SlideShare a Scribd company logo
http://www.maths.net.au/                                                            2010 Mathematics HSC Solutions



                   2010 Mathematics HSC Solutions 
 Question 1                                           (b)        x 2  x  12  0
 (a)                                                        ( x  4)( x  3)  0
        x2  4x  0
                                                                       y
       x( x  4)  0
       x  0 or x  4  0
                                                             –3                4
                     x4                                                            x


 (b)      1    52   52
                                                          3  x  4
         52   52   54
                            2 5                     (c) y  ln  3x 
                                                            dy 3
       a  2       and b  1                                 
                                                            dx 3x
 (c) ( x  1) 2  ( y  2) 2  25                               1
                                                              
                                                                x
 (d) 2 x  3  9                                                                1
                                                            at x  2, m 
                                                                                2
       2x  3  9     or    (2 x  3)  9
                                                                               2 3
                                                      (d) (i)  5 x  1 dx        5  5 x  1 2 dx
                                                                                                   1

           2x  6               2 x  3  9                  
                                                                            3 5 2
              x3                   2 x  12                                 2
                                                                                  5 x  1  c
                                                                                           3
                                                                           
                                      x  6                                 15

       d 2                                                           x        1      2x
 (e)      x tan x  tan x (2 x)  x 2 (sec 2 x)             (ii) 
                                                                         dx            dx
       dx                                                         4 x 2
                                                                              2  4  x2
                   x(2 tan x  x sec2 x)                                     1
                                                                              ln  4  x 2   c
                                                                              2
             a
 (f) s 
                                                      (e)    6
            1 r
             1
                                                              x  k  dx  30
                                                             0
                                                              x2     
                                                                           6
            1 1
               3
                                                               2  kx   30
              3                                                       0
          
              2                                                    62
                                                                       6k  30
                                                                   2
 (g) x  8                                                              6k  12
 Question 2                                                              k 2
                                                      Question 3
       d cos x x( sin x)  cos x(1)
 (a)                                                              2  12 4  6 
       dx x                x2                         (a) (i) M          ,       
                 x sin x  cos x                                  2         2 
                                                                 5, 1
                        x2


                                                  1
http://www.maths.net.au/                                                                          2010 Mathematics HSC Solutions


                     86                                                   3                   1
      (ii) mBC                                                               ln x dx           0  2 ln 2  ln 3
                     6  12                                             1                      2
                       1                                                                      1.24 (2 d.p.)
                    
                       3
                                                                (iii) The approximation using the
                   2 1                                               trapezoidal rule is less than the
      (iii) mMN 
                   25                                                actual value of the integral, because
                    1                                                 the shaded area of the trapeziums,
                 
                     3                                                is less than the actual area below
            since mBC  mMN ,                                         the curve.
             BC || MN
                                                                                   y
             Corresponding angles on parallel                                  2
             lines are equal, so
             ACB  ANM                                                       1
             ABC  AMN
              ABC ||| AMN (equiangular)
                                                                                              1        2    3     4 x
                          1
      (iv)       y  2    x  2
                          3                                                 -1
                3y  6  x  2
                                                            Question 4
             x  3y  8  0
                                                            (a) (i) Forms an AP, a  1 , d  0.75
                                                                    Tn  1  (n  1)  0.75
                        12  6    6  8
                                    2             2
      (v) BC 
                                                                      Tn  0.25  0.75n
                  2 10
                                                                      T9  0.25  0.75  9
                 1                                                    T9  7 km
      (vi) Area  bh
                 2                                                    Susannah runs 7 km in the 9th week
                 1                                              (ii) Tn  0.25  0.75n
             44  2 10h
                 2                                                    10  0.25  0.75n
                 22 10                                                n  13
              h
                   5                                                  In the 13th week.

