Integrating Derivative
     on Function
Integrating Derivative
     on Function
          f  x 
         f x
                   dx  log f  x   c
Integrating Derivative
       on Function
                             f  x 
                            f x
                                      dx  log f  x   c


               1
e.g. (i)    7  3x dx
Integrating Derivative
       on Function
                             f  x 
                            f x
                                      dx  log f  x   c


                1
e.g. (i)     7  3x dx
               1 3
                     dx
               3 7  3x
Integrating Derivative
       on Function
                              f  x 
                             f x
                                       dx  log f  x   c


                 1
e.g. (i)     7  3x dx
               1 3
                     dx
               3 7  3x
               1
             log7  3 x   c
               3
Integrating Derivative
       on Function
                              f  x 
                             f x
                                       dx  log f  x   c


                 1                              dx
e.g. (i)     7  3x dx              ii     8x  5
               1 3
                     dx
               3 7  3x
               1
             log7  3 x   c
               3
Integrating Derivative
       on Function
                              f  x 
                             f x
                                       dx  log f  x   c


                 1                           dx
e.g. (i)     7  3x dx              ii  8x  5
               1 3                       1 8dx
                     dx                
               3 7  3x                   8 8x  5
               1
             log7  3 x   c
               3
Integrating Derivative
       on Function
                              f  x 
                             f x
                                       dx  log f  x   c


                 1                           dx
e.g. (i)     7  3x dx              ii  8x  5
               1 3                       1 8dx
                     dx                
               3 7  3x                   8 8x  5
               1                          1
             log7  3 x   c          log8 x  5  c
               3                          8
Integrating Derivative
       on Function
                           f  x 
                          f x
                                    dx  log f  x   c


e.g. (i)  1 dx                   ii  
                                           dx                        x5
                                                           iii   6 dx
           7  3x                         8x  5                   x 2
            1 3                        1 8dx
                  dx                
            3 7  3x                    8 8x  5
            1                           1
          log7  3 x   c          log8 x  5  c
            3                           8
Integrating Derivative
       on Function
                           f  x 
                          f x
                                    dx  log f  x   c


e.g. (i)  1 dx                   ii  
                                           dx                        x5
                                                           iii   6 dx
           7  3x                         8x  5                   x 2
            1 3                        1 8dx                     1 6 x5
                  dx                                        6     dx
            3 7  3x                    8 8x  5                  6 x 2
            1                           1
          log7  3 x   c          log8 x  5  c
            3                           8
Integrating Derivative
       on Function
                           f  x 
                          f x
                                    dx  log f  x   c


e.g. (i)  1 dx                   ii  
                                           dx                        x5
                                                           iii   6 dx
           7  3x                         8x  5                    x 2
            1 3                        1 8dx                     1 6 x5
                  dx                                        6      dx
            3 7  3x                    8 8x  5                  6 x 2
                                                                logx 6  2   c
            1                           1                         1
          log7  3 x   c          log8 x  5  c
            3                           8                         6
1
iv   dx
       5x
1
iv   dx
       5x
      1 5
     dx
      5 5x
1
iv   dx
        5x
      1 5
     dx
      5 5x
      1
    log 5 x  c
      5
1
iv   dx         OR   1 1
                           x dx
        5x              5
      1 5
     dx
      5 5x
      1
    log 5 x  c
      5
1
iv   dx         OR    1 1
                            x dx
        5x               5
      1 5
     dx                 1
                         log x  c
      5 5x                5
      1
    log 5 x  c
      5
1
iv   dx         OR    1 1
                            x dx
        5x               5
      1 5
     dx                 1
                         log x  c
      5 5x                5
      1
    log 5 x  c
      5

        4x 1
 v         dx
        2x 1
1
iv   dx           OR          1 1
                                    x dx
        5x                       5
      1 5
     dx                         1
                                 log x  c
      5 5x                        5
      1
    log 5 x  c
      5

        4x 1      order numerator  order denominator
 v         dx
        2x 1
1
iv   dx           OR          1 1
                                    x dx
        5x                       5
      1 5
     dx                         1
                                 log x  c
      5 5x                        5
      1
    log 5 x  c
      5

