SlideShare a Scribd company logo
1 of 15
Download to read offline
The Primitive Function
The Primitive Function
If we know the equation of the tangent, how do we find the original
curve?
The Primitive Function
If we know the equation of the tangent, how do we find the original
curve?

             If f  x   x n , then the primitive function is;
                                      x n1
                              f x        c
                                      n 1
The Primitive Function
If we know the equation of the tangent, how do we find the original
curve?

                 If f  x   x n , then the primitive function is;
                                          x n1
                                  f x        c
                                          n 1

 e.g. i  f  x   3x 4
The Primitive Function
If we know the equation of the tangent, how do we find the original
curve?

                 If f  x   x n , then the primitive function is;
                                          x n1
                                  f x        c
                                          n 1

 e.g. i  f  x   3x 4
                    3x 5
            f x       c
                     5
The Primitive Function
If we know the equation of the tangent, how do we find the original
curve?

                 If f  x   x n , then the primitive function is;
                                           x n1
                                   f x        c
                                           n 1

 e.g. i  f  x   3x 4
                    3x 5
            f x       c
                     5
      ii  f  x   6 x3  5x 2  x  2
The Primitive Function
If we know the equation of the tangent, how do we find the original
curve?

                 If f  x   x n , then the primitive function is;
                                           x n1
                                   f x        c
                                           n 1

 e.g. i  f  x   3x 4
                    3x 5
            f x       c
                     5
      ii  f  x   6 x3  5x 2  x  2
                    6 x 4 5x3 x 2
            f x            2x  c
                     4     3  2
The Primitive Function
If we know the equation of the tangent, how do we find the original
curve?

                 If f  x   x n , then the primitive function is;
                                           x n1
                                   f x        c
                                           n 1

 e.g. i  f  x   3x 4
                    3x 5
            f x       c
                     5
      ii  f  x   6 x3  5x 2  x  2
                   6 x 4 5x3 x 2
           f x             2x  c
                     4     3  2
                   3 4 5 3 1 2
           f x  x  x  x  2x  c
                   2      3   2
(iii) Find the equation of the curve which passes through (1,1) and has
      a gradient function of 2x + 3
(iii) Find the equation of the curve which passes through (1,1) and has
      a gradient function of 2x + 3

     dy
         2x  3
     dx
(iii) Find the equation of the curve which passes through (1,1) and has
      a gradient function of 2x + 3

     dy
         2x  3
     dx
      y  x 2  3x  c
(iii) Find the equation of the curve which passes through (1,1) and has
      a gradient function of 2x + 3

     dy
         2x  3
     dx
      y  x 2  3x  c

      when x = 1, y = 1
(iii) Find the equation of the curve which passes through (1,1) and has
      a gradient function of 2x + 3

     dy
         2x  3
     dx
      y  x 2  3x  c

      when x = 1, y = 1
          i.e. 1  12  3  c
              c  3
(iii) Find the equation of the curve which passes through (1,1) and has
      a gradient function of 2x + 3

     dy
         2x  3
     dx
      y  x 2  3x  c

      when x = 1, y = 1
         i.e. 1  12  3  c
             c  3
      y  x 2  3x  3
(iii) Find the equation of the curve which passes through (1,1) and has
      a gradient function of 2x + 3

     dy
         2x  3
     dx
      y  x 2  3x  c

      when x = 1, y = 1
         i.e. 1  12  3  c
             c  3
      y  x 2  3x  3



        Exercise 10J; 1ace etc, 2bdf, 3aceg, 4bd, 5b, 7ac, 8bdf
                    9ace, 10b, 12bd, 14a, 15, 17a

More Related Content

What's hot (11)

Unification and Lifting
Unification and LiftingUnification and Lifting
Unification and Lifting
 
First Order Logic resolution
First Order Logic resolutionFirst Order Logic resolution
First Order Logic resolution
 
RSA Cryptosystem
RSA CryptosystemRSA Cryptosystem
RSA Cryptosystem
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
Taylor error
Taylor errorTaylor error
Taylor error
 
Inference in First-Order Logic
Inference in First-Order Logic Inference in First-Order Logic
Inference in First-Order Logic
 