 (b) (i)            y
                                                                (iii) S 26            26
                                                                                        2    2 1   26  1  0.75
                3                                                                269.75 km
                2                                                                  2
                                                                       
                1                                           (b) Area    e 2 x  e x  dx
                                                                       0
               -1       1       2       3   4    5 x                                               2
               -2                                                        e2 x        
                                                                              e x 
               -3                                                        2           0
               -4
               -5                                                         e4        e0    
                                                                          e 2     e0 
      (ii)      x           1         2           3                      2         2      
                            0       ln(2)       ln(3)                           2
               f(x)                                                      e  2e  3
                                                                           4
                                                                       
                                                                              2

                                                        2
http://www.maths.net.au/                                                              2010 Mathematics HSC Solutions



 (c) (i) P (2 mint) 
                              4 3                                     4 r 3  20  0
                                
                             12 11                                     r3  5  0
                              1
                                                                               5
                             11                                       r    3
                                                                                
                              1 1 1
      (ii) P (2same)                                               d2A        60
                             11 11 11                                       4  3
                                                                         2
                              3                                       dr          r
                           
                             11                                                  5
                                                                      when r  3 ,
                                                                                     
                                         3                              2
                                                                      d A
      (iii) P (2 different)  1                                            16  0,  c.c.up,
                                        11                            dr 2
                                   8                                                                           5
                                                                      local minimum at r              3
                                   11                                                                        




 (d) f  x   f   x   1  e x 1  e  x 

                            1  e x  e x  1                                                     1      1 sin x
                                         x                  (b) (i) sec2 x  sec x tan x               
                           2e e x
                                                                                                 cos 2 x cos x cos x
       f  x   f   x   1  e x   1  e  x                                          
                                                                                                 1  sin x
                                                                                                  cos 2 x
                            2  e x  e x

                                                                                                 1  sin x
 Question 5                                                      (ii) sec2 x  sec x tan x 
                                                                                                  cos 2 x
                                                                                                 1  sin x
 (a) (i)    V   r 2h                                                                         
                                                                                                 1  sin 2 x
            10   r 2 h                                                                                1  sin x
                                                                                               
                  10                                                                             1  sin x 1  sin x 
             h 2
                 r                                                                                    1
                                                                                               
                                                                                                   1  sin x
            A  2 r 2  2 rh
                                10 
                2 r 2  2 r  2                                             
                                                                                  1
                                                                 (iii) I  
                                                                             4

                               r                                                    dx
                                                                           0 1  sin x
                          20
                2 r 2 
                                                                                
                                                                          4
                           r                                               sec 2 x  sec x tan x  dx
                                                                          0
                                                                          tan x  sec x 0
                                                                                           
      (ii) dA          20                                                                  4

                4 r  2
            dr         r                                                                             
               dA                                                         tan  sec    tan 0  sec 0 
           let     0 to find stationary points                               4     4                  
               dr
                                                                         1 2 1
                                                                         2

                                                         3
http://www.maths.net.au/                                                      2010 Mathematics HSC Solutions


                    1 1
                                                        (iii)
            A1   dx
 (c)                                                                              y
                 
                 a x
             1   ln x a
                          1
                                                                             8
             1  ln 1  ln  a 
                                                                       –2
       ln  a   1                                                                         x
                  1
            a
                  e                                 (b) (i) l  r
                                                            9  5
                  b
                    1
           A2   dx
                                                                 1.8
                1 x
             1   ln x 1
                          b                             (ii) In OPT and OQT
                                                             OP = OQ (equal radii of 5 cm)
             1  ln  b   ln 1                           OPT = OQT (both right angles)
       ln  b   1                                          OT is a common line
                                                             OPT  OQT (RHS)
            be
                                                        (iii) POT  1 POQ
 Question 6                                                          2

                                                                        0.9
 (a) (i)     f ( x)  ( x  2)( x  4)
                                  2
                                                                           PT
                                                                tan(0.9) 
             f ( x)  x3  2 x 2  4 x  8                                  5
                                                                PT  5 tan(0.9)
             f ( x)  3 x 2  4 x  4                       PT  6.3 cm (1 d.p.)
                                                                       
                                                        (iv) PTQ    1.8  2
            Consider the discriminate,                                2 2
              42  4(3)(4)                                  (angle sum of a quadrilateral is 2 )
               32
                                                                PTQ  1.34
            Therefore there are no zeros, and                         1
                                                                Area  (6.3) 2 sin(1.34)
            hence, no stationary points. (the                         2
            derivative function is positive                               1                       
            definite)                                                     (5) 2 (1.8  sin(1.8)) 
                                                                          2                       
       (ii) f ( x )  6 x  4                                         9 cm 2