        4x 1      order numerator  order denominator
 v         dx
                           polynomial division
        2x 1
1
iv   dx           OR          1 1
                                    x dx
        5x                       5
      1 5
     dx                         1
                                 log x  c
      5 5x                        5
      1
    log 5 x  c
      5

        4x 1      order numerator  order denominator
 v         dx
                           polynomial division
        2x 1
                                           2
                                 2x 1 4x 1
                                       4x  2
                                           1
1
iv   dx             OR          1 1
                                      x dx
        5x                         5
      1 5
     dx                           1
                                   log x  c
      5 5x                          5
      1
    log 5 x  c
      5

        4x 1        order numerator  order denominator
 v         dx
                             polynomial division
        2x 1
    2  1  dx                           2
        2 x  1                 2x 1 4x 1
                                         4x  2
                                             1
1
iv   dx                OR         1 1
                                        x dx
        5x                           5
      1 5
     dx                             1
                                     log x  c
      5 5x                            5
      1
    log 5 x  c
      5

        4x 1            order numerator  order denominator
 v         dx
                                 polynomial division
        2x 1
    2  1  dx                                 2
        2 x  1                     2x 1 4x 1
           1                                  4x  2
    2 x  log2 x  1  c
           2                                      1
2
            2x
vi     x 2  1dx
        1
2
            2x
vi     x 2  1dx
        1


    logx  11
              2       2
2
            2x
vi     x 2  1dx
        1


    logx  11
              2       2



    log 5  log 2
2
            2x
vi     x 2  1dx
        1


    logx  11
              2       2



    log 5  log 2

    log 
         5
         
        2
2
vi        2x
         x 2  1dx       vii  Differentiate x 3 log x and hence
        1
                                integrate x 2 log x
    logx  11
              2       2



    log 5  log 2

    log 
         5
         
        2
2
vi        2x
         x 2  1dx       vii  Differentiate x 3 log x and hence
        1
                                integrate x 2 log x
    logx  11
                      2

                                  x log x  x    log x 3x 2 
                                                 3 1
              2
                               d 3
                               dx                   x
    log 5  log 2

    log 
         5
         
        2
2
vi        2x
         x 2  1dx       vii  Differentiate x 3 log x and hence
        1
                                integrate x 2 log x
    logx  11
                      2

                                  x log x  x    log x 3x 2 
                                                  3 1
              2
                               d 3
                               dx                    x
    log 5  log 2
                                              x 2  3 x 2 log x
    log 
         5
         
        2
2
vi        2x
         x 2  1dx       vii  Differentiate x 3 log x and hence
        1
                               integrate x 2 log x
    logx  11
                      2

                                 x log x  x    log x 3x 2 
                                                 3 1
              2
                              d 3
                              dx                    x
    log 5  log 2
                                             x 2  3 x 2 log x
    log 
         5
                                 x        3 x 2 log x dx  x 3 log x  c
                                     2
        2
2
vi        2x
         x 2  1dx       vii  Differentiate x 3 log x and hence
        1
                               integrate x 2 log x
    logx  11
                      2

                                 x log x  x    log x 3x 2 
                                                 3 1
              2
                              d 3
                              dx                    x
    log 5  log 2
                                             x 2  3 x 2 log x
    log 
         5
                                 x        3 x 2 log x dx  x 3 log x  c
                                     2
        2
                              3 x 2 log xdx  x 3 log x   x 2 dx  c
2
vi        2x
         x 2  1dx       vii  Differentiate x 3 log x and hence
        1
                               integrate x 2 log x
    logx  11
                      2

                                 x log x  x    log x 3x 2 
                                                 3 1
              2
                              d 3
                              dx                    x
    log 5  log 2
                                             x 2  3 x 2 log x
    log 
         5
                                 x        3 x 2 log x dx  x 3 log x  c
                                     2
        2
                              3 x 2 log xdx  x 3 log x   x 2 dx  c
                                             1 3         1 3
                                x log xdx  3 x log x  9 x  c
                                  2
2
vi        2x
         x 2  1dx       vii  Differentiate x 3 log x and hence
        1
                               integrate x 2 log x
    logx  11
                      2

