SlideShare a Scribd company logo
Integral Calculus Formula Sheet 
Derivative Rules: 
  0
d
c
dx
     1n nd
x nx
dx

    
 sin cos
d
x x
dx

 sec sec tan
d
x x x
dx

  2
tan sec
d
x x
dx
  
 cos sin
d
x x
dx
 
 csc csc cot
d
x x x
dx
 
  2
cot csc
d
x x
dx
   
  lnx xd
a a a
dx

 x xd
e e
dx
  
     
d d
cf x c f x
dx dx
           
d d d
f x g x f x g x
dx dx dx
  
 f g f g f g       2
f g fgf
g g
    
 
 
         
d
f g x f g x g x
dx
 
Properties of Integrals: 
( ) ( )kf u du k f u du   ( ) ( ) ( ) ( )f u g u du f u du g u du    
( ) 0
a
a
f x dx    ( ) ( )
b a
a b
f x dx f x dx    
( ) ( ) ( )
c b c
a a b
f x dx f x dx f x dx     
1
( )
b
ave
a
f f x dx
b a

   
0
( ) 2 ( )
a a
a
f x dx f x dx

   if f(x) is even  ( ) 0
a
a
f x dx

  if f(x) is odd 
( )
( )
( ( )) ( ) ( )
f bb
a f a
g f x f x dx g u du     udv uv vdu    
 
Integration Rules: 
du u C 
1
1
n
n u
u du C
n

 

ln
du
u C
u
 
u u
e du e C 
1
ln
u u
a du a C
a
   
sin cosu du u C  
cos sinu du u C 
2
sec tanu du u C 
2
csc cotu u C  
csc cot cscu u du u C  
sec tan secu u du u C   
2 2
1
arctan
du u
C
a u a a
 
  
  

2 2
arcsin
du u
C
aa u
 
  
 

2 2
1
sec
udu
arc C
a au u a
 
  
  

 
 
Fundamental Theorem of Calculus: 
     '  
x
a
d
F x f t dt f x
dx
 where   f t  is a continuous function on [a, x]. 
      
b
a
f x dx F b F a , where F(x) is any antiderivative of f(x). 
 
Riemann Sums: 
1 1
n n
i i
i i
ca c a
 
 
1 1 1
n n n
i i i i
i i i
a b a b
  
      
1
( ) lim ( )
b n
n
ia
f x dx f a i x x


   
n
ab
x

  
1
1
n
i
n


1
( 1)
2
n
i
n n
i



2
1
( 1)(2 1)
6
n
i
n n n
i

 

2
3
1
( 1)
2
n
i
n n
i

 
  
 

   height of th rectangle width of th rectangle
i
i i
Right Endpoint Rule:
 



n
i
n
ab
n
ab
n
i
iafxxiaf
1
)()(
1
)()()()(
Left Endpoint Rule:
( ) ( )
1 1
( ( 1) )( ) ( ) ( ( 1) )
n n
b a b a
n n
i i
f a i x x f a i 
 
       
Midpoint Rule:
   ( 1) ( ) ( 1) ( )
2 2
1 1
( )( ) ( ) ( )
n n
i i b a i i b a
n n
i i
f a x x f a     
 
     
 
Net Change: 
Displacement:  ( )
b
a
v x dx   Distance Traveled:  ( )
b
a
v x dx  
0
( ) (0) ( )
t
s t s v x dx    
0
( ) (0) ( )
t
Q t Q Q x dx  
 
Trig Formulas: 
 2 1
2sin ( ) 1 cos(2 )x x   
sin
tan
cos
x
x
x
  
1
sec
cos
x
x
  
cos( ) cos( )x x    2 2
sin ( ) cos ( ) 1x x 
 2 1
2cos ( ) 1 cos(2 )x x   
cos
cot
sin
x
x
x
  
1
csc
sin
x
x
  
sin( ) sin( )x x     2 2
tan ( ) 1 sec ( )x x 
 
Geometry Fomulas: 
Area of a Square: 
2
A s  
Area of a Triangle: 
1
2A bh  
Area of an 
Equilateral Trangle:
23
4A s  
Area of a Circle: 
2
A r  
Area of a 
Rectangle: 
A bh  
   
Areas and Volumes: 
Area in terms of x (vertical rectangles): 
( )
b
a
top bottom dx  
Area in terms of y (horizontal rectangles): 
( )
d
c
right left dy  
General Volumes by Slicing: 
Given: Base and shape of Cross‐sections 
( )
b
a
V A x dx   if slices are vertical 
( )
d
c
V A y dy   if slices are horizontal 
 