                                                    Question 7
            The graph is concave down when
            6x  4  0
                                                    (a) (i) x   4 cos 2t dt
                                                            
                 2
            x
                 3                                                 2sin 2t  c
            The graph is concave up when
                 2                                              when t = 0, x  1 ,
                                                                             
            x                                                 1  2sin 2(0)  c
                 3
                                                                c 1

                                                                 x  2sin 2t  1
                                                                  


                                                4
http://www.maths.net.au/                                                                2010 Mathematics HSC Solutions


      (ii) at x  0
                                                                                    1     
           0  2sin 2t  1                                           T is the point  , 2  .
                                                                                     2     
                      1                                             mBT  4
           sin 2t  
                      2                                             Eqn BT: y  4  4( x  2)
                                                                            y  4x  4
              2t  
                       6
                     13                                           Since this line is not vertical, if there
              t          ,
                    12 12                                           is one simultaneous solution between
                                                                    this line and the parabola, it is a
              Therefore, the first time it will be at               tangent. So, sub y  4 x  4 into
                             13                                     y  x2
              rest is at t =      3.4 s
                              12                                    4 x  4  x2
      (iii) x  2sin 2t  1 dt                                       x2  4 x  4  0
               
                                                                     x  2
                                                                               2
                                                                                   0
                  cos 2t  t  c
                                                                    x2
              at t = 0, x = 0                                        BT is a tangent to the parabola
              0   cos 2(0)  0  c
         c 1
         x   cos 2t  t  1
          dy                                                Question 8
 (b) (i)      2x
          dx
         at x = –1, m = –2                                  (a) P  Ae kt
                                                                P  102e kt
              y  1  2( x  1)
                                                                when t = 75, P = 200 000 000
              2x  y 1  0                                     200000000  102e 75 k
                                                                k  0.22
      (ii) M   , 
                   1 5
                       
                 2 2                                          P  102e0.22t
            mAB  1
                                                                P  102e0.22(100)
           so, to find the x-value on the curve,
           where the tangent is 1, let 2x = 1.                  P  539 311 817 787
                                     1 1                       P  539 billion
           Therefore the point C is  ,  .
                                     2 4                  (b) P ( HH )  0.36
           Since the x-values of M and C are                     P ( H )  0.6
           the same, then the line MC will be                    P (T )  0.4
           vertical.
                                                                 P (TT )  0.16
              x–coordinate of T is 0.5.                     (c) (i) A  4 (amplitude)
      (iii)
              2x  y 1  0                                            2
                                                                (ii) T 
                 1                                                      b
              2  y 1  0                                            2
                 2                                                  
              y  2                                                    b
                                                                    b2

                                                        5
http://www.maths.net.au/                                                                    2010 Mathematics HSC Solutions


      (iii)        y                                         (ii)1      A1  P (1  0.005)1  2000
                                                                                P (1.005)1  2000
               4
               3                                                        A2  A1 (1.005)1  2000
               2                                                                 P (1.005)1  2000  (1.005)1  2000
                                                                                                    
               1
                                                                                P (1.005) 2  2000(1  1.005)
                                                 x                      A3  A2 (1.005)1  2000
              -1                          
              -2                    2                                            P (1.005) 2  2000(1  1.005)  (1.005)1  2000
                                                                                                                
              -3
                                                                                P (1.005)3  2000(1  1.005  1.0052 )
              -4
                                                                               
 (d) f  x   x3  3 x 2  kx  8                                      An  P (1.005) n  2000(1  1.005    1.005n 1 )

       f   x   3x 2  6 x  k                                               P (1.005n )  2000 
                                                                                                     1(1.005n  1)
                                                                                                       1.005  1
                                                                                P (1.005n )  400 000  (1.005n  1)
      For an increasing function f   x   0 ,                                P (1.005n )  400 000 1.005n  400 000
                                                                                ( P  400 000) 1.005n  400 000
      i.e. 3 x 2  6 x  k  0

