SlideShare a Scribd company logo
Greatest Coefficients and
    Greatest Terms
Greatest Coefficients and
    Greatest Terms
     If Tk 1  Tk then Tk 1 is the greatest term
Greatest Coefficients and
       Greatest Terms
                  If Tk 1  Tk then Tk 1 is the greatest term

e.g . For the expansion 2  3 x  find the greatest coefficient
                                 20
Greatest Coefficients and
       Greatest Terms
                  If Tk 1  Tk then Tk 1 is the greatest term

e.g . For the expansion 2  3 x  find the greatest coefficient
                                 20


                         Tk 1  20Ck 2  3 x 
                                          20 k  k
Greatest Coefficients and
       Greatest Terms
                  If Tk 1  Tk then Tk 1 is the greatest term

e.g . For the expansion 2  3 x  find the greatest coefficient
                                  20


                         Tk 1  20Ck 2  3 x 
                                          20 k  k



                           Tk  20Ck 1 2        3x k 1
                                           21 k
Greatest Coefficients and
       Greatest Terms
                  If Tk 1  Tk then Tk 1 is the greatest term

e.g . For the expansion 2  3 x  find the greatest coefficient
                                  20


                         Tk 1  20Ck 2  3 x 
                                          20 k  k



                           Tk  20Ck 1 2        3x k 1
                                           21 k


    If Tk 1  Tk then Tk 1 is the greatest term
Greatest Coefficients and
       Greatest Terms
                  If Tk 1  Tk then Tk 1 is the greatest term

e.g . For the expansion 2  3 x  find the greatest coefficient
                                  20


                         Tk 1  20Ck 2  3 x 
                                          20 k  k



                           Tk  20Ck 1 2        3x k 1
                                           21 k


    If Tk 1  Tk then Tk 1 is the greatest term
                        Ck 2  3  20Ck 1 2  3
                     20        20 k  k           21k k 1
Greatest Coefficients and
       Greatest Terms
                  If Tk 1  Tk then Tk 1 is the greatest term

e.g . For the expansion 2  3 x  find the greatest coefficient
                                  20


                         Tk 1  20Ck 2  3 x 
                                          20 k  k



                           Tk  20Ck 1 2          3x k 1
                                             21 k


    If Tk 1  Tk then Tk 1 is the greatest term
                        Ck 2  3  20Ck 1 2  3
                     20        20 k  k           21k k 1


                     Ck 2  3
                  20       20k    k
                                        1
                    Ck 1 2  3
                 20           21k k 1
Ck 2  3
 20       20k   k
                       1
   Ck 1 2  3
20           21k k 1
Ck 2  3
      20       20k   k
                           1
       Ck 1 2  3
    20           21k k 1


    20!        k  1!21  k !  3 
                                       1
k!20  k !          20!           2
Ck 2  3
      20       20k   k
                           1
       Ck 1 2  3
    20           21k k 1


    20!        k  1!21  k !  3 
                                       1
k!20  k !          20!           2
                         21  k 3
                                  1
                           k        2
Ck 2  3
     20       20k   k
                           1
       Ck 1 2  3
    20           21k k 1


    20!        k  1!21  k !  3 
                                       1
k!20  k !          20!           2
                         21  k 3
                                  1
                           k        2
                            63  3k  2k
Ck 2  3
     20       20k   k
                           1
       Ck 1 2  3
    20           21k k 1


    20!        k  1!21  k !  3 
                                       1
k!20  k !          20!           2
                         21  k 3
                                  1
                           k        2
                            63  3k  2k
                                 5k  63
                                      63
                                 k
                                      5
Ck 2  3
     20       20k   k
                           1
       Ck 1 2  3
    20           21k k 1


    20!        k  1!21  k ! 3
                                 1
k!20  k !          20!          2
                         21  k 3
                                  1
                           k       2
                            63  3k  2k
                                 5k  63
                                       63
                                   k
                                       5
                                 k  12
Ck 2  3
     20       20k   k
                           1
       Ck 1 2  3
    20           21k k 1