Disk Method: 
For volumes of revolution laying on the axis with 
slices perpendicular to the axis 
 
2
( )
b
a
V R x dx   if slices are vertical 
 
2
( )
d
c
V R y dy   if slices are horizontal 
Washer Method: 
For volumes of revolution not laying on the axis with 
slices perpendicular to the axis 
   
2 2
( ) ( )
b
a
V R x r x dx    if slices are vertical 
   
2 2
( ) ( )
d
c
V R y r y dy    if slices are horizontal 
Shell Method: 
For volumes of revolution with slices parallel to the 
axis 
2
b
a
V rhdx   if slices are vertical 
2
d
c
V rhdy   if slices are horizontal 
 
Physical Applications: 
Physics Formulas  Associated Calculus Problems 
Mass: 
Mass = Density * Volume      (for 3‐D objects) 
Mass = Density * Area           (for 2‐D objects) 
Mass = Density * Length       (for 1‐D objects) 
Mass of a one‐dimensional object with variable linear 
density: 
( ) ( )
b b
distancea a
Mass linear density dx x dx    
 
Work: 
Work = Force * Distance 
Work = Mass * Gravity * Distance   
Work = Volume * Density * Gravity * Distance 
Work to stretch or compress a spring (force varies): 

'
( ) ( )
b b b
Hooke s Lawa a a
for springs
Work force dx F x dx kx dx      
Work to lift liquid: 
( )( )( )( )
9.8* * ( )*( ) ( )
d
c volume
d
c
Work gravity density distance areaof a slice dy
W A y a y dy inmetric

 



Force/Pressure: 
Force = Pressure * Area 
Pressure = Density * Gravity * Depth 
Force of water pressure on a vertical surface: 
( )( )( )( )
9.8* *( )* ( ) ( )
d
c area
d
c
Force gravity density depth width dy
F a y w y dy inmetric

 



 
 
Integration by Parts: 
 
Knowing which function to call u and which to call dv takes some practice.  Here is a general guide: 
    u    Inverse Trig Function   (
1
sin ,arccos ,x x
etc ) 
        Logarithmic Functions   ( log3 ,ln( 1),x x  etc ) 
        Algebraic Functions   (
3
, 5,1/ ,x x x etc) 
        Trig Functions     (sin(5 ),tan( ),x x etc ) 
    dv    Exponential Functions   (
3 3
,5 ,x x
e etc ) 
Functions that appear at the top of the list are more like to be u, functions at the bottom of the list are more like to be dv. 
 
Trig Integrals: 
Integrals involving sin(x) and cos(x):  Integrals involving sec(x) and tan(x): 
1. If the power of the sine is odd and positive: 
Goal:   cosu x  
i. Save a  sin( )du x dx    
ii. Convert the remaining factors to 
cos( )x (using  2 2
sin 1 cosx x  .)   
1. If the power of   sec( )x is even and positive:  
Goal: tanu x  
i. Save a 
2
sec ( )du x dx    
ii. Convert the remaining factors to 
tan( )x  (using 
2 2
sec 1 tanx x  .)   
2. If the power of the cosine is odd and positive:
Goal: sinu x  
i. Save a  cos( )du x dx  
ii. Convert the remaining factors to 
sin( )x (using  2 2
cos 1 sinx x  .)   
2. If the power of  tan( )x is odd and positive: 
Goal: sec( )u x  
i. Save a  sec( ) tan( )du x x dx  
ii. Convert the remaining factors to 
sec( )x  (using 
2 2
sec 1 tanx x  .)   
3. If both sin( )x  and  cos( )x have even powers: 
Use the half angle identities:  
i.  2 1
2
sin ( ) 1 cos(2 )x x                
ii.  2 1
2
cos ( ) 1 cos(2 )x x   
 If there are no sec(x) factors and the power of 
tan(x) is even and positive, use 
2 2
sec 1 tanx x 
to convert one 
2
tan x to 
2
sec x  
 Rules for sec(x) and tan(x) also work for csc(x) and 
cot(x) with appropriate negative signs
If nothing else works, convert everything to sines and cosines. 
 
