop logS  2 rad Hz Department of Electronic Engineering, NTUT89/140
  • 90. Oscillator Phase Noise f 0f mff 0 1 Hz R P V avs avsRMS  R FkT VnRMS 11 Hz R FkT VnRMS 2 • The input phase noise in a 1-Hz bandwidth at any frequency from the carrier produces a phase deviation. 0 mf f sP nP  Department of Electronic Engineering, NTUT90/140 Noise
  • 91. Noise Caused Phase Deviation   1nRMS peak avsRMS avs V FkT V P  1 1 2 RMS avs FkT P  RMS total avs FkT P Noise  2 1 2 RMS avs FkT P (total phase deviation) 12 nRMSV m 2 avsRMSV 0  peak Department of Electronic Engineering, NTUT91/140
  • 92. Lesson’s Model (I) avs RMSm P FkTB fS  2 )(  1)(BdBm/Hz174 kTB S cf mf avsP FkTB 1)(B1)(        m c avs m f f P FkTB fS • The spectral density of phase noise : (theoretical noise floor of the amplifier) • Flicker Noise The purity of signal is degraded by the flicker noise at the frequencies close to the carrier. noise floor flicker noise Department of Electronic Engineering, NTUT92/140
  • 93. Lesson’s Model (II) ) 2 (1 1 )( 0   loadm m Qj L    in Equivalent lowpass for resonator out + )( min f )( 2 0 min mL f Qj          • The oscillator may be modeled as an amplifier with feedback 0 1 ( ) 2 1 L m L m H Q j            0 2 2L B Q   0 ( ) 1 ( ) 2 out m in m L m f f j Q               2 0 2 1 ( ) 1 ( ) 2 out m in m m L f S f S f f Q               ( ) 1 c in m avs m fFkTB S f P f          ( )L mH Department of Electronic Engineering, NTUT93/140
  • 94. Lesson’s Model (III) 2 2 3 2 2 1 1 L( ) 1 2 4 2 o c o c m avs m L m L m f f f fFkTB f P f Q f Q f              Up-convert 1/f noise Thermal FM noise Flicker noise Thermal noise floor • Lesson’s Oscillator Model: slope f cf f 1 Thermal Noise Floor 1/f noise at carrier 0f C              2 0 2 1 1 L( ) 1 ( ) 2 2 m in m m L f f S f f Q          ( ) 1 c in m avs m fFkTB S f P f Open-loop amp.Closed-loop with resonator Department of Electronic Engineering, NTUT94/140
  • 95. Lesson’s Model (IV) 1 mf 1 mf 0 mf 3 mf 1 mf 2 mf 3 mf 0 mf cf cf cf cf Q fo 2 Q fo 2 avsP FkTB avsP FkTB 2 avsP FkTB High Q Oscillator Phase perturbation Low Q Oscillator Phase perturbation Resulting phase noise Resulting phase noise Department of Electronic Engineering, NTUT95/140
  • 97. PLL Phase Noise Model Frequency Divider ,ref n out 1 N PFD   LPF ,pfd nV ,op nV  ,vco n  ,div n VCO Xtal Department of Electronic Engineering, NTUT97/140
  • 98. Noise Transfer Functions (I)         , , , , , ,out n pfd n op n ref n div n e vco n d T s V V T s H s K                1 G s T s G s H s         1 1 eH s G s H s             for for1 c c NG s T s G sG s H s                   for1 for1 1 c e c N G sH s G s H s             Department of Electronic Engineering, NTUT98/140
  • 99. Noise Transfer Functions (II) c log m      1 G s G s H s N  G s Transfer function multiplying all sources except VCO c log m     1 1 G s H s 1     1 G s H s Transfer function for VCO c log m 20logN  G s  dB 0 Department of Electronic Engineering, NTUT99/140
  • 100. Typical VCO and PLL Noise Performance Department of Electronic Engineering, NTUT100/140
  • 101. PLL Design with Sheets http://www.peregrine-semi.com Department of Electronic Engineering, NTUT101/140