      Consider the graph of y  3 x 2  6 x with                   2           An  ( P  400 000) 1.005n  400 000
                                                                            0  (232 175.55  400 000) 1.005n  400 000
      x-intercepts at 0 and 2. Vertex at x = 1,                                  400 000
                                                                       1.005n 
      y = –3.  if k  3 , f   x  is positive                                167824.45
                                                                            n  log1.005 (2.38)
      definite and hence f  x  is an                                                log10 2.38
                                                                                n
                                                                                     log10 1.005
      increasing function.
                                                                                n  174.1
 Question 9

 (a) (i) A1  500(1  0.005) 240                                       Thus there will be money in the
                                                                       account for the next 175 months
           A2  500(1  0.005) 239
          .                                              (b) (i)       0 x2
          .
          .                                                  (ii) The maximum occurs at x = 2,
                                                                           2
           A240  500(1  0.005)1
                                                                              f   x  dx  4
                                                                        0

                                                                       f  2  f  0  4
           A  A1  A2    A240
                                                                       f  2  4
               500(1.005  1.0052  
                                                                       The maximum value is f  x   4
                        1.005239  1.005240 )
                   1.005(1.005240  1)                       (iii) f  6   f  4 
               500
                        1.005  1                                          4
               $232 175.55                                                   f   x  dx  4
                                                                        2

                                                                       f  4   f  2   4
                                                                       f  4   4  4
                                                                       f  4  0
                                                                       The gradient is –3, so f  6   6




                                                     6
http://www.maths.net.au/                                                                2010 Mathematics HSC Solutions


      (iv)     4
                                                            y  a (1  2 cos  )
                                                             y  a (1  2(1))
                            2    4           6               y  3a
                                                                      OA
                                                     (b) (i) sin  
                                                                       r
                                                             OA  r sin 
             –6                                                     r
                                                            V             y 2 dx
                                                                   r sin 

 Question 10
                                                                             r        x 2  dx
                                                                    r
                                                                               2
                                                                   r sin 

 (a) (i)In ACD, DAC and DCA =                                         x3 
                                                                                         r

                                                                r 2 x  
        90  1  ( sum of )
             2                                                           3  r sin 
                                                                         r3               r 3 sin 3       
        CDB = 180   (suppl. angles)                           r 3     r 3 sin                     
                                                                         3                     3           
        DBC = 90  1  (ABC is isosc.)
                    2
                                                                r 3
        DCB = 90  3  ( sum of )
                     2                                        
                                                                 3
                                                                      2  3sin   sin 3  
        ACB = DCB + DCA = 
                                                     (ii) 1 Initial depth = r. So, find  , to give
        In ABC and ACD,                                   depth 1 r. From the diagram,
        ACB = ADC (both  )
                                                                    2

                                                                            r
        DAC = DBC (both 90  1  )
                               2                            OA  r sin  
                                                                            2
         ABC ||| ACD (equiangular)                                 1
                                                            sin  
                   AD DC a                                            2
        also note                                               30
                   AC CB x
     (ii) orresponding sides of similar
        C
        triangles are in the same proportion.                                  r3 
                                                                                3 1
                                                                          2  
            AD AC                                                       3      2 8
                                                       2 Fraction 
            AC AB                                                           2 r 3
         a     x                                                              3
           
         x a y                                                        5
                                                                    
         a (a  y )  x 2                                             16
         x 2  a 2  ay

     (iii n ACD, by the cosine rule
        I
         x 2  a 2  a 2  2a 2 cos 
         a 2  ay  a 2  a 2  2a 2 cos 
         ay  a 2  2a 2 cos 
         y  a  2a cos 
        y  a (1  2 cos  )
     (ivTo get the maximum value of y, cos 
        must take its minimum value, of –1.