Trig Substitution: 
Expression  Substitution  Domain  Simplification 
2 2
a u   sinu a   
2 2
 
     2 2
cosa u a    
2 2
a u   tanu a   
2 2
 
     2 2
seca u a    
2 2
u a   secu a    0 ,
2

       2 2
tanu a a    
 
 
Partial Fractions: 
Linear factors:  Irreducible quadratic factors:
2 1
1 1 1 1 1
( )
...
( ) ( ) ( ) ( ) ( )m m m
P x A B Y Z
x r x r x r x r x r
    
    
 
2 2 2 2 2 1 2
1 1 1 1 1
( )
...
( ) ( ) ( ) ( ) ( )m m m
P x Ax B Cx D Wx X Yx Z
x r x r x r x r x r
   
    
    
 
If the fraction has multiple factors in the denominator, we just add the decompositions.
 

More Related Content

Similar to Integral calculus formula sheet 0

Lecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdfLecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdf
RayRabara
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
Carlon Baird
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
A Jorge Garcia
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
Fatini Adnan
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
Asad Bukhari
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
Nur Kamila
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
Chit Laplana
 
Higher formal homeworks unit 1
Higher formal homeworks   unit 1Higher formal homeworks   unit 1
Higher formal homeworks unit 1
sjamaths
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
Kavin Ruk
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
olziich
 
deveratives integrals
deveratives integralsdeveratives integrals
deveratives integrals
Raka S
 
Engineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answersEngineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answers
Mzr Zia
 
Engineering Mathematics 2 questions & answers(2)
Engineering Mathematics 2 questions & answers(2)Engineering Mathematics 2 questions & answers(2)
Engineering Mathematics 2 questions & answers(2)
Mzr Zia
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY Trajectoryeducation
Dev Singh
 
Banco de preguntas para el ap
Banco de preguntas para el apBanco de preguntas para el ap
Banco de preguntas para el ap
MARCELOCHAVEZ23
 
Integrating factors found by inspection
Integrating factors found by inspectionIntegrating factors found by inspection
Integrating factors found by inspection
Shin Kaname
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
NiccoloAaronMendozaA
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptx
PlanningHCEGC
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
Krishna Gali
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
Amr Mohamed
 

Similar to Integral calculus formula sheet 0 (20)

Lecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdfLecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdf
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Higher formal homeworks unit 1
Higher formal homeworks   unit 1Higher formal homeworks   unit 1
Higher formal homeworks unit 1
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
deveratives integrals
deveratives integralsdeveratives integrals
deveratives integrals
 
Engineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answersEngineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answers
 
Engineering Mathematics 2 questions & answers(2)
Engineering Mathematics 2 questions & answers(2)Engineering Mathematics 2 questions & answers(2)
Engineering Mathematics 2 questions & answers(2)
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY Trajectoryeducation
 
Banco de preguntas para el ap
Banco de preguntas para el apBanco de preguntas para el ap
Banco de preguntas para el ap
 
Integrating factors found by inspection
Integrating factors found by inspectionIntegrating factors found by inspection
Integrating factors found by inspection
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptx
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
 

Recently uploaded

在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
vluwdy49
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
Abdul Wali Khan University Mardan,kP,Pakistan
 
Bob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdfBob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdf
Texas Alliance of Groundwater Districts
 
Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.
Aditi Bajpai
 
Katherine Romanak - Geologic CO2 Storage.pdf
Katherine Romanak - Geologic CO2 Storage.pdfKatherine Romanak - Geologic CO2 Storage.pdf
Katherine Romanak - Geologic CO2 Storage.pdf
Texas Alliance of Groundwater Districts
 
20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx
Sharon Liu
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
hozt8xgk
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
PRIYANKA PATEL
 
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Leonel Morgado
 
NuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyerNuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyer
pablovgd
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
Areesha Ahmad
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
Sérgio Sacani
 
Basics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different formsBasics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different forms
MaheshaNanjegowda
 
Equivariant neural networks and representation theory
Equivariant neural networks and representation theoryEquivariant neural networks and representation theory
Equivariant neural networks and representation theory
Daniel Tubbenhauer
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
PirithiRaju
 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
Anagha Prasad
 
Eukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptxEukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptx
RitabrataSarkar3
 
The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
Sérgio Sacani
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
KrushnaDarade1
 
aziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobelaziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobel
İsa Badur
 

Recently uploaded (20)

在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
 
Bob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdfBob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdf
 
Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.
 
