SlideShare a Scribd company logo
1 of 16
Download to read offline
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-1 
LECTURE 090 – LARGE SIGNAL MOSFET MODEL 
LECTURE ORGANIZATION 
Outline 
• Introduction to modeling 
• Operation of the MOS transistor 
• Simple large signal model (SAH model) 
• Subthreshold model 
• Short channel, strong inversion model 
• Summary 
CMOS Analog Circuit Design, 2nd Edition Reference 
Pages 73-78 and 97-99 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-2 
INTRODUCTION TO MODELING 
Models Suitable for Understanding Analog Design 
The model required for analog design with CMOS technology is one that leads to 
understanding and insight as distinguished from accuracy. 
Technology 
Understanding 
and Usage 
Thinking Model 
Updating Model Updating Technology 
Simple, 
±10% to ±50% accuracy 
Design Decisions- 
"What can I change to 
accomplish ....?" 
Expectations 
"Ballpark" 
Computer Simulation 
Extraction of Simple 
Model Parameters 
from Computer Models 
Comparison of 
simulation with 
expectations 
Refined and 
optimized 
design 
Fig.3.0-02 
This lecture is devoted to the simple model suitable for design not using simulation. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-3 
Categorization of Electrical Models 
Time Dependence 
Time Independent Time Dependent 
Linearity 
Linear Small-signal, midband 
Rin, Av, Rout 
(.TF) 
Small-signal frequency 
response-poles and zeros 
(.AC) 
Nonlinear DC operating point 
iD = f(vD,vG,vS,vB) 
(.OP) 
Large-signal transient 
response - Slew rate 
(.TRAN) 
Based on the simulation capabilities of SPICE. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-4 
OPERATION OF THE MOS TRANSISTOR 
Formation of the Channel for an Enhancement MOS Transistor 
Subthreshold (VG<VT) 
VB = 0 VS = 0 VG < VT VD = 0 
Polysilicon 
n+ 
 
n+  
 
Depletion Region 
 Polysilicon 
p+ 
p- substrate 
Threshold (VG=VT) 
VB = 0 VS = 0 VG =VT VD = 0 
p+ 
 
 n+ n+  
 
p- substrate 
 
 n+ n+ 
Fig.3.1-02 
Inverted Region 
 
Strong Threshold (VGVT) 
VB = 0 VS = 0 VG VT VD = 0 
Polysilicon 
 
p+ 
p- substrate 
Inverted Region 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-5 
Transconductance Characteristics of an Enhancement NMOSFET when VDS = 0.1V 
VB = 0 VS = 0 vG =VT VD = 0.1V 
Polysilicon 
 
n+ n+  
 
 
Depletion Region 
 Polysilicon 
p+ 
p- substrate 
iD 
VB = 0 VS = 0 VG = 2VT VD = 0.1V 
p+ 
VGS=2VT: 
 
 
n+ n+ 
 
p- substrate 
vGS 
vGS 
vGS 
Fig.3.1-03 
iD 
 
Inverted Region 
 
VB = 0 VS = 0 VG = 3VT VD = 0.1V 
Polysilicon 
 
p+ 
VGS=3VT: 
 n+ n+ 
p- substrate 
VGS≤VT: 
Inverted Region 
iD 
0 VT 2VT 3VT 
0 
iD 
0 VT 2VT 3VT 
0 
iD 
0 VT 2VT 3VT 
0 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-6 
Output Characteristics of the Enhancement NMOS Transistor for VGS = 2VT 
VGS = 2VT 
vDS 
VGS = 2VT 
vDS 
VGS = 2VT 
vDS 
Fig.3.1-04 
vG =2VT VD = 0V 
VB = 0 VS = 0 
 
 
n+ n+ 
 
p- substrate 
VDS=0.5VT: 
Polysilicon 
p+ 
 
Inverted Region 
iD 
 Polysilicon 
VB = 0 VS = 0 VG = 2VT VD = 0.5VT 
p+ 
 
 
n+ n+ 
 
 
 
 
p- substrate Channel current 
iD 
 
VB = 0 VS = 0 VD =VT 
VDS=0: 
iD 
0 0.5VT VT 
0 
VDS=VT: 
VG = 2VT 
iD 
0 0.5VT VT 
0 
iD 
0 0.5VT VT 
0 
Polysilicon 
 