                                                 7

More Related Content

Similar to 2010 mathematics hsc solutions

BBMP1103 - Sept 2011 exam workshop - part 4
BBMP1103 - Sept 2011 exam workshop - part 4BBMP1103 - Sept 2011 exam workshop - part 4
BBMP1103 - Sept 2011 exam workshop - part 4
Richard Ng
 
Solving volumes using cross sectional areas
Solving volumes using cross sectional areasSolving volumes using cross sectional areas
Solving volumes using cross sectional areas
gregcross22
 
Mathematics
MathematicsMathematics
Mathematics
Rapson Pyakurel
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
Lily Maryati
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
Chalio Solano
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
Nigel Simmons
 
11X1 T09 03 second derivative
11X1 T09 03 second derivative11X1 T09 03 second derivative
11X1 T09 03 second derivative
Nigel Simmons
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equations
Erik Tjersland
 
Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercises
paufong
 
1-1 Algebra Review HW
1-1 Algebra Review HW1-1 Algebra Review HW
1-1 Algebra Review HW
nechamkin
 
Alg.Pr10.4 B
Alg.Pr10.4 BAlg.Pr10.4 B
Alg.Pr10.4 B
Linda Horst
 
Algebra: Practice 10.5B
Algebra: Practice 10.5BAlgebra: Practice 10.5B
Algebra: Practice 10.5B
Linda Horst
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
ramiz100111
 
PMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic FractionsPMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic Fractions
Sook Yen Wong
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
Nigel Simmons
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
Nigel Simmons
 
Day 3 subtracting polynomials
Day 3 subtracting polynomialsDay 3 subtracting polynomials
Day 3 subtracting polynomials
Erik Tjersland
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)
Nigel Simmons
 
11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)
Nigel Simmons
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)
Nigel Simmons
 

Similar to 2010 mathematics hsc solutions (20)

BBMP1103 - Sept 2011 exam workshop - part 4
BBMP1103 - Sept 2011 exam workshop - part 4BBMP1103 - Sept 2011 exam workshop - part 4
BBMP1103 - Sept 2011 exam workshop - part 4
 
Solving volumes using cross sectional areas
Solving volumes using cross sectional areasSolving volumes using cross sectional areas
Solving volumes using cross sectional areas
 
Mathematics
MathematicsMathematics
Mathematics
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
11X1 T09 03 second derivative
11X1 T09 03 second derivative11X1 T09 03 second derivative
11X1 T09 03 second derivative
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equations
 
Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercises
 
1-1 Algebra Review HW
1-1 Algebra Review HW1-1 Algebra Review HW
1-1 Algebra Review HW
 
Alg.Pr10.4 B
Alg.Pr10.4 BAlg.Pr10.4 B
Alg.Pr10.4 B
 
Algebra: Practice 10.5B
Algebra: Practice 10.5BAlgebra: Practice 10.5B
Algebra: Practice 10.5B
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
 
PMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic FractionsPMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic Fractions
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
 
Day 3 subtracting polynomials
Day 3 subtracting polynomialsDay 3 subtracting polynomials
Day 3 subtracting polynomials
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)
 
11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)
 

More from jharnwell

Ict in maths presentation for my favourite lesson
Ict in maths presentation   for my favourite lessonIct in maths presentation   for my favourite lesson
Ict in maths presentation for my favourite lesson
jharnwell
 
Technology in Mathematics
Technology in MathematicsTechnology in Mathematics
Technology in Mathematics
jharnwell
 
Tech toolbox for teachers
Tech toolbox for teachersTech toolbox for teachers
Tech toolbox for teachers
jharnwell
 
Fantastic trip
Fantastic tripFantastic trip
Fantastic trip
jharnwell
 
Draft nsw maths syllabus
Draft nsw maths syllabusDraft nsw maths syllabus
Draft nsw maths syllabus
jharnwell
 
Scootle presentation
Scootle presentationScootle presentation
Scootle presentation
jharnwell
 
2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutions2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutions
jharnwell
 
2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutions2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutions
jharnwell
 
2010 mathematics school certificate solutions
2010 mathematics school certificate solutions2010 mathematics school certificate solutions
2010 mathematics school certificate solutions
jharnwell
 
Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011
jharnwell
 

More from jharnwell (10)

Ict in maths presentation for my favourite lesson
Ict in maths presentation   for my favourite lessonIct in maths presentation   for my favourite lesson
Ict in maths presentation for my favourite lesson
 
Technology in Mathematics
Technology in MathematicsTechnology in Mathematics
Technology in Mathematics
 
Tech toolbox for teachers
Tech toolbox for teachersTech toolbox for teachers
Tech toolbox for teachers
 