Katherine Romanak - Geologic CO2 Storage.pdf
Katherine Romanak - Geologic CO2 Storage.pdfKatherine Romanak - Geologic CO2 Storage.pdf
Katherine Romanak - Geologic CO2 Storage.pdf
 
20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
 
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
 
NuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyerNuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyer
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
 
Basics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different formsBasics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different forms
 
Equivariant neural networks and representation theory
Equivariant neural networks and representation theoryEquivariant neural networks and representation theory
Equivariant neural networks and representation theory
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
 
Eukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptxEukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptx
 
The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
 
aziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobelaziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobel
 

Integral calculus formula sheet 0

  • 1. Integral Calculus Formula Sheet  Derivative Rules:    0 d c dx      1n nd x nx dx        sin cos d x x dx   sec sec tan d x x x dx    2 tan sec d x x dx     cos sin d x x dx    csc csc cot d x x x dx     2 cot csc d x x dx       lnx xd a a a dx   x xd e e dx          d d cf x c f x dx dx             d d d f x g x f x g x dx dx dx     f g f g f g       2 f g fgf g g                    d f g x f g x g x dx   Properties of Integrals:  ( ) ( )kf u du k f u du   ( ) ( ) ( ) ( )f u g u du f u du g u du     ( ) 0 a a f x dx    ( ) ( ) b a a b f x dx f x dx     ( ) ( ) ( ) c b c a a b f x dx f x dx f x dx      1 ( ) b ave a f f x dx b a      0 ( ) 2 ( ) a a a f x dx f x dx     if f(x) is even  ( ) 0 a a f x dx    if f(x) is odd  ( ) ( ) ( ( )) ( ) ( ) f bb a f a g f x f x dx g u du     udv uv vdu       Integration Rules:  du u C  1 1 n n u u du C n     ln du u C u   u u e du e C  1 ln u u a du a C a     sin cosu du u C   cos sinu du u C  2 sec tanu du u C  2 csc cotu u C   csc cot cscu u du u C   sec tan secu u du u C    2 2 1 arctan du u C a u a a          2 2 arcsin du u C aa u         2 2 1 sec udu arc C a au u a             
  • 2. Fundamental Theorem of Calculus:       '   x a d F x f t dt f x dx  where   f t  is a continuous function on [a, x].         b a f x dx F b F a , where F(x) is any antiderivative of f(x).    Riemann Sums:  1 1 n n i i i i ca c a     1 1 1 n n n i i i i i i i a b a b           1 ( ) lim ( ) b n n ia f x dx f a i x x       n ab x     1 1 n i n   1 ( 1) 2 n i n n i    2 1 ( 1)(2 1) 6 n i n n n i     2 3 1 ( 1) 2 n i n n i             height of th rectangle width of th rectangle i i i Right Endpoint Rule:      n i n ab n ab n i iafxxiaf 1 )()( 1 )()()()( Left Endpoint Rule: ( ) ( ) 1 1 ( ( 1) )( ) ( ) ( ( 1) ) n n b a b a n n i i f a i x x f a i            Midpoint Rule:    ( 1) ( ) ( 1) ( ) 2 2 1 1 ( )( ) ( ) ( ) n n i i b a i i b a n n i i f a x x f a                Net Change:  Displacement:  ( ) b a v x dx   Distance Traveled:  ( ) b a v x dx   0 ( ) (0) ( ) t s t s v x dx     0 ( ) (0) ( ) t Q t Q Q x dx     Trig Formulas:   2 1 2sin ( ) 1 cos(2 )x x    sin tan cos x x x    1 sec cos x x    cos( ) cos( )x x    2 2 sin ( ) cos ( ) 1x x   2 1 2cos ( ) 1 cos(2 )x x    cos cot sin x x x    1 csc sin x x    sin( ) sin( )x x     2 2 tan ( ) 1 sec ( )x x    Geometry Fomulas:  Area of a Square:  2 A s   Area of a Triangle:  1 2A bh   Area of an  Equilateral Trangle: 23 4A s   Area of a Circle:  2 A r   Area of a  Rectangle:  A bh      