    20!        k  1!21  k ! 3
                                 1
k!20  k !          20!          2
                         21  k 3
                                  1
                           k       2
                            63  3k  2k
                                 5k  63
                                       63
                                   k
                                       5
                                 k  12
               T13  20C12 28312 is the greatest coefficient
1
ii  Find the greatest term of 3x  4
                                       15
                                            when x 
                                                     2
1
ii  Find the greatest term of 3x  4 when x 
                                     15
                                          15k    2
                          Tk 1 15Ck   4 
                                        3     k
                                      
                                      2
1
ii  Find the greatest term of 3x  4 when x 
                                     15
                                          15k      2
                          Tk 1 15Ck   4  (Ignore the negative as only
                                        3     k
                                      
                                      2        concerned with magnitude)
1
ii  Find the greatest term of 3x  4 when x 
                                      15
                                           15k         2
                          Tk 1 15Ck   4  (Ignore the negative as only
                                        3        k
                                      
                                      2            concerned with magnitude)
                                             16k
                                         3  4 k 1
                            Tk  Ck 1  
                                 15

                                         2
1
ii  Find the greatest term of 3x  4 when x 
                                        15
                                           15k         2
                          Tk 1 15Ck   4  (Ignore the negative as only
                                        3        k
                                      
                                      2            concerned with magnitude)
                                             16k
                                         3  4 k 1
                            Tk  Ck 1  
                                 15

                                         2
   If Tk 1  Tk then Tk 1 is the greatest term
1
ii  Find the greatest term of 3x  4 when x 
                                        15
                                           15k         2
                          Tk 1 15Ck   4  (Ignore the negative as only
                                        3        k
                                      
                                      2            concerned with magnitude)
                                             16k
                                         3  4 k 1
                            Tk  Ck 1  
                                 15

                                         2
   If Tk 1  Tk then Tk 1 is the greatest term
                              15 k               16k

                      Ck   4  15Ck 1   4 
                           3        k          3     k 1
                                             
                   15

                         2                  2
1
ii  Find the greatest term of 3x  4 when x 
                                           15
                                           15k         2
                          Tk 1 15Ck   4  (Ignore the negative as only
                                        3        k
                                      
                                      2            concerned with magnitude)
                                             16k
                                         3  4 k 1
                            Tk  Ck 1  
                                 15

                                         2
   If Tk 1  Tk then Tk 1 is the greatest term
                              15 k               16k

                      Ck   4  15Ck 1   4 
                           3        k          3     k 1
                                             
                   15

                         2                  2
                         15 k

                  C k   4 
                         3       k
                        
                15

                        2           1
                            16k
              15        3  4 k 1
                 Ck 1  
                        2
1
ii  Find the greatest term of 3x  4 when x 
                                        15
                                           15k         2
                          Tk 1 15Ck   4  (Ignore the negative as only
                                        3        k
                                      
                                      2            concerned with magnitude)
                                             16k
                                         3  4 k 1
                            Tk  Ck 1  
                                 15

                                         2
   If Tk 1  Tk then Tk 1 is the greatest term
                              15 k               16k

                      Ck   4  15Ck 1   4 
                           3        k          3     k 1
                                             
                   15

                         2                  2
                         15 k

                  C k   4 
                         3          k
                        
                15

                        2            1
                            16k
              15        3  4 k 1
                 Ck 1  
                        2
               15!          k  1!16  k ! 4
                                              1
           k!15  k !            15!         3
                                               2
15!        k  1!16  k ! 4
                                 1
k!15  k !          15!         3
                                  2
15!        k  1!16  k ! 4
                                 1
k!15  k !          15!          3
                                   2
                          16  k 8
                                   1
                            k      3
15!        k  1!16  k ! 4
                                 1
k!15  k !          15!          3
                                   2
                          16  k 8
                                   1
                            k      3
                        128  8k  3k
15!        k  1!16  k ! 4
                                 1
k!15  k !          15!          3
                                   2
                          16  k 8
                                   1
                            k      3
                        128  8k  3k
                           11k  128
                                   128
                               k
                                    11
15!        k  1!16  k ! 4
                                 1
k!15  k !          15!          3
                                   2
                          16  k 8
                                   1
                            k      3
                        128  8k  3k
                           11k  128
                                   128
                               k
                                    11
                             k  11
15!        k  1!16  k ! 4
                                 1
k!15  k !          15!          3
                                   2
                          16  k 8
                                   1
                            k      3
                        128  8k  3k
                           11k  128
                                    128
                               k
                                     11
                             k  11
                                        4