p+ 
 n+ 
p- substrate 
A depletion region 
iD 
n+ 
forms between the drain and channel 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-7 
Output Characteristics of the Enhanced NMOS when vDS = 2VT 
vDS 
vDS 
vDS 
VGS =VT 
VGS =2VT 
VGS =3VT 
Fig.3.1-05 
vG =VT 
VD = 2VT 
Polysilicon 
VB = 0 VS = 0 
p+ 
 
n+ n+ 
 
p- substrate 
iD 
 
 
 Polysilicon 
VB = 0 VS = 0 VG = 2VT VD = 2VT 
p+ 
 
 
n+ n+ 
 
p- substrate 
 
VB = 0 VS = 0 
VGS=VT: 
iD 
0 VT 2VT 
0 
VGS=2VT: 
VGS=3VT: 
 
 
 
VG = 3VT 
Polysilicon 
iD 
VD = 2VT 
 
p+ 
n+n+  
p- substrate 
iD 
iD 
0 
0 
iD 
0 
0 
3VT 
VT 2VT 3VT 
VT 2VT 3VT 
Further increase in 
VG will cause the FET to become active 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-8 
Output Characteristics of an Enhancement NMOS Transistor 
SPICE Input File: 
2000 
1500 
1000 
500 
iD(μA) 
Output Characteristics for NMOS 
M1 6 1 0 0 MOS1 w=5u l=1.0u 
VGS1 1 0 1.0 
M2 6 2 0 0 MOS1 w=5u l=1.0u 
VGS2 2 0 1.5 
M3 6 3 0 0 MOS1 w=5u l=1.0u 
VGS3 3 0 2.0 
M4 6 4 0 0 MOS1 w=5u l=1.0u 
VGS4 4 0 2.5 
VGS = 3.0 
VGS = 2.5 
VGS = 2.0 
VGS = 1.5 
VGS = 1.0 
0 1 2 3 4 5 
vDS (Volts) 
Fig. 3.1-6 
M5 6 5 0 0 MOS1 w=5u l=1.0u 
VGS5 5 0 3.0 
VDS 6 0 5 
.model mos1 nmos (vto=0.7 kp=110u 
+gamma=0.4 +lambda=.04 phi=.7) 
.dc vds 0 5 .2 
.print dc ID(M1), ID(M2), ID(M3), ID(M4), 
ID(M5) 
.end 
0 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-9 
Transconductance Characteristics of an Enhancement NMOS Transistor 
SPICE Input File: 
6000 
5000 
4000 
3000 
2000 
1000 
0 
VDS = 5V 
VDS = 4V 
VDS = 2V 
VDS = 1V 
VDS = 3V 
0 1 2 3 4 5 
iD(μA) 
Transconductance Characteristics for NMOS 
M1 1 6 0 0 MOS1 w=5u l=1.0u 
VDS1 1 0 1.0 
M2 2 6 0 0 MOS1 w=5u l=1.0u 
VDS2 2 0 2.0 
M3 3 6 0 0 MOS1 w=5u l=1.0u 
VDS3 3 0 3.0 
M4 4 6 0 0 MOS1 w=5u l=1.0u 
VDS4 4 0 4.0 
vGS (Volts) 
Fig. 3.1-7 
M5 5 6 0 0 MOS1 w=5u l=1.0u 
VDS5 5 0 5.0 
VGS 6 0 5 
.model mos1 nmos (vto=0.7 kp=110u 
+gamma=0.4 lambda=.04 phi=.7) 
.dc vgs 0 5 .2 
.print dc ID(M1), ID(M2), ID(M3), ID(M4), 
ID(M5) 
.probe 
.end 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-10 
SIMPLE LARGE SIGNAL MODEL (SAH MODEL) 
Large Signal Model Derivation 
1.) Let the charge per unit area in the channel 
inversion layer be 
QI(y) = -Cox[vGS-v(y)-VT] (coul./cm2) 
+ 
- 
vGS + 
iD vD 
  n+ n+ 
2.) Define sheet conductivity of the inversion 
layer per square as 
S = μoQI(y) 
 