  • 102. Phase-Locked Loop Architectures • Integer-N PLL • Fractional-N PLL • Offset PLL • DDS Offset PLL • Dual Loop PLL • Multi-Loop PLL Department of Electronic Engineering, NTUT102/140
  • 103. Offset PLL out ref offsetf N f f   • Lower division ratio N to reduce inband phase-noise gain ? PFD LPF Frequency Divider reff outf /N offsetf • Extend bandwidth with different offsetf • Avoid LO pulling Department of Electronic Engineering, NTUT103/140
  • 104. Dual-Loop PLL (I) PFD LPF Frequency Divider reff outf /N offsetf PFD LPF outf /M 2nd loop Department of Electronic Engineering, NTUT104/140
  • 105. Dual-loop PLL (II) PFD LPF Frequency Divider 1reff outf/N 1f PFD LPF 2f /M 2nd loop 2reff Department of Electronic Engineering, NTUT105/140
  • 106. Multi-Loop PLL 3rd loop 2nd loop foffset1 PFD LPF /N foutVCOfref PFD LPF /M VCO foffset2 PFD LPF /P VCO foffset3 Department of Electronic Engineering, NTUT106/140
  • 107. DDS Offset PLL PFD LPF Frequency Divider reff outf /N offsetf DDS Department of Electronic Engineering, NTUT107/140
  • 108. Fractional-N Frequency Synthesis • Lower division ratio N to reduce inband phase-noise gain • Effectively produce a fractional division value • Generally employee a delta-sigma modulator for division ratio dithering PFD LPF Dual-modulus Frequency Divider reff outf /N, (N+1) FCW Department of Electronic Engineering, NTUT108/140
  • 109. DDS-Driven Fractional-N Synthesizer • DDS acts a reference source or phase/frequency modulator • A variable reference frequency source can drive a fractional frequency output. PFD LPF Frequency Divider reff outf /N DDS FCW Hybrid DDS/PLL Department of Electronic Engineering, NTUT109/140
  • 110. DDS-Feedback Fractional-N Synthesizer • DDS acts a frequency divider • DDS output frequency Hybrid DDS/PLL PFD LPF Frequency Divider reff outf DDS FCW 2 out ref offsetn M f f f   Department of Electronic Engineering, NTUT110/140
  • 111. Comparison of Frequency Synthesizers DDS Single-Loop PLL Multi-Loop PLL DDS/DAS DDS Offset PLL DDS Driven PLL BW (output) Narrow < 100MHz Broad > 1GHz Broad > 1GHz Broad > DDS Broad (carefully design) Broad Resolution Extremely Fine < 0.02 Hz Very Course > 250kHz (typical) Medium > 1kHz (typical) Extremely Fine < 0.01 Hz Extremely Fine < 0.01 Hz Extremely Fine < 1Hz Switching Time Very Fast < 100 ns Fast < 100us (typical) Very Slow > 1ms (typical) Very Fast < 1us (limited by RF switch) Fast < 100us (typical) Trade-off vs close-in spurious tones Spurious Noise < 75dBc (limited by DAC) Very Good Good (carefully design) Minimum Close-in Spurious Minimum Close-in Spurious Excellent over Broad Bandwidth Phase Noise Better than clock reference Very Good Very Good Very Good Very Good Good Circuitry Simple Simple Very Complex Moderate Moderate Moderate Department of Electronic Engineering, NTUT111/140
  • 112. PLL Simulation • ADS Circuit Envelope Simulation Basics • Integer-N Frequency Synthesizer Simulation • Fractional-N Frequency Synthesizer Simulation • Closed-In Phase Noise Characteristics Department of Electronic Engineering, NTUT112/140
  • 113. Circuit Envelope Simulation Technique • Time samples the modulation envelope (not carrier) • Compute the spectrum at each time sample • Output a time-varying spectrum • Use equations on the data • Faster than HB or SPICE in many case • Integrates with System Simulation & HP Ptolemy Department of Electronic Engineering, NTUT113/140