                                 x log x  x    log x 3x 2 
                                                 3 1
              2
                              d 3
                              dx                    x
    log 5  log 2
                                             x 2  3 x 2 log x
    log 
         5
                                 x        3 x 2 log x dx  x 3 log x  c
                                     2
        2
                              3 x 2 log xdx  x 3 log x   x 2 dx  c
                                             1 3         1 3
                                x log xdx  3 x log x  9 x  c
                                  2




        Exercise 12D; 1 to 12 ace in all, 14a*

        Exercise 12E; 1 to 6 all, 7 to 21 odds, 22abc*, 23*

12X1 T01 03 integrating derivative on function

  • 1.
  • 2.
    Integrating Derivative on Function f  x   f x dx  log f  x   c
  • 3.
    Integrating Derivative on Function f  x   f x dx  log f  x   c 1 e.g. (i)  7  3x dx
  • 4.
    Integrating Derivative on Function f  x   f x dx  log f  x   c 1 e.g. (i)  7  3x dx 1 3   dx 3 7  3x
  • 5.
    Integrating Derivative on Function f  x   f x dx  log f  x   c 1 e.g. (i)  7  3x dx 1 3   dx 3 7  3x 1   log7  3 x   c 3
  • 6.
    Integrating Derivative on Function f  x   f x dx  log f  x   c 1 dx e.g. (i)  7  3x dx ii   8x  5 1 3   dx 3 7  3x 1   log7  3 x   c 3
  • 7.
    Integrating Derivative on Function f  x   f x dx  log f  x   c 1 dx e.g. (i)  7  3x dx ii  8x  5 1 3 1 8dx   dx   3 7  3x 8 8x  5 1   log7  3 x   c 3
  • 8.
    Integrating Derivative on Function f  x   f x dx  log f  x   c 1 dx e.g. (i)  7  3x dx ii  8x  5 1 3 1 8dx   dx   3 7  3x 8 8x  5 1 1   log7  3 x   c  log8 x  5  c 3 8
  • 9.
    Integrating Derivative on Function f  x   f x dx  log f  x   c e.g. (i)  1 dx ii   dx x5 iii   6 dx 7  3x 8x  5 x 2 1 3 1 8dx   dx   3 7  3x 8 8x  5 1 1   log7  3 x   c  log8 x  5  c 3 8
  • 10.
    Integrating Derivative on Function f  x   f x dx  log f  x   c e.g. (i)  1 dx ii   dx x5 iii   6 dx 7  3x 8x  5 x 2 1 3 1 8dx 1 6 x5   dx     6 dx 3 7  3x 8 8x  5 6 x 2 1 1   log7  3 x   c  log8 x  5  c 3 8
  • 11.
    Integrating Derivative on Function f  x   f x dx  log f  x   c e.g. (i)  1 dx ii   dx x5 iii   6 dx 7  3x 8x  5 x 2 1 3 1 8dx 1 6 x5   dx     6 dx 3 7  3x 8 8x  5 6 x 2  logx 6  2   c 1 1 1   log7  3 x   c  log8 x  5  c 3 8 6
  • 12.
  • 13.
    1 iv  dx 5x 1 5   dx 5 5x
  • 14.
    1 iv  dx 5x 1 5   dx 5 5x 1  log 5 x  c 5
  • 15.
    1 iv  dx OR 1 1  x dx 5x 5 1 5   dx 5 5x 1  log 5 x  c 5
  • 16.
    1 iv  dx OR 1 1  x dx 5x 5 1 5   dx 1  log x  c 5 5x 5 1  log 5 x  c 5
  • 17.
    1 iv  dx OR 1 1  x dx 5x 5 1 5   dx 1  log x  c 5 5x 5 1  log 5 x  c 5 4x 1 v   dx 2x 1
  • 18.