Inverse-Trigonometric-Functions.pdf
Inverse-Trigonometric-Functions.pdfInverse-Trigonometric-Functions.pdf
Inverse-Trigonometric-Functions.pdf
 
Chapter 7 solution of equations
Chapter 7 solution of equationsChapter 7 solution of equations
Chapter 7 solution of equations
 
Week 8 - Trigonometry
Week 8 - TrigonometryWeek 8 - Trigonometry
Week 8 - Trigonometry
 
Control digital: Tema 2. transformada Z
Control digital: Tema 2. transformada ZControl digital: Tema 2. transformada Z
Control digital: Tema 2. transformada Z
 
Kinks & Defects
Kinks & DefectsKinks & Defects
Kinks & Defects
 

Similar to 11X1 T10 07 primitive function (2011)

11 x1 t12 07 primitive function (2013)
11 x1 t12 07 primitive function (2013)11 x1 t12 07 primitive function (2013)
11 x1 t12 07 primitive function (2013)
Nigel Simmons
 
Polynomial functions modelllings
Polynomial functions modelllingsPolynomial functions modelllings
Polynomial functions modelllings
Tarun Gehlot
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
goldenratio618
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
Nigel Simmons
 
Lesson 1 Nov 12 09
Lesson 1 Nov 12 09Lesson 1 Nov 12 09
Lesson 1 Nov 12 09
ingroy
 
Ap Cal 6.1 Slideshare
Ap Cal 6.1 SlideshareAp Cal 6.1 Slideshare
Ap Cal 6.1 Slideshare
ricmac25
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
Nigel Simmons
 
12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)
Nigel Simmons
 
12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)
Nigel Simmons
 
12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)
Nigel Simmons
 
12X1 T05 01 inverse functions (2010)
12X1 T05 01 inverse functions (2010)12X1 T05 01 inverse functions (2010)
12X1 T05 01 inverse functions (2010)
Nigel Simmons
 

Similar to 11X1 T10 07 primitive function (2011) (20)

11 x1 t12 07 primitive function (2013)
11 x1 t12 07 primitive function (2013)11 x1 t12 07 primitive function (2013)
11 x1 t12 07 primitive function (2013)
 
Polynomial functions modelllings
Polynomial functions modelllingsPolynomial functions modelllings
Polynomial functions modelllings
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
 
Lesson 1 Nov 12 09
Lesson 1 Nov 12 09Lesson 1 Nov 12 09
Lesson 1 Nov 12 09
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Ap Cal 6.1 Slideshare
Ap Cal 6.1 SlideshareAp Cal 6.1 Slideshare
Ap Cal 6.1 Slideshare
 
Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)
 
Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
 
Derivatives
DerivativesDerivatives
Derivatives
 
Lesson 1: Functions
Lesson 1: FunctionsLesson 1: Functions
Lesson 1: Functions
 
12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)
 
12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)
 
12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)
 
12X1 T05 01 inverse functions (2010)
12X1 T05 01 inverse functions (2010)12X1 T05 01 inverse functions (2010)
12X1 T05 01 inverse functions (2010)
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
AnaAcapella
 
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaPersonalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
EADTU
 

Recently uploaded (20)

TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
 
Including Mental Health Support in Project Delivery, 14 May.pdf
Including Mental Health Support in Project Delivery, 14 May.pdfIncluding Mental Health Support in Project Delivery, 14 May.pdf
Including Mental Health Support in Project Delivery, 14 May.pdf
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
How to Manage Website in Odoo 17 Studio App.pptx
How to Manage Website in Odoo 17 Studio App.pptxHow to Manage Website in Odoo 17 Studio App.pptx
How to Manage Website in Odoo 17 Studio App.pptx
 
ANTI PARKISON DRUGS.pptx
ANTI         PARKISON          DRUGS.pptxANTI         PARKISON          DRUGS.pptx
ANTI PARKISON DRUGS.pptx
 
MOOD STABLIZERS DRUGS.pptx
MOOD     STABLIZERS           DRUGS.pptxMOOD     STABLIZERS           DRUGS.pptx
MOOD STABLIZERS DRUGS.pptx
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinhĐề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
 