cm2 
v·s
coulombs 
cm2 =
amps 
volt = 
Source Drain 
0 y y+dy L p- 
1 
/sq. 
3.) Ohm's Law for current in a sheet is 
JS = 
iD 
W = -SEy = -S 
dv 
dy  dv = 
-iD 
SW dy = 
y 
v(y) 
dy 
- 
Fig.110-03 
-iDdy 
μoQI(y)W  iD dy = -WμoQI(y)dv 
4.) Integrating along the channel for 0 to L gives 
vDS 
WμoQI(y)dv =  
L 
iDdy = -  
0 
0 
vDS 
WμoCox[vGS-v(y)-VT]dv 
0 
5.) Evaluating the limits gives 
iD = 
WμoCox 
L  
v2(y) 
2 
	 
(vGS-VT)v(y)- 
vDS 
0 
WμoCox 
 iD= 
L  
vDS2 
2  
	 
(vGS-VT)vDS- 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-11 
Saturation Voltage - VDS(sat) 
Interpretation of the large 
signal model: 
vDS = vGS-VT 
Active Region Saturation Region 
iD 
The saturation voltage for 
MOSFETs is the value of drain-source voltage at 
the peak of the inverted parabolas. 
diD 
dvDS = 
μoCoxW 
L [(vGS-VT) - vDS] = 0 
vDS(sat)=vGS-VT 
Useful definitions: 
μoCoxW 
L = 
K’W 
L =  
Increasing 
values of 
vDS 
vGS 
Fig. 110-04 
vDS 
vGS 
Cutoff Saturation Active 
0 
0 Fig. 3.2-4 
VT 
vDS = vGS - VT 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-12 
The Simple Large Signal MOSFET Model 
Regions of Operation of the MOS Transistor: 
1.) Cutoff Region: 
vGS - VT  0 
iD = 0 
(Ignores subthreshold currents) 
2.) Active Region 
0  vDS  vGS - VT 
iD = 
μoCoxW 
2L  
2(vGS-VT)-vDS vDS 
 
3.) Saturation Region 
0  vGS - VT  vDS 
μoCoxW 
iD = 
2L  
vGS-VT 
 
2 
Output Characteristics of the MOSFET: 
iD/ID0 
1.0 
0.75 
0.5 
0.25 
vDS = vGS-VT 
Active 
Region Saturation Region 
Channel modulation effects 
Cutoff Region 
0 
0 0.5 1.0 1.5 2.0 2.5 
vGS-VT 
VGS0-VT 
vGS-VT 
VGS0-VT 
vGS-VT 
VGS0-VT 
vGS-VT 
VGS0-VT 
= 1.0 
= 0.86 
= 0.70 
= 0.5 
= 0 
vGS-VT 
VGS0-VT 
vDS 
VGS0-VT 
Fig. 110-05 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-13 
Illustration of the Need to Account for the Influence of vDS on the Simple Sah Model 
Compare the Simple Sah model to SPICE level 2: 
K' = 44.8μA/V 
k=0.5, v (sat) 
= 1.0V 
SPICE Level 2 
K' = 29.6μA/V 
k = 0, v (sat) 
= 1.0V 
  
K' = 44.8μA/V 
k = 0, v (sat) 
= 1.0V 
2 
DS 
DS 
2 
DS 
2 
0 0.2 0.4 0.6 0.8 1 
25μA 
20μA 
15μA 
10μA 
5μA 
0μA 
vDS (volts) 
iD 
VGS = 2.0V, W/L = 100μm/100μm, and no mobility effects. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-14 
Modification of the Previous Model to Include the Effects of vDS on VT 
From the previous derivation: 
vDS 
WμoQI(y)dv =  
L 
iDdy = -  
 
0 
0 
vDS 
WμoCox[vGS-v(y)-VT]dv 
0 
Assume that the threshold voltage varies across the channel in the following way: 
VT(y) = VT + kv(y) 
where VT is the value of VT the at the source end of the channel and k is a constant. 
Integrating the above gives, 
iD = 
WμoCox 
L  
v2(y) 
2 
 