  • 114. What Test Can it Perform? • Test circuits with realistic signals Simulation can include: • Adjacent Channel Power Ratio • Noise Power Ratio • Error Vector Magnitude • Power Added Efficiency • Bit Error Rate Also, it can be used for PLL simulation: • Locking time • Spurious signal • Modulation in the loop • Phase noise Features of Circuit Envelope Simulation Department of Electronic Engineering, NTUT114/140
  • 115. • Time sample the envelope and then perform Harmonic Balance on the samples. V(t) can be complex – am, fm or pm Circuit Envelope Sampling Department of Electronic Engineering, NTUT115/140
  • 116. Spectrum Computation Department of Electronic Engineering, NTUT116/140
  • 117. Envelope Env1 Step=1 nsec Stop=100 nsec Order[1]=3 Freq[1]=1.0 GHz ENVELOPETime step – Determines bandwidth of Circuit Envelope simulation – Small enough to capture highest modulation frequency Stop time – Determines resolution bandwidth of output spectrum – Large enough to resolve spectral components of interest Frequency Span and Resolution Bandwidth Department of Electronic Engineering, NTUT117/140
  • 118. Vin Vout Envelope Env1 Step=1 nsec Stop=50 nsec Order[1]=1 Freq[1]=900 MHz ENVELOPE R R1 R=50 Ohm PtRF_Pulse PORT1 Period=100 nsec Width=30 nsec Fall=10 nsec Rise=5 nsec Delay=0 nsec OffRatio=0 Freq=900 MHz P=dbmtow(0) Z=50 Ohm Num=1 Amplifier AMP1 S12=0 S22=dbpolar(-50,0) S11=dbpolar(-50,0) S21=dbpolar(10,0) Circuit Envelope Simulation Example (I) Department of Electronic Engineering, NTUT118/140
  • 119. m2 time=5.000nsec real(Vout[1])=1.000 m1 time=0.0000 sec real(Vout[1])=0.000 m2 time=5.000nsec real(Vout[1])=1.000 m1 time=0.0000 sec real(Vout[1])=0.000 10 20 30 400 50 -0.5 0.0 0.5 -1.0 1.0 time, nsec real(Vin[1]) real(Vout[1]) m2 m1 ts(Vout),V m2 time=5.000nsec real(Vout[1])=1.000 m1 time=0.0000 sec real(Vout[1])=0.000 m2 time=5.000nsec real(Vout[1])=1.000 m1 time=0.0000 sec real(Vout[1])=0.000 10 20 30 400 50 -0.5 0.0 0.5 -1.0 1.0 time, nsec real(Vin[1]) real(Vout[1]) m2 m1 ts(Vout),V m2 time=10.00nsec real(Vout[1])=1.000 m1 time=0.0000 sec real(Vout[1])=0.000 m2 time=10.00nsec real(Vout[1])=1.000 m1 time=0.0000 sec real(Vout[1])=0.000 10 20 30 400 50 -0.5 0.0 0.5 -1.0 1.0 time, nsec real(Vin[1]) real(Vout[1]) m2 m1 ts(Vout),V m2 time=0.0000 sec real(Vout[1])=0.000 m1 time=0.0000 sec real(Vout[1])=0.000 m2 time=0.0000 sec real(Vout[1])=0.000 m1 time=0.0000 sec real(Vout[1])=0.000 10 20 30 40 500 60 -0.5 0.0 0.5 -1.0 1.0 time, nsec real(Vin[1]) real(Vout[1]) m2m1 ts(Vout),V Circuit Envelope Simulation Example (II) Department of Electronic Engineering, NTUT119/140 Tstep = 1 ns Tstep = 5 ns Tstep = 10 ns Tstep = 20 ns
  • 121.     0out ch reff f k f M f    0out ch reff f k f M f For channel 1 (k=0)   0out L reff f M f    , 0,1,2, ,LM M k k N ch reff fch reff f Architecture of Integer-N Frequency Synthesizer 1 MHzreff  0 2.4 GHzf  2400N  Department of Electronic Engineering, NTUT121/140