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading RoomSternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
 
Supporting Newcomer Multilingual Learners
Supporting Newcomer  Multilingual LearnersSupporting Newcomer  Multilingual Learners
Supporting Newcomer Multilingual Learners
 
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUMDEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
 
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptxAnalyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
 
How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17
 
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaPersonalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
 
Mattingly "AI and Prompt Design: LLMs with NER"
Mattingly "AI and Prompt Design: LLMs with NER"Mattingly "AI and Prompt Design: LLMs with NER"
Mattingly "AI and Prompt Design: LLMs with NER"
 
ESSENTIAL of (CS/IT/IS) class 07 (Networks)
ESSENTIAL of (CS/IT/IS) class 07 (Networks)ESSENTIAL of (CS/IT/IS) class 07 (Networks)
ESSENTIAL of (CS/IT/IS) class 07 (Networks)
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
 
e-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopale-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopal
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in Hinduism
 
Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"
 

11X1 T10 07 primitive function (2011)

  • 2. The Primitive Function If we know the equation of the tangent, how do we find the original curve?
  • 3. The Primitive Function If we know the equation of the tangent, how do we find the original curve? If f  x   x n , then the primitive function is; x n1 f x  c n 1
  • 4. The Primitive Function If we know the equation of the tangent, how do we find the original curve? If f  x   x n , then the primitive function is; x n1 f x  c n 1 e.g. i  f  x   3x 4
  • 5. The Primitive Function If we know the equation of the tangent, how do we find the original curve? If f  x   x n , then the primitive function is; x n1 f x  c n 1 e.g. i  f  x   3x 4 3x 5 f x  c 5
  • 6. The Primitive Function If we know the equation of the tangent, how do we find the original curve? If f  x   x n , then the primitive function is; x n1 f x  c n 1 e.g. i  f  x   3x 4 3x 5 f x  c 5 ii  f  x   6 x3  5x 2  x  2
  • 7. The Primitive Function If we know the equation of the tangent, how do we find the original curve? If f  x   x n , then the primitive function is; x n1 f x  c n 1 e.g. i  f  x   3x 4 3x 5 f x  c 5 ii  f  x   6 x3  5x 2  x  2 6 x 4 5x3 x 2 f x     2x  c 4 3 2
  • 8. The Primitive Function If we know the equation of the tangent, how do we find the original curve? If f  x   x n , then the primitive function is; x n1 f x  c n 1 e.g. i  f  x   3x 4 3x 5 f x  c 5 ii  f  x   6 x3  5x 2  x  2 6 x 4 5x3 x 2 f x     2x  c 4 3 2 3 4 5 3 1 2 f x  x  x  x  2x  c 2 3 2
  • 9. (iii) Find the equation of the curve which passes through (1,1) and has a gradient function of 2x + 3
  • 10. (iii) Find the equation of the curve which passes through (1,1) and has a gradient function of 2x + 3 dy  2x  3 dx
  • 11. (iii) Find the equation of the curve which passes through (1,1) and has a gradient function of 2x + 3 dy  2x  3 dx y  x 2  3x  c
  • 12. (iii) Find the equation of the curve which passes through (1,1) and has a gradient function of 2x + 3 dy  2x  3 dx y  x 2  3x  c when x = 1, y = 1
  • 13. (iii) Find the equation of the curve which passes through (1,1) and has a gradient function of 2x + 3 dy  2x  3 dx y  x 2  3x  c when x = 1, y = 1 i.e. 1  12  3  c c  3
  • 14. (iii) Find the equation of the curve which passes through (1,1) and has a gradient function of 2x + 3 dy  2x  3 dx y  x 2  3x  c when x = 1, y = 1 i.e. 1  12  3  c c  3  y  x 2  3x  3
  • 15. (iii) Find the equation of the curve which passes through (1,1) and has a gradient function of 2x + 3 dy  2x  3 dx y  x 2  3x  c when x = 1, y = 1 i.e. 1  12  3  c c  3  y  x 2  3x  3 Exercise 10J; 1ace etc, 2bdf, 3aceg, 4bd, 5b, 7ac, 8bdf 9ace, 10b, 12bd, 14a, 15, 17a