(vGS-VT)v(y)-(1+k) 
vDS 
 
0 
or 
iD = 
WμoCox 
L  
 
v2DS 
2 
(vGS-VT)vDS-(1+k) 
To find vDS(sat), set the diD/dvDS equal to zero and solve for vDS = vDS(sat), 
vDS(sat) = 
vGS-VT 
1+k 
Therefore, in the saturation region, the drain current is 
iD = 
WμoCox 
2(1+k)L (vGS - VT)2 
For k = 0.5 and K’ = 44.8μA/V2, excellent correlation is achieved with SPICE 2 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-15 
Influence of vDS on the Output Characteristics 
Channel modulation effect: 
As the value of vDS increases, the 
effective L decreases causing the 
current to increase. 
Illustration: 
Note that Leff = L - Xd 
Therefore the model in saturation 
becomes, 
iD = 
K’W 
2Leff (vGS-VT)2  
Depletion 
Region 
B S 
n+n+  
 
p- substrate 
diD 
dvDS = - 
VG  VT VD  VDS(sat) 
 Polysilicon 
p+ 
K’W 
2Leff2 (vGS - VT)2 
Leff 
dLeff 
dvDS = 
Xd 
iD 
Leff 
Fig110-06 
dXd 
dvDS  iD 
Therefore, a good approximation to the influence of vDS on iD is 
iD  iD( = 0) + 
diD 
dvDS vDS = iD( = 0)(1 + vDS) = 
K’W 
2L (vGS-VT)2(1+vDS) 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-16 
Channel Length Modulation Parameter,  
Assume the MOS is transistor is saturated- 
 iD = 
μCoxW 
2L (vGS - VT)2(1 + vDS) 
Define iD(0) = iD when vDS = 0V. 
 iD(0) = 
μCoxW 
2L (vGS- VT)2 
Now, 
iD = iD(0)[1 + vDS] = iD(0) + iD(0) vDS 
Matching with y = mx + b gives the value of  
iD3(0 VGS3 
VGS2 
VGS1 
vDS 
iD 
-1 
 
) 
iD2(0) 
iD1(0) 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-17 
Influence of Channel Length on  
Note that the value of  varies with channel length, L. The data below is from a 0.25μm 
CMOS technology. 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 
PMOS 
NMOS 
0 0.5 1 1.5 2 2.5 
Channel Length Modulation (V-1) 
Channel Length (microns) 
Fig.130-6 
Most analog designers stay away from minimum channel length to get better gains and 
matching at the sacrifice of speed. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-18 
Influence of the Bulk Voltage on the Large Signal MOSFET Model 
The components of the threshold voltage 
are: 
VT = Gate-bulk work function (MS) 
+ voltage to change the surface 
potential (-2F) 
+ voltage to offset the channel-bulk 
depletion charge (-Qb/Cox) 
+ voltage to compensate the 
undesired interface charge 
(-Qss/Cox) 
We know that 
Qb =  |2F|+|vBS| 
Therefore, as the bulk becomes more 
reverse biased with respect to the 
source, the threshold voltage must 
increase to offset the increased channel-bulk 
depletion charge. 
VD  0 
VBS0 = 0V VGS 
n+ n+ 
VD  0 
iD 
iD 
VBS1  0V VGS 
Polysilicon 
n+ n+ 
VD  0 
iD = 0 
VSB2 VSB1: VGS 
n+ n+ 
060613-02 
VSB0 = 0: 
VSB1  0: 
p- substrate 
p- substrate 
VSB2 VSB1: 
Polysilicon 
Polysilicon 
p+ 
p+ 
p+ 
p- substrate 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-19 
Influence of the Bulk Voltage on the Large Signal MOSFET Model - Continued 
Bulk-Source (vBS) influence on the transconductance characteristics- 
Decreasing values 
of bulk-source voltage 
vGS 
060612-02 
VBS = 0 
iD 
vDS  vGS-VT 
VT0 VT1 VT2 VT3 
ID 
VGS 
In general, the simple model incorporates the bulk effect into VT by the previously 
developed relationship: 
VT(vBS) = VT0 +  2|f|+|vBS| -  2|f| 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-20 
Summary of the Simple Large Signal MOSFET Model 
N-channel reference convention: 
Non-saturation-iD 
= 
WμoCox 
L 

 
vDS2 
2 (1 + vDS) 
(vGS-VT)vDS- 
Saturation-iD 
= 
WμoCox 
L 

 
vDS(sat)2 
 
(vGS-VT)vDS(sat)- 
2 (1+vDS)= 
G 
iD 
+ 
vGS 
WμoCox 
D 
B 
+ 
+ 
vBS 
- 
S 
vDS 
- 
Fig. 110-10 
2L (vGS-VT)2(1+vDS) 
where: 
μo = zero field mobility (cm2/volt·sec) 
Cox = gate oxide capacitance per unit area (F/cm2) 
 = channel-length modulation parameter (volts-1) 
VT = VT0 +
2|f|+|vBS|- 2|f| 
VT0 = zero bias threshold voltage 
 = bulk threshold parameter (volts-0.5) 
2|f| = strong inversion surface potential (volts) 
For p-channel MOSFETs, use n-channel equations with p-channel parameters and invert 
the current. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-21 
Silicon Constants 
Constant 
Symbol 
Constant Description Value Units 
VG 
k 
ni 
o 
si 
ox 
Silicon bandgap (27°C) 
Boltzmann’s constant 
Intrinsic carrier concentration (27°C) 
Permittivity of free space 
Permittivity of silicon 
Permittivity of SiO2 
1.205 
1.381x10-23 
1.45x1010 
8.854x10-14 
11.7 o 
3.9 o 
V 
J/K 
cm-3 
F/cm 
F/cm 
F/cm 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-22 
MOSFET Parameters 
Model Parameters for a Typical CMOS Bulk Process (0.25μm CMOS n-well): 
Parameter Parameter Description 
Typical Parameter Value 
Symbol 
N-Channel P-Channel 
Units 
VT0 Threshold Voltage 
(VBS = 0) 
0.5± 0.15 -0.5 ± 0.15 V 
K' Transconductance Para-meter 
(in saturation) 
120.0 ± 10% 25.0 ± 10% μA/V2 
 Bulk threshold 
parameter 
0.4 0.6 (V)1/2 
 Channel length 
modulation parameter 
0.32 (L=Lmin) 
0.06 (L 2Lmin) 
0.56 (L=Lmin) 
0.08 (L 2Lmin) 
(V)-1 
2|F| Surface potential at 
strong inversion 
0.7 0.8 V 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-23 
SUBTHRESHOLD MODEL 
Large-Signal Model for Weak Inversion 
The electrons in the substrate at the source side can be expressed as, 
s 
Vt 
np(0) = npoexp
The electrons in the substrate at the drain side can be expressed as, 
s-vDS 
Vt 
np(L) = npoexp

More Related Content

What's hot

Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...
Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...
Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...AUTHELECTRONIC
 
SPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARKSPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARKTsuyoshi Horigome
 
Lect2 up280 (100328)
Lect2 up280 (100328)Lect2 up280 (100328)
Lect2 up280 (100328)aicdesign
 
SPICE MODEL of SSM3K14T (Professional+BDP Model) in SPICE PARK
SPICE MODEL of SSM3K14T (Professional+BDP Model) in SPICE PARKSPICE MODEL of SSM3K14T (Professional+BDP Model) in SPICE PARK
SPICE MODEL of SSM3K14T (Professional+BDP Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARKSPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARKTsuyoshi Horigome
 
Lect2 up050 (100430)
Lect2 up050 (100430)Lect2 up050 (100430)
Lect2 up050 (100430)aicdesign
 
SPICE MODEL of 2SK4077 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK4077 (Standard+BDS Model) in SPICE PARKSPICE MODEL of 2SK4077 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK4077 (Standard+BDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SK2233 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK2233 (Standard+BDS Model) in SPICE PARKSPICE MODEL of 2SK2233 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK2233 (Standard+BDS Model) in SPICE PARKTsuyoshi Horigome
 
Original IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A New
Original IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A NewOriginal IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A New
Original IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A NewAUTHELECTRONIC
 
PNP Silicon AF Transistor | Infineon Technologies
PNP Silicon AF Transistor | Infineon TechnologiesPNP Silicon AF Transistor | Infineon Technologies
PNP Silicon AF Transistor | Infineon TechnologiesInfineon Technologies AG
 
Original P-Channel Mosfet AO4801A 4801A 4801 SOP-8 New
Original P-Channel Mosfet AO4801A 4801A 4801 SOP-8 NewOriginal P-Channel Mosfet AO4801A 4801A 4801 SOP-8 New
Original P-Channel Mosfet AO4801A 4801A 4801 SOP-8 NewAUTHELECTRONIC
 
SPICE MODEL of 2SK4078 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of 2SK4078 (Professional+BDP Model) in SPICE PARKSPICE MODEL of 2SK4078 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of 2SK4078 (Professional+BDP Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARKSPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARKTsuyoshi Horigome
 
Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)aicdesign
 
SPICE MODEL of 2SK3703 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK3703 (Standard+BDS Model) in SPICE PARKSPICE MODEL of 2SK3703 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK3703 (Standard+BDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SK2462 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of 2SK2462 (Professional+BDP Model) in SPICE PARKSPICE MODEL of 2SK2462 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of 2SK2462 (Professional+BDP Model) in SPICE PARKTsuyoshi Horigome
 
Original IGBT FGA20S120M FGA20S 20S120 20A 1200V TO-3P New
Original IGBT FGA20S120M FGA20S 20S120 20A 1200V TO-3P NewOriginal IGBT FGA20S120M FGA20S 20S120 20A 1200V TO-3P New
Original IGBT FGA20S120M FGA20S 20S120 20A 1200V TO-3P Newauthelectroniccom
 
SPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARKSPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARKTsuyoshi Horigome
 

What's hot (20)

Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...
Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...
Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...
 
91086
9108691086
91086
 
SPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARKSPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARK
 
Lect2 up280 (100328)
Lect2 up280 (100328)Lect2 up280 (100328)
Lect2 up280 (100328)
 
SPICE MODEL of SSM3K14T (Professional+BDP Model) in SPICE PARK
SPICE MODEL of SSM3K14T (Professional+BDP Model) in SPICE PARKSPICE MODEL of SSM3K14T (Professional+BDP Model) in SPICE PARK
SPICE MODEL of SSM3K14T (Professional+BDP Model) in SPICE PARK
 
91078
9107891078
91078
 
SPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARKSPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARK
 
Lect2 up050 (100430)
Lect2 up050 (100430)Lect2 up050 (100430)
Lect2 up050 (100430)
 
SPICE MODEL of 2SK4077 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK4077 (Standard+BDS Model) in SPICE PARKSPICE MODEL of 2SK4077 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK4077 (Standard+BDS Model) in SPICE PARK
 
SPICE MODEL of 2SK2233 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK2233 (Standard+BDS Model) in SPICE PARKSPICE MODEL of 2SK2233 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK2233 (Standard+BDS Model) in SPICE PARK
 
Original IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A New
Original IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A NewOriginal IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A New
Original IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A New
 
PNP Silicon AF Transistor | Infineon Technologies
PNP Silicon AF Transistor | Infineon TechnologiesPNP Silicon AF Transistor | Infineon Technologies
PNP Silicon AF Transistor | Infineon Technologies
 
Original P-Channel Mosfet AO4801A 4801A 4801 SOP-8 New
Original P-Channel Mosfet AO4801A 4801A 4801 SOP-8 NewOriginal P-Channel Mosfet AO4801A 4801A 4801 SOP-8 New
Original P-Channel Mosfet AO4801A 4801A 4801 SOP-8 New
 
SPICE MODEL of 2SK4078 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of 2SK4078 (Professional+BDP Model) in SPICE PARKSPICE MODEL of 2SK4078 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of 2SK4078 (Professional+BDP Model) in SPICE PARK
 
SPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARKSPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARK
 
Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)
 
SPICE MODEL of 2SK3703 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK3703 (Standard+BDS Model) in SPICE PARKSPICE MODEL of 2SK3703 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK3703 (Standard+BDS Model) in SPICE PARK
 
SPICE MODEL of 2SK2462 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of 2SK2462 (Professional+BDP Model) in SPICE PARKSPICE MODEL of 2SK2462 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of 2SK2462 (Professional+BDP Model) in SPICE PARK
 
Original IGBT FGA20S120M FGA20S 20S120 20A 1200V TO-3P New
Original IGBT FGA20S120M FGA20S 20S120 20A 1200V TO-3P NewOriginal IGBT FGA20S120M FGA20S 20S120 20A 1200V TO-3P New
Original IGBT FGA20S120M FGA20S 20S120 20A 1200V TO-3P New
 
SPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARKSPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARK
 

Viewers also liked

Group teaching strategies (1)
Group teaching strategies (1)Group teaching strategies (1)
Group teaching strategies (1)yangchen1411
 
Technical guide-for-electromagnetic-disturbance-protection 2
Technical guide-for-electromagnetic-disturbance-protection 2Technical guide-for-electromagnetic-disturbance-protection 2
Technical guide-for-electromagnetic-disturbance-protection 2mwashagha
 
Cullins Continuing and Professional Education
Cullins Continuing and Professional EducationCullins Continuing and Professional Education
Cullins Continuing and Professional EducationBilly Cullins
 
Eel305 building blocks of op am ps
Eel305 building blocks of op am psEel305 building blocks of op am ps
Eel305 building blocks of op am psAli Sayın
 
EMIC Project - Presentation
EMIC Project - PresentationEMIC Project - Presentation
EMIC Project - PresentationEMICPT
 
Engineer Week2010 Dupage Expo1
Engineer Week2010 Dupage Expo1Engineer Week2010 Dupage Expo1
Engineer Week2010 Dupage Expo1RFjock
 
Emic effects in radio frequency instruments
Emic effects in radio frequency instrumentsEmic effects in radio frequency instruments
Emic effects in radio frequency instrumentsHarshit Srivastava
 
MOSFET Small signal model
MOSFET Small signal modelMOSFET Small signal model
MOSFET Small signal modelTeam-VLSI-ITMU
 
Electromagnetic Compatibility
Electromagnetic CompatibilityElectromagnetic Compatibility
Electromagnetic CompatibilityVesa Linja-aho
 
C bjt-biasing-and-stabilization
C bjt-biasing-and-stabilizationC bjt-biasing-and-stabilization
C bjt-biasing-and-stabilizationBharti Airtel Ltd.
 
Different types of transistors and their functions
Different types of transistors and their functionsDifferent types of transistors and their functions
Different types of transistors and their functionselprocus
 
Introduction To Electromagnetic Compatibility
Introduction To Electromagnetic CompatibilityIntroduction To Electromagnetic Compatibility
Introduction To Electromagnetic CompatibilityJim Jenkins
 
Practical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board Layout
Practical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board LayoutPractical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board Layout
Practical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board LayoutLiving Online
 

Viewers also liked (20)

Group teaching strategies (1)
Group teaching strategies (1)Group teaching strategies (1)
Group teaching strategies (1)
 
Technical guide-for-electromagnetic-disturbance-protection 2
Technical guide-for-electromagnetic-disturbance-protection 2Technical guide-for-electromagnetic-disturbance-protection 2
Technical guide-for-electromagnetic-disturbance-protection 2
 
EMI
EMIEMI
EMI
 
Cullins Continuing and Professional Education
Cullins Continuing and Professional EducationCullins Continuing and Professional Education
Cullins Continuing and Professional Education
 
Eel305 building blocks of op am ps
Eel305 building blocks of op am psEel305 building blocks of op am ps
Eel305 building blocks of op am ps
 
Test file
Test fileTest file
Test file
 
EMIC Project - Presentation
EMIC Project - PresentationEMIC Project - Presentation
EMIC Project - Presentation
 
Edc unit 5
Edc unit 5Edc unit 5
Edc unit 5
 
Engineer Week2010 Dupage Expo1
Engineer Week2010 Dupage Expo1Engineer Week2010 Dupage Expo1
Engineer Week2010 Dupage Expo1
 
Emic effects in radio frequency instruments
Emic effects in radio frequency instrumentsEmic effects in radio frequency instruments
Emic effects in radio frequency instruments
 
MOSFET Small signal model
MOSFET Small signal modelMOSFET Small signal model
MOSFET Small signal model
 
Electromagnetic Compatibility
Electromagnetic CompatibilityElectromagnetic Compatibility
Electromagnetic Compatibility
 
C bjt-biasing-and-stabilization
C bjt-biasing-and-stabilizationC bjt-biasing-and-stabilization
C bjt-biasing-and-stabilization
 
Emt and emc
Emt and emcEmt and emc
Emt and emc
 
Different types of transistors and their functions
Different types of transistors and their functionsDifferent types of transistors and their functions
Different types of transistors and their functions
 
Introduction To Electromagnetic Compatibility
Introduction To Electromagnetic CompatibilityIntroduction To Electromagnetic Compatibility
Introduction To Electromagnetic Compatibility
 
Diff Amps
Diff AmpsDiff Amps
Diff Amps
 
BJT CE
BJT CEBJT CE
BJT CE
 
EMI/EMC
EMI/EMC EMI/EMC
EMI/EMC
 
Practical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board Layout
Practical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board LayoutPractical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board Layout
Practical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board Layout
 

Similar to Lect2 up090 (100324)

Metal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect TransistorsMetal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect Transistorsutpal sarkar
 
Lect2 up300 (100328)
Lect2 up300 (100328)Lect2 up300 (100328)
Lect2 up300 (100328)aicdesign
 
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewOriginal P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewAUTHELECTRONIC
 
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas ElectronicsOriginal N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas ElectronicsAUTHELECTRONIC
 
Lecture12.fm5
Lecture12.fm5Lecture12.fm5
Lecture12.fm5tuanbk1
 
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 NewOriginal MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 NewAUTHELECTRONIC
 
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...AUTHELECTRONIC
 
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IROriginal P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IRAUTHELECTRONIC
 
USA INDIA STOCK Original Mosfet IRF9630 RF9630 F9630 9630 200V 6.5A TO-220 New
USA INDIA STOCK Original Mosfet IRF9630 RF9630 F9630 9630 200V 6.5A TO-220 NewUSA INDIA STOCK Original Mosfet IRF9630 RF9630 F9630 9630 200V 6.5A TO-220 New
USA INDIA STOCK Original Mosfet IRF9630 RF9630 F9630 9630 200V 6.5A TO-220 NewAUTHELECTRONIC
 
Lect2 up100 (100324)
Lect2 up100 (100324)Lect2 up100 (100324)
Lect2 up100 (100324)aicdesign
 
MTM23223 LTspice Model (Free SPICE Model)
MTM23223 LTspice Model (Free SPICE Model)MTM23223 LTspice Model (Free SPICE Model)
MTM23223 LTspice Model (Free SPICE Model)Tsuyoshi Horigome
 
MTM23223 PSpice Model (Free SPICE Model)
MTM23223 PSpice Model  (Free SPICE Model)MTM23223 PSpice Model  (Free SPICE Model)
MTM23223 PSpice Model (Free SPICE Model)Tsuyoshi Horigome
 
Vlsi design mosfet
Vlsi design mosfetVlsi design mosfet
Vlsi design mosfetvennila12
 
Correction subcircuits.pdf
Correction subcircuits.pdfCorrection subcircuits.pdf
Correction subcircuits.pdftajechop
 
Lect2 up190 (100327)
Lect2 up190 (100327)Lect2 up190 (100327)
Lect2 up190 (100327)aicdesign
 

Similar to Lect2 up090 (100324) (20)

Transistor
TransistorTransistor
Transistor
 
VLSI- Unit I
VLSI- Unit IVLSI- Unit I
VLSI- Unit I
 
Metal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect TransistorsMetal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect Transistors
 
Lect2 up300 (100328)
Lect2 up300 (100328)Lect2 up300 (100328)
Lect2 up300 (100328)
 
Chapter3
Chapter3Chapter3
Chapter3
 
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewOriginal P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
 
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas ElectronicsOriginal N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
 
Lecture12.fm5
Lecture12.fm5Lecture12.fm5
Lecture12.fm5
 
Small signal Analysis.ppt
Small signal Analysis.