  • 122. vtune VCOfreq VCOout Envelope Env1 Other= Step=Tstep Stop=4000*Tstep SweepOffset=0 StatusLevel=2 Order[1]=1 Freq[1]=fvco ENVELOPE V_1Tone SRC3 Freq=1 MHz V=polar(1,-90) V VAR VAR1 Tstep=1/(5*fref) DeltaN=(fvco+Deltaf)/fref -N0 Deltaf=0 MHz N0=fvco/fref fref=1 MHz fvco=2.4 GHz Eqn Var VtStep SRC4 Rise=1/fref Delay=0 nsec Vhigh=DeltaN V Vlow=0 Vt MeasEqn meas2 VCOfreqGHz=real(VCOfreq[0]) VCOphase=phase(VCOout[1]) fund=VCOout[1] Vtune=real(vtune[0]) Eqn Meas VCO_DivideByN VCO1 Delay=0 Power=dbmtow(10) Rout=50 Ohm N=N0 F0=fvco VCO_Freq=50 MHz * _v1 f r eq VCO . vcon - N. VCO t une dN C C3 C=100 pF R R3 R=50 Ohm R R4 R=50 Ohm ResetSwitch SWITCH1 t>0 t=0 C C2 C=16.4 nF R R1 R=3.3 kOhmC C1 C=1 nF R R2 R=15 kOhmPhaseFreqDetCP PFD1 Ilow=1 mA Ihigh=1 mA FREQ/CP I low I high PHASE/ VCO r ef Schematic of Integer-N Frequency Synthesizer PFD LPF VCO & Divider Output load Modulus Divided signal Department of Electronic Engineering, NTUT122/140
  • 123. -2 -1 0 1 2-3 3 -100 -50 0 -150 50 freq, MHz spectrum Reference Spurs (I) Reference spurs Department of Electronic Engineering, NTUT123/140
  • 124. Reference Spurs (II) Department of Electronic Engineering, NTUT124/140 A B UP DN A B AQ BQ Gate Delay (comparison transition)
  • 125. 100 200 300 400 500 600 7000 800 2.3999995 2.4000000 2.4000005 2.3999990 2.4000010 time, usec VCOfreqGHz 0 100 -0.000015 -0.000010 -0.000005 0.000000 0.000005 0.000010 -0.000020 0.000015 time, usec Vtune Improper LPF Design and Discrete Effect Department of Electronic Engineering, NTUT125/140
  • 126. m1 time=570.0000000usec VCOfreqGHz=2.401000000 m1 time=570.0000000usec VCOfreqGHz=2.401000000 100 200 300 400 5000 600 2.40 2.41 2.42 2.43 2.39 2.44 time, usec VCOfreqGHz m1 100 200 300 400 5000 600 0.0 0.2 0.4 0.6 -0.2 0.8 time, usec Vtune Eqn spectrum=dBm(fs(fund)) m2 freq=1000.kHz spectrum=10.00 m2 freq=1000.kHz spectrum=10.00 -2 -1 0 1 2-3 3 -150 -100 -50 0 -200 50 freq, MHz spectrum m2 VCO output spectrum at steady-state, jump from fcenter at 2.4GHz to 2.401GHz   1 MHzf PLL Transient Response (I) Department of Electronic Engineering, NTUT126/140
  • 127. m1 time=539.4000000usec VCOfreqGHz=2.410000000 m1 time=539.4000000usec VCOfreqGHz=2.410000000 100 200 300 400 5000 600 2.41 2.42 2.43 2.40 2.44 time, usec VCOfreqGHz m1 100 200 300 400 5000 600 0.2 0.4 0.6 0.0 0.8 time, usec Vtune m1 time=590.4000000usec VCOfreqGHz=2.480000000 m1 time=590.4000000usec VCOfreqGHz=2.480000000 100 200 300 400 5000 600 2.42 2.44 2.46 2.48 2.40 2.50 time, usec VCOfreqGHz m1 100 200 300 400 5000 600 0.5 1.0 1.5 0.0 2.0 time, usec Vtune   10 MHzf   80 MHzf PLL Transient Response (II) Department of Electronic Engineering, NTUT127/140
  • 129. ( 1) ( )A N M A N A N M M        ( ) ( )out ref ref A f N f N f M       Architecture of Fractional-N Frequency Synthesizer Department of Electronic Engineering, NTUT129/140
  • 130. deltaN vtune VCOfreq VCOout VAR VAR1 Tstep=1/(5*fref) Num=Denom*fraction Denom=20 fraction=DeltaN-intDeltaN intDeltaN=int(DeltaN) DeltaN=(fvco+Deltaf)/fref -N0 Deltaf=0.75 MHz N0=fvco/fref fref=1 MHz fvco=2.4 GHz Eqn Var MeasEqn meas2 VCOfreqGHz=real(VCOfreq[0]) VCOphase=phase(VCOout[1]) fund=VCOout[1] Vtune=real(vtune[0]) Eqn Meas Envelope Env1 Other= Step=Tstep Stop=4000*Tstep SweepOffset=0*Tstep StatusLevel=2 Order[1]=1 Freq[1]=fvco ENVELOPE C C3 C=100 pF R R2 R=15 kOhm R R1 R=3.3 kOhm C C2 C=16.4 nF V_1Tone SRC3 Freq=1 MHz V=polar(1,-90) V VtPulse SRC5 Period=Denom/fref Width=Num/fref Edge=linear Delay=(Denom-Num)/fref Vhigh=1 V Vlow=0 V t PhaseFreqDetCP PFD1 Ilow=1 mA Ihigh=1 mA FREQ/CP I low I high PHASE/ VCO ref VCO_DivideByN VCO1 Delay=0 Power=dbmtow(10) Rout=50 Ohm N=N0 F0=fvco VCO_Freq=50 MHz * _v1 f r eq VCO . vcon - N. VCO t une dN C C1 C=1 nF R R3 R=50 Ohm R R4 R=50 Ohm ResetSwitch SWITCH1 t>0 t=0 Schematic of Fractional-N Frequency Synthesizer Department of Electronic Engineering, NTUT130/140