                       T12 15C11   4
                                     3  11
                                   
                                    2
15!        k  1!16  k ! 4
                                 1
k!15  k !          15!          3
                                   2
                          16  k 8
                                   1
                            k      3
                        128  8k  3k
                           11k  128
                                    128
                               k
                                     11
                             k  11
                                        4

                       T12 15C11   4
                                     3  11
                                   
                                    2
               T12 15C11 34 218 is the greatest term
15!        k  1!16  k !  4 
                                       1
k!15  k !          15!           3
                                    2
                          16  k 8
                                    1
                            k       3
                          128  8k  3k          Exercise 5E; 1 to 5,
                             11k  128          6ac, 7bd, 8b, 10
                                      128
                                 k
                                       11
                               k  11
                                          4

                         T12 15C11   4
                                       3  11
                                     
                                      2
                 T12 15C11 34 218 is the greatest term

More Related Content

Viewers also liked

11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)
Nigel Simmons
 
11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)Nigel Simmons
 
11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)
Nigel Simmons
 
11 x1 t08 04 double angles (2013)
11 x1 t08 04 double angles (2013)11 x1 t08 04 double angles (2013)
11 x1 t08 04 double angles (2013)Nigel Simmons
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)
Nigel Simmons
 
11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)
Nigel Simmons
 
Geo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and TrianglesGeo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and Triangles
jtentinger
 
11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)Nigel Simmons
 
11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)
Nigel Simmons
 
11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)Nigel Simmons
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)Nigel Simmons
 
11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines
Nigel Simmons
 
11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)
Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 

Viewers also liked (14)

11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)
 
11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)
 
11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)
 
11 x1 t08 04 double angles (2013)
11 x1 t08 04 double angles (2013)11 x1 t08 04 double angles (2013)
11 x1 t08 04 double angles (2013)
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)
 
11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)
 
Geo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and TrianglesGeo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and Triangles
 
11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)
 
11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)
 
11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)
 
11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines
 
11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

More from Nigel Simmons

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

Level 3 NCEA - NZ: A Nation In the Making 1872 - 1900 SML.ppt
Level 3 NCEA - NZ: A  Nation In the Making 1872 - 1900 SML.pptLevel 3 NCEA - NZ: A  Nation In the Making 1872 - 1900 SML.ppt
Level 3 NCEA - NZ: A Nation In the Making 1872 - 1900 SML.ppt
Henry Hollis
 
Skimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S EliotSkimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S Eliot
nitinpv4ai
 
CIS 4200-02 Group 1 Final Project Report (1).pdf
CIS 4200-02 Group 1 Final Project Report (1).pdfCIS 4200-02 Group 1 Final Project Report (1).pdf
CIS 4200-02 Group 1 Final Project Report (1).pdf
blueshagoo1
 
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptxRESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
zuzanka
 
Pharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brubPharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brub
danielkiash986
 
Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"
National Information Standards Organization (NISO)
 
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptxBIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
RidwanHassanYusuf
 
Electric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger HuntElectric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger Hunt
RamseyBerglund
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Denish Jangid
 
Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47
MysoreMuleSoftMeetup
 
HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.
deepaannamalai16
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
Himanshu Rai
 
Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
Krassimira Luka
 
skeleton System.pdf (skeleton system wow)
skeleton System.pdf (skeleton system wow)skeleton System.pdf (skeleton system wow)
skeleton System.pdf (skeleton system wow)
Mohammad Al-Dhahabi
 
Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...
Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...
Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...
EduSkills OECD
 
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) CurriculumPhilippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
MJDuyan
 
Nutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour TrainingNutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour Training
melliereed
 
How Barcodes Can Be Leveraged Within Odoo 17
How Barcodes Can Be Leveraged Within Odoo 17How Barcodes Can Be Leveraged Within Odoo 17
How Barcodes Can Be Leveraged Within Odoo 17
Celine George
 