    1 iv  dx OR 1 1  x dx 5x 5 1 5   dx 1  log x  c 5 5x 5 1  log 5 x  c 5 4x 1 order numerator  order denominator v   dx 2x 1
  • 19.
    1 iv  dx OR 1 1  x dx 5x 5 1 5   dx 1  log x  c 5 5x 5 1  log 5 x  c 5 4x 1 order numerator  order denominator v   dx  polynomial division 2x 1
  • 20.
    1 iv  dx OR 1 1  x dx 5x 5 1 5   dx 1  log x  c 5 5x 5 1  log 5 x  c 5 4x 1 order numerator  order denominator v   dx  polynomial division 2x 1 2 2x 1 4x 1 4x  2 1
  • 21.
    1 iv  dx OR 1 1  x dx 5x 5 1 5   dx 1  log x  c 5 5x 5 1  log 5 x  c 5 4x 1 order numerator  order denominator v   dx  polynomial division 2x 1  2  1  dx 2  2 x  1 2x 1 4x 1 4x  2 1
  • 22.
    1 iv  dx OR 1 1  x dx 5x 5 1 5   dx 1  log x  c 5 5x 5 1  log 5 x  c 5 4x 1 order numerator  order denominator v   dx  polynomial division 2x 1  2  1  dx 2  2 x  1 2x 1 4x 1 1 4x  2  2 x  log2 x  1  c 2 1
  • 23.
    2 2x vi   x 2  1dx 1
  • 24.
    2 2x vi   x 2  1dx 1  logx  11 2 2
  • 25.
    2 2x vi   x 2  1dx 1  logx  11 2 2  log 5  log 2
  • 26.
    2 2x vi   x 2  1dx 1  logx  11 2 2  log 5  log 2  log  5   2
  • 27.
    2 vi  2x  x 2  1dx vii  Differentiate x 3 log x and hence 1 integrate x 2 log x  logx  11 2 2  log 5  log 2  log  5   2
  • 28.
    2 vi  2x  x 2  1dx vii  Differentiate x 3 log x and hence 1 integrate x 2 log x  logx  11 2 x log x  x    log x 3x 2  3 1 2 d 3 dx  x  log 5  log 2  log  5   2
  • 29.
    2 vi  2x  x 2  1dx vii  Differentiate x 3 log x and hence 1 integrate x 2 log x  logx  11 2 x log x  x    log x 3x 2  3 1 2 d 3 dx  x  log 5  log 2  x 2  3 x 2 log x  log  5   2
  • 30.
    2 vi  2x  x 2  1dx vii  Differentiate x 3 log x and hence 1 integrate x 2 log x  logx  11 2 x log x  x    log x 3x 2  3 1 2 d 3 dx  x  log 5  log 2  x 2  3 x 2 log x  log  5  x  3 x 2 log x dx  x 3 log x  c   2 2
  • 31.
    2 vi  2x  x 2  1dx vii  Differentiate x 3 log x and hence 1 integrate x 2 log x  logx  11 2 x log x  x    log x 3x 2  3 1 2 d 3 dx  x  log 5  log 2  x 2  3 x 2 log x  log  5  x  3 x 2 log x dx  x 3 log x  c   2 2 3 x 2 log xdx  x 3 log x   x 2 dx  c
  • 32.
    2 vi  2x  x 2  1dx vii  Differentiate x 3 log x and hence 1 integrate x 2 log x  logx  11 2 x log x  x    log x 3x 2  3 1 2 d 3 dx  x  log 5  log 2  x 2  3 x 2 log x  log  5  x  3 x 2 log x dx  x 3 log x  c   2 2 3 x 2 log xdx  x 3 log x   x 2 dx  c 1 3 1 3  x log xdx  3 x log x  9 x  c 2
  • 33.
    2 vi  2x  x 2  1dx vii  Differentiate x 3 log x and hence 1 integrate x 2 log x  logx  11 2 x log x  x    log x 3x 2  3 1 2 d 3 dx  x  log 5  log 2  x 2  3 x 2 log x  log  5  x  3 x 2 log x dx  x 3 log x  c   2 2 3 x 2 log xdx  x 3 log x   x 2 dx  c 1 3 1 3  x log xdx  3 x log x  9 x  c 2 Exercise 12D; 1 to 12 ace in all, 14a* Exercise 12E; 1 to 6 all, 7 to 21 odds, 22abc*, 23*