Fantastic trip
Fantastic tripFantastic trip
Fantastic trip
 
Draft nsw maths syllabus
Draft nsw maths syllabusDraft nsw maths syllabus
Draft nsw maths syllabus
 
Scootle presentation
Scootle presentationScootle presentation
Scootle presentation
 
2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutions2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutions
 
2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutions2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutions
 
2010 mathematics school certificate solutions
2010 mathematics school certificate solutions2010 mathematics school certificate solutions
2010 mathematics school certificate solutions
 
Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011
 

Recently uploaded

CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
Top five deadliest dog breeds in America
Top five deadliest dog breeds in AmericaTop five deadliest dog breeds in America
Top five deadliest dog breeds in America
Bisnar Chase Personal Injury Attorneys
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
David Douglas School District
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
heathfieldcps1
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
amberjdewit93
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
Nguyen Thanh Tu Collection
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
National Information Standards Organization (NISO)
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
Celine George
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
Assessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptxAssessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptx
Kavitha Krishnan
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
WaniBasim
 

Recently uploaded (20)

CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
Top five deadliest dog breeds in America
Top five deadliest dog breeds in AmericaTop five deadliest dog breeds in America
Top five deadliest dog breeds in America
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
Assessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptxAssessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptx
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
 

2010 mathematics hsc solutions

  • 1. http://www.maths.net.au/ 2010 Mathematics HSC Solutions 2010 Mathematics HSC Solutions  Question 1 (b) x 2  x  12  0 (a) ( x  4)( x  3)  0 x2  4x  0 y x( x  4)  0 x  0 or x  4  0 –3 4 x4 x (b) 1 52 52   3  x  4 52 52 54  2 5 (c) y  ln  3x  dy 3 a  2 and b  1  dx 3x (c) ( x  1) 2  ( y  2) 2  25 1  x (d) 2 x  3  9 1 at x  2, m  2 2x  3  9 or (2 x  3)  9 2 3 (d) (i)  5 x  1 dx    5  5 x  1 2 dx 1 2x  6 2 x  3  9   3 5 2 x3 2 x  12 2  5 x  1  c 3  x  6 15 d 2 x 1 2x (e) x tan x  tan x (2 x)  x 2 (sec 2 x) (ii)   dx   dx dx  4 x 2 2  4  x2  x(2 tan x  x sec2 x) 1  ln  4  x 2   c 2 a (f) s  (e) 6 1 r 1   x  k  dx  30 0   x2  6 1 1 3  2  kx   30 3  0  2 62  6k  30 2 (g) x  8 6k  12 Question 2 k 2 Question 3 d cos x x( sin x)  cos x(1) (a)   2  12 4  6  dx x x2 (a) (i) M   ,   x sin x  cos x  2 2     5, 1 x2 1
  • 2. http://www.maths.net.au/ 2010 Mathematics HSC Solutions 86 3 1 (ii) mBC   ln x dx   0  2 ln 2  ln 3 6  12 1 2 1  1.24 (2 d.p.)  3 (iii) The approximation using the 2 1 trapezoidal rule is less than the (iii) mMN  25 actual value of the integral, because 1 the shaded area of the trapeziums,  3 is less than the actual area below since mBC  mMN , the curve. BC || MN y Corresponding angles on parallel 2 lines are equal, so ACB  ANM 1 ABC  AMN  ABC ||| AMN (equiangular) 1 2 3 4 x 1 (iv) y  2    x  2 3 -1 3y  6  x  2 Question 4 x  3y  8  0 (a) (i) Forms an AP, a  1 , d  0.75 Tn  1  (n  1)  0.75 12  6    6  8 2 2 (v) BC  Tn  0.25  0.75n  2 10 T9  0.25  0.75  9 1 T9  7 km (vi) Area  bh 2 Susannah runs 7 km in the 9th week 1 (ii) Tn  0.25  0.75n 44  2 10h 2 10  0.25  0.75n 22 10 n  13 h 5 In the 13th week. (b) (i) y (iii) S 26  26 2  2 1   26  1  0.75 3  269.75 km 2 2  1 (b) Area    e 2 x  e x  dx 0 -1 1 2 3 4 5 x 2 -2  e2 x    e x  -3  2 0 -4 -5  e4   e0     e 2     e0  (ii) x 1 2 3 2  2  0 ln(2) ln(3) 2 f(x) e  2e  3 4  2 2
  • 3. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (c) (i) P (2 mint)  4 3 4 r 3  20  0  12 11  r3  5  0 1  5 11 r 3  1 1 1 (ii) P (2same)    d2A 60 11 11 11  4  3 2 3 dr r  11 5 when r  3 ,  3 2 d A (iii) P (2 different)  1   16  0,  c.c.up, 11 dr 2 8 5   local minimum at r  3 11  (d) f  x   f   x   1  e x 1  e  x   1  e x  e x  1 1 1 sin x x (b) (i) sec2 x  sec x tan x    2e e x cos 2 x cos x cos x f  x   f   x   1  e x   1  e  x   1  sin x cos 2 x  2  e x  e x 1  sin x Question 5 (ii) sec2 x  sec x tan x  cos 2 x 1  sin x (a) (i) V   r 2h  1  sin 2 x 10   r 2 h 1  sin x  10 1  sin x 1  sin x  h 2 r 1  1  sin x A  2 r 2  2 rh  10   2 r 2  2 r  2   1 (iii) I   4 r   dx 0 1  sin x 20  2 r 2   4 r    sec 2 x  sec x tan x  dx 0   tan x  sec x 0  (ii) dA 20 4  4 r  2 dr r      dA   tan  sec    tan 0  sec 0  let  0 to find stationary points  4 4   dr  1 2 1  2 3
  • 4. http://www.maths.net.au/ 2010 Mathematics HSC Solutions 1 1 (iii) A1   dx (c) y  a x 1   ln x a 1 8 1  ln 1  ln  a  –2 ln  a   1 x 1 a e (b) (i) l  r 9  5 b 1 A2   dx    1.8 1 x 1   ln x 1 b (ii) In OPT and OQT OP = OQ (equal radii of 5 cm) 1  ln  b   ln 1 OPT = OQT (both right angles) ln  b   1 OT is a common line OPT  OQT (RHS) be (iii) POT  1 POQ Question 6 2  0.9 (a) (i) f ( x)  ( x  2)( x  4) 2 PT tan(0.9)  f ( x)  x3  2 x 2  4 x  8 5 PT  5 tan(0.9) f ( x)  3 x 2  4 x  4 PT  6.3 cm (1 d.p.)   (iv) PTQ    1.8  2 Consider the discriminate, 2 2   42  4(3)(4) (angle sum of a quadrilateral is 2 )  32 PTQ  1.34 Therefore there are no zeros, and 1 Area  (6.3) 2 sin(1.34) hence, no stationary points. (the 2 derivative function is positive 1  definite)   (5) 2 (1.8  sin(1.8))  2  (ii) f ( x )  6 x  4  9 cm 2 Question 7 The graph is concave down when 6x  4  0 (a) (i) x   4 cos 2t dt  2 x 3  2sin 2t  c The graph is concave up when 2 when t = 0, x  1 ,  x 1  2sin 2(0)  c 3 c 1  x  2sin 2t  1  4
  • 5. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (ii) at x  0  1  0  2sin 2t  1  T is the point  , 2  . 2  1 mBT  4 sin 2t   2 Eqn BT: y  4  4( x  2)  y  4x  4 2t   6  13 Since this line is not vertical, if there t , 12 12 is one simultaneous solution between this line and the parabola, it is a Therefore, the first time it will be at tangent. So, sub y  4 x  4 into 13 y  x2 rest is at t =  3.4 s 12 4 x  4  x2 (iii) x  2sin 2t  1 dt x2  4 x  4  0   x  2 2 0   cos 2t  t  c x2 at t = 0, x = 0  BT is a tangent to the parabola 0   cos 2(0)  0  c c 1 x   cos 2t  t  1 dy Question 8 (b) (i)  2x dx at x = –1, m = –2 (a) P  Ae kt P  102e kt y  1  2( x  1) when t = 75, P = 200 000 000 2x  y 1  0 200000000  102e 75 k k  0.22 (ii) M   ,  1 5   2 2 P  102e0.22t mAB  1 P  102e0.22(100) so, to find the x-value on the curve, where the tangent is 1, let 2x = 1. P  539 311 817 787 1 1 P  539 billion Therefore the point C is  ,  . 2 4 (b) P ( HH )  0.36 Since the x-values of M and C are P ( H )  0.6 the same, then the line MC will be P (T )  0.4 vertical. P (TT )  0.16 x–coordinate of T is 0.5. (c) (i) A  4 (amplitude) (iii) 2x  y 1  0 2 (ii) T  1 b 2  y 1  0 2 2  y  2 b b2 5
  • 6. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (iii) y (ii)1 A1  P (1  0.005)1  2000  P (1.005)1  2000 4 3 A2  A1 (1.005)1  2000 2   P (1.005)1  2000  (1.005)1  2000   1  P (1.005) 2  2000(1  1.005) x A3  A2 (1.005)1  2000 -1   -2 2   P (1.005) 2  2000(1  1.005)  (1.005)1  2000   -3  P (1.005)3  2000(1  1.005  1.0052 ) -4  (d) f  x   x3  3 x 2  kx  8 An  P (1.005) n  2000(1  1.005    1.005n 1 ) f   x   3x 2  6 x  k  P (1.005n )  2000  1(1.005n  1) 1.005  1  P (1.005n )  400 000  (1.005n  1) For an increasing function f   x   0 ,  P (1.005n )  400 000 1.005n  400 000  ( P  400 000) 1.005n  400 000 i.e. 3 x 2  6 x  k  0 Consider the graph of y  3 x 2  6 x with 2 An  ( P  400 000) 1.005n  400 000 0  (232 175.55  400 000) 1.005n  400 000 x-intercepts at 0 and 2. Vertex at x = 1, 400 000 1.005n  y = –3.  if k  3 , f   x  is positive 167824.45 n  log1.005 (2.38) definite and hence f  x  is an log10 2.38 n log10 1.005 increasing function. n  174.1 Question 9 (a) (i) A1  500(1  0.005) 240 Thus there will be money in the account for the next 175 months A2  500(1  0.005) 239 . (b) (i) 0 x2 . . (ii) The maximum occurs at x = 2, 2 A240  500(1  0.005)1  f   x  dx  4 0 f  2  f  0  4 A  A1  A2    A240 f  2  4  500(1.005  1.0052   The maximum value is f  x   4  1.005239  1.005240 ) 1.005(1.005240  1) (iii) f  6   f  4   500 1.005  1 4  $232 175.55  f   x  dx  4 2 f  4   f  2   4 f  4   4  4 f  4  0 The gradient is –3, so f  6   6 6
  • 7. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (iv) 4 y  a (1  2 cos  ) y  a (1  2(1)) 2 4 6 y  3a OA (b) (i) sin   r OA  r sin  –6 r V  y 2 dx r sin  Question 10 r  x 2  dx r  2 r sin  (a) (i)In ACD, DAC and DCA =  x3  r   r 2 x   90  1  ( sum of ) 2  3  r sin   r3   r 3 sin 3   CDB = 180   (suppl. angles)    r 3     r 3 sin     3  3  DBC = 90  1  (ABC is isosc.) 2 r 3 DCB = 90  3  ( sum of ) 2  3  2  3sin   sin 3   ACB = DCB + DCA =  (ii) 1 Initial depth = r. So, find  , to give In ABC and ACD, depth 1 r. From the diagram, ACB = ADC (both  ) 2 r DAC = DBC (both 90  1  ) 2 OA  r sin   2  ABC ||| ACD (equiangular) 1 sin   AD DC a 2 also note     30 AC CB x (ii) orresponding sides of similar C triangles are in the same proportion.  r3  3 1 2   AD AC 3  2 8   2 Fraction  AC AB 2 r 3 a x 3  x a y 5  a (a  y )  x 2 16 x 2  a 2  ay (iii n ACD, by the cosine rule I x 2  a 2  a 2  2a 2 cos  a 2  ay  a 2  a 2  2a 2 cos  ay  a 2  2a 2 cos  y  a  2a cos  y  a (1  2 cos  ) (ivTo get the maximum value of y, cos  must take its minimum value, of –1. 7