  • 3. Areas and Volumes:  Area in terms of x (vertical rectangles):  ( ) b a top bottom dx   Area in terms of y (horizontal rectangles):  ( ) d c right left dy   General Volumes by Slicing:  Given: Base and shape of Cross‐sections  ( ) b a V A x dx   if slices are vertical  ( ) d c V A y dy   if slices are horizontal    Disk Method:  For volumes of revolution laying on the axis with  slices perpendicular to the axis    2 ( ) b a V R x dx   if slices are vertical    2 ( ) d c V R y dy   if slices are horizontal  Washer Method:  For volumes of revolution not laying on the axis with  slices perpendicular to the axis      2 2 ( ) ( ) b a V R x r x dx    if slices are vertical      2 2 ( ) ( ) d c V R y r y dy    if slices are horizontal  Shell Method:  For volumes of revolution with slices parallel to the  axis  2 b a V rhdx   if slices are vertical  2 d c V rhdy   if slices are horizontal    Physical Applications:  Physics Formulas  Associated Calculus Problems  Mass:  Mass = Density * Volume      (for 3‐D objects)  Mass = Density * Area           (for 2‐D objects)  Mass = Density * Length       (for 1‐D objects)  Mass of a one‐dimensional object with variable linear  density:  ( ) ( ) b b distancea a Mass linear density dx x dx       Work:  Work = Force * Distance  Work = Mass * Gravity * Distance    Work = Volume * Density * Gravity * Distance  Work to stretch or compress a spring (force varies):   ' ( ) ( ) b b b Hooke s Lawa a a for springs Work force dx F x dx kx dx       Work to lift liquid:  ( )( )( )( ) 9.8* * ( )*( ) ( ) d c volume d c Work gravity density distance areaof a slice dy W A y a y dy inmetric       Force/Pressure:  Force = Pressure * Area  Pressure = Density * Gravity * Depth  Force of water pressure on a vertical surface:  ( )( )( )( ) 9.8* *( )* ( ) ( ) d c area d c Force gravity density depth width dy F a y w y dy inmetric          
  • 4. Integration by Parts:    Knowing which function to call u and which to call dv takes some practice.  Here is a general guide:      u    Inverse Trig Function   ( 1 sin ,arccos ,x x etc )          Logarithmic Functions   ( log3 ,ln( 1),x x  etc )          Algebraic Functions   ( 3 , 5,1/ ,x x x etc)          Trig Functions     (sin(5 ),tan( ),x x etc )      dv    Exponential Functions   ( 3 3 ,5 ,x x e etc )  Functions that appear at the top of the list are more like to be u, functions at the bottom of the list are more like to be dv.    Trig Integrals:  Integrals involving sin(x) and cos(x):  Integrals involving sec(x) and tan(x):  1. If the power of the sine is odd and positive:  Goal:   cosu x   i. Save a  sin( )du x dx     ii. Convert the remaining factors to  cos( )x (using  2 2 sin 1 cosx x  .)    1. If the power of   sec( )x is even and positive:   Goal: tanu x   i. Save a  2 sec ( )du x dx     ii. Convert the remaining factors to  tan( )x  (using  2 2 sec 1 tanx x  .)    2. If the power of the cosine is odd and positive: Goal: sinu x   i. Save a  cos( )du x dx   ii. Convert the remaining factors to  sin( )x (using  2 2 cos 1 sinx x  .)    2. If the power of  tan( )x is odd and positive:  Goal: sec( )u x   i. Save a  sec( ) tan( )du x x dx   ii. Convert the remaining factors to  sec( )x  (using  2 2 sec 1 tanx x  .)    3. If both sin( )x  and  cos( )x have even powers:  Use the half angle identities:   i.  2 1 2 sin ( ) 1 cos(2 )x x                 ii.  2 1 2 cos ( ) 1 cos(2 )x x     If there are no sec(x) factors and the power of  tan(x) is even and positive, use  2 2 sec 1 tanx x  to convert one  2 tan x to  2 sec x    Rules for sec(x) and tan(x) also work for csc(x) and  cot(x) with appropriate negative signs If nothing else works, convert everything to sines and cosines.    Trig Substitution:  Expression  Substitution  Domain  Simplification  2 2 a u   sinu a    2 2        2 2 cosa u a     2 2 a u   tanu a    2 2        2 2 seca u a     2 2 u a   secu a    0 , 2         2 2 tanu a a         Partial Fractions:  Linear factors:  Irreducible quadratic factors: 2 1 1 1 1 1 1 ( ) ... ( ) ( ) ( ) ( ) ( )m m m P x A B Y Z x r x r x r x r x r             2 2 2 2 2 1 2 1 1 1 1 1 ( ) ... ( ) ( ) ( ) ( ) ( )m m m P x Ax B Cx D Wx X Yx Z x r x r x r x r x r                 If the fraction has multiple factors in the denominator, we just add the decompositions.