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
indexPub
 
Stack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 MicroprocessorStack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 Microprocessor
JomonJoseph58
 

Recently uploaded (20)

Level 3 NCEA - NZ: A Nation In the Making 1872 - 1900 SML.ppt
Level 3 NCEA - NZ: A  Nation In the Making 1872 - 1900 SML.pptLevel 3 NCEA - NZ: A  Nation In the Making 1872 - 1900 SML.ppt
Level 3 NCEA - NZ: A Nation In the Making 1872 - 1900 SML.ppt
 
Skimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S EliotSkimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S Eliot
 
CIS 4200-02 Group 1 Final Project Report (1).pdf
CIS 4200-02 Group 1 Final Project Report (1).pdfCIS 4200-02 Group 1 Final Project Report (1).pdf
CIS 4200-02 Group 1 Final Project Report (1).pdf
 
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptxRESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
 
Pharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brubPharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brub
 
Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"
 
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptxBIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
 
Electric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger HuntElectric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger Hunt
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
 
Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47
 
HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
 
Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
 
skeleton System.pdf (skeleton system wow)
skeleton System.pdf (skeleton system wow)skeleton System.pdf (skeleton system wow)
skeleton System.pdf (skeleton system wow)
 
Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...
Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...
Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...
 
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) CurriculumPhilippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
 
Nutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour TrainingNutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour Training
 
How Barcodes Can Be Leveraged Within Odoo 17
How Barcodes Can Be Leveraged Within Odoo 17How Barcodes Can Be Leveraged Within Odoo 17
How Barcodes Can Be Leveraged Within Odoo 17
 
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
 
Stack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 MicroprocessorStack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 Microprocessor
 

12 x1 t08 04 greatest coefficients & terms (2012)