  • 131. Denom (M) Num (A) VtPulse SRC5 Period=Denom/fref Width=Num/fref Delay=(Denom-Num)/fref Vhigh=1 V Vlow=0 V t VCO_DivideByN VCO1 freq VCO . vcon - N. VCO tune dN The Simulation Method Department of Electronic Engineering, NTUT131/140
  • 132. m1 time=227.000usec VCOfreqGHz=2.40005 100 200 300 400 500 600 7000 800 2.40 2.41 2.42 2.39 2.43 time, usec VCOfreqGHz m1  0.5 MHz 0.5 MHzreff f   PLL Transient Response Department of Electronic Engineering, NTUT132/140
  • 133. m2 freq=100.0kHz spectrum=-7.185 m1 freq=50.00kHz spectrum=9.827 m3 freq=150.0kHz spectrum=-28.277 m2 freq=100.0kHz spectrum=-7.185 m1 freq=50.00kHz spectrum=9.827 m3 freq=150.0kHz spectrum=-28.277 -2 -1 0 1 2-3 3 -80 -60 -40 -20 0 -100 20 f req, MHz spectrum m2 m1 m3 100 200 300 400 500 600 7000 800 2.40004 2.40005 2.40006 2.40003 2.40007 time, usec VCOfreqGHz m2 freq=800.0 spectrum= m1 freq=750.0 spectrum= m3 freq=850.0 spectrum= -2 -1 0 1 2-3 3 -60 -40 -20 0 -80 20 freq, MHz spectrum m2m1 m3 100 200 300 400 500 600 7000 800 2.40070 2.40075 2.40080 2.40065 2.40085 time, usec VCOfreqGHz Fractional Spurs Department of Electronic Engineering, NTUT133/140
  • 134. Closed-In Phase Noise Characteristics
  • 135. m1 freq=10.00kHz PN_Loop_Div_only=-87.846 m2 freq=100.0kHz PN_Loop_Div_only=-123.089 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -260 -40 freq, Hz PN_Loop_Div_only m1 m2 m1 freq=10.00kHz PN_Loop_Div_only=-88.255 m2 freq=100.0kHz PN_Loop_Div_only=-92.859 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -260 -40 freq, Hz PN_Loop_Div_only m1 m2 m1 freq=10.00kHz PN_Loop_Div_only=-112.609 m2 freq=100.0kHz PN_Loop_Div_only=-155.546 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -260 -40 freq, Hz PN_Loop_Div_only m1 m2 (1) (2) (3) (1) Loop BW = 1 kHz (2) Loop BW =10 kHz (3) Loop BW =100 kHz Phase Noise with Loop Divider Only Department of Electronic Engineering, NTUT135/140
  • 136. (1) (2) (3) (1) Loop BW = 1 kHz (2) Loop BW =10 kHz (3) Loop BW =100 kHz m1 freq=10.00kHz PN_PFD_only=-79.177 m2 freq=100.0kHz PN_PFD_only=-78.781 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -220 -200 -180 -160 -140 -120 -100 -80 -240 -60 freq, Hz PN_PFD_only m1 m2 m1 freq=10.00kHz PN_PFD_only=-103.531 m2 freq=100.0kHz PN_PFD_only=-141.468 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -220 -200 -180 -160 -140 -120 -100 -80 -240 -60 freq, Hz PN_PFD_only m1 m2 m1 freq=10.00kHz PN_PFD_only=-78.768 m2 freq=100.0kHz PN_PFD_only=-109.011 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -220 -200 -180 -160 -140 -120 -100 -80 -240 -60 freq, Hz PN_PFD_only m1 m2 Phase Noise with PFD Only Department of Electronic Engineering, NTUT136/140
  • 137. (1) (2) (3) m1 freq=10.00kHz PN_Ref_only=-88.246 m2 freq=100.0kHz PN_Ref_only=-92.857 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -260 -20 freq, Hz PN_Ref_only m1 m2 m1 freq=10.00kHz PN_Ref_only=-112.600 m2 freq=100.0kHz PN_Ref_only=-155.544 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -260 -20 freq, Hz PN_Ref_only m1 m2 m1 freq=10.00kHz PN_Ref_only=-87.837 m2 freq=100.0kHz PN_Ref_only=-123.087 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -260 -20 freq, Hz PN_Ref_only m1 m2 (1) Loop BW = 1 kHz (2) Loop BW =10 kHz (3) Loop BW =100 kHz Phase Noise with Reference Osc. Only Department of Electronic Engineering, NTUT137/140
  • 138. (1) (2) (3) m1 freq=10.00kHz PN_VCO_only=-126.536 m2 freq=100.0kHz PN_VCO_only=-112.256 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -195 -190 -185 -180 -175 -170 -165 -160 -155 -150 -145 -140 -135 -130 -125 -120 -115 -110 -105 -100 -95 -90 -85 -80 -75 -200 -70 freq, Hz PN_VCO_only m1 m2 m1 freq=10.00kHz PN_VCO_only=-96.380 m2 freq=100.0kHz PN_VCO_only=-112.580 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -195 -190 -185 -180 -175 -170 -165 -160 -155 -150 -145 -140 -135 -130 -125 -120 -115 -110 -105 -100 -95 -90 -85 -80 -75 -200 -70 freq, Hz PN_VCO_only m1 m2 m1 freq=10.00kHz PN_VCO_only=-96.443 m2 freq=100.0kHz PN_VCO_only=-112.315 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -195 -190 -185 -180 -175 -170 -165 -160 -155 -150 -145 -140 -135 -130 -125 -120 -115 -110 -105 -100 -95 -90 -85 -80 -75 -200 -70 freq, Hz PN_VCO_only m1 m2 (1) Loop BW = 1 kHz (2) Loop BW =10 kHz (3) Loop BW =100 kHz Phase Noise with VCO Only Department of Electronic Engineering, NTUT138/140
  • 139. (1) (2) (3) m1 freq=1.000kHz PNTotal=-75.603 m2 freq=10.00kHz PNTotal=-78.205 m3 freq=1.000kHz PN_VCO_only=-146.498 m4 freq=10.00kHz PN_VCO_only=-126.536 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -140 -120 -100 -80 -60 -40 -20 0 -160 20 f req, Hz PNTotal m1 m2 PN_VCO_only m3 m4PN_VCO_FreeRun m1 freq=1.000kHz PNTotal=-70.960 m2 freq=10.00kHz PNTotal=-93.347 m3 freq=1.000kHz PN_VCO_only=-76.978 m4 freq=10.00kHz PN_VCO_only=-96.380 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -140 -120 -100 -80 -60 -40 -20 0 -160 20 f req, Hz PNTotal m1 m2 PN_VCO_only m3 m4 PN_VCO_FreeRun m1 freq=1.000kHz PNTotal=-75.282 m2 freq=10.00kHz PNTotal=-76.852 m3 freq=1.000kHz PN_VCO_only=-106.753 m4 freq=10.00kHz PN_VCO_only=-96.443 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -140 -120 -100 -80 -60 -40 -20 0 -160 20 f req, Hz PNTotal m1 m2 PN_VCO_only m3 m4 PN_VCO_FreeRun (1) Loop BW = 1 kHz (2) Loop BW =10 kHz (3) Loop BW =100 kHz VCO in Loop vs. VCO Free-Running Department of Electronic Engineering, NTUT139/140
  • 140. (1) N = 2400 (2) N= 1400 m1 freq=1.000kHz PNTotal=-75.282 m2 freq=10.00kHz PNTotal=-76.852 m3 freq=1.000kHz PN_VCO_only=-106.753 m4 freq=10.00kHz PN_VCO_only=-96.443 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -140 -120 -100 -80 -60 -40 -20 0 -160 20 f req, Hz PNTotal m1 m2 PN_VCO_only m3 m4 PN_VCO_FreeRun m1 freq=1.000kHz PNTotal=-83.041 m2 freq=10.00kHz PNTotal=-83.673 m3 freq=1.000kHz PN_VCO_only=-114.513 m4 freq=10.00kHz PN_VCO_only=-103.265 10.00 100.0 1.000k 10.00k 100.0k 1.000M1.000 10.00M -140 -120 -100 -80 -60 -40 -20 0 -160 20 f req, Hz PNTotal m1 m2 PN_VCO_only m3 m4 PN_VCO_FreeRun Phase Noise with Various Modulus N Department of Electronic Engineering, NTUT140/140