  • 1. Greatest Coefficients and Greatest Terms
  • 2. Greatest Coefficients and Greatest Terms If Tk 1  Tk then Tk 1 is the greatest term
  • 3. Greatest Coefficients and Greatest Terms If Tk 1  Tk then Tk 1 is the greatest term e.g . For the expansion 2  3 x  find the greatest coefficient 20
  • 4. Greatest Coefficients and Greatest Terms If Tk 1  Tk then Tk 1 is the greatest term e.g . For the expansion 2  3 x  find the greatest coefficient 20 Tk 1  20Ck 2  3 x  20 k k
  • 5. Greatest Coefficients and Greatest Terms If Tk 1  Tk then Tk 1 is the greatest term e.g . For the expansion 2  3 x  find the greatest coefficient 20 Tk 1  20Ck 2  3 x  20 k k Tk  20Ck 1 2  3x k 1 21 k
  • 6. Greatest Coefficients and Greatest Terms If Tk 1  Tk then Tk 1 is the greatest term e.g . For the expansion 2  3 x  find the greatest coefficient 20 Tk 1  20Ck 2  3 x  20 k k Tk  20Ck 1 2  3x k 1 21 k If Tk 1  Tk then Tk 1 is the greatest term
  • 7. Greatest Coefficients and Greatest Terms If Tk 1  Tk then Tk 1 is the greatest term e.g . For the expansion 2  3 x  find the greatest coefficient 20 Tk 1  20Ck 2  3 x  20 k k Tk  20Ck 1 2  3x k 1 21 k If Tk 1  Tk then Tk 1 is the greatest term Ck 2  3  20Ck 1 2  3 20 20 k k 21k k 1
  • 8. Greatest Coefficients and Greatest Terms If Tk 1  Tk then Tk 1 is the greatest term e.g . For the expansion 2  3 x  find the greatest coefficient 20 Tk 1  20Ck 2  3 x  20 k k Tk  20Ck 1 2  3x k 1 21 k If Tk 1  Tk then Tk 1 is the greatest term Ck 2  3  20Ck 1 2  3 20 20 k k 21k k 1 Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1
  • 9. Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1
  • 10. Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1 20! k  1!21  k !  3   1 k!20  k ! 20! 2
  • 11. Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1 20! k  1!21  k !  3   1 k!20  k ! 20! 2 21  k 3  1 k 2
  • 12. Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1 20! k  1!21  k !  3   1 k!20  k ! 20! 2 21  k 3  1 k 2 63  3k  2k
  • 13. Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1 20! k  1!21  k !  3   1 k!20  k ! 20! 2 21  k 3  1 k 2 63  3k  2k  5k  63 63 k 5
  • 14. Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1 20! k  1!21  k ! 3   1 k!20  k ! 20! 2 21  k 3  1 k 2 63  3k  2k  5k  63 63 k 5 k  12
  • 15. Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1 20! k  1!21  k ! 3   1 k!20  k ! 20! 2 21  k 3  1 k 2 63  3k  2k  5k  63 63 k 5 k  12 T13  20C12 28312 is the greatest coefficient
  • 16. 1 ii  Find the greatest term of 3x  4 15 when x  2
  • 17. 1 ii  Find the greatest term of 3x  4 when x  15 15k 2 Tk 1 15Ck   4  3 k  2
  • 18. 1 ii  Find the greatest term of 3x  4 when x  15 15k 2 Tk 1 15Ck   4  (Ignore the negative as only 3 k  2 concerned with magnitude)
  • 19. 1 ii  Find the greatest term of 3x  4 when x  15 15k 2 Tk 1 15Ck   4  (Ignore the negative as only 3 k  2 concerned with magnitude) 16k  3  4 k 1 Tk  Ck 1   15  2
  • 20. 1 ii  Find the greatest term of 3x  4 when x  15 15k 2 Tk 1 15Ck   4  (Ignore the negative as only 3 k  2 concerned with magnitude) 16k  3  4 k 1 Tk  Ck 1   15  2 If Tk 1  Tk then Tk 1 is the greatest term
  • 21. 1 ii  Find the greatest term of 3x  4 when x  15 15k 2 Tk 1 15Ck   4  (Ignore the negative as only 3 k  2 concerned with magnitude) 16k  3  4 k 1 Tk  Ck 1   15  2 If Tk 1  Tk then Tk 1 is the greatest term 15 k 16k Ck   4  15Ck 1   4  3 k 3 k 1   15 2 2
  • 22. 1 ii  Find the greatest term of 3x  4 when x  15 15k 2 Tk 1 15Ck   4  (Ignore the negative as only 3 k  2 concerned with magnitude) 16k  3  4 k 1 Tk  Ck 1   15  2 If Tk 1  Tk then Tk 1 is the greatest term 15 k 16k Ck   4  15Ck 1   4  3 k 3 k 1   15 2 2 15 k C k   4  3 k   15  2 1 16k 15  3  4 k 1 Ck 1    2
  • 23. 1 ii  Find the greatest term of 3x  4 when x  15 15k 2 Tk 1 15Ck   4  (Ignore the negative as only 3 k  2 concerned with magnitude) 16k  3  4 k 1 Tk  Ck 1   15  2 If Tk 1  Tk then Tk 1 is the greatest term 15 k 16k Ck   4  15Ck 1   4  3 k 3 k 1   15 2 2 15 k C k   4  3 k   15  2 1 16k 15  3  4 k 1 Ck 1    2 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2
  • 24. 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2
  • 25. 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2 16  k 8  1 k 3
  • 26. 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2 16  k 8  1 k 3 128  8k  3k
  • 27. 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2 16  k 8  1 k 3 128  8k  3k  11k  128 128 k 11
  • 28. 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2 16  k 8  1 k 3 128  8k  3k  11k  128 128 k 11 k  11
  • 29. 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2 16  k 8  1 k 3 128  8k  3k  11k  128 128 k 11 k  11 4 T12 15C11   4 3  11   2
  • 30. 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2 16  k 8  1 k 3 128  8k  3k  11k  128 128 k 11 k  11 4 T12 15C11   4 3  11   2 T12 15C11 34 218 is the greatest term
  • 31. 15! k  1!16  k !  4   1 k!15  k ! 15! 3 2 16  k 8  1 k 3 128  8k  3k Exercise 5E; 1 to 5,  11k  128 6ac, 7bd, 8b, 10 128 k 11 k  11 4 T12 15C11   4 3  11   2 T12 15C11 34 218 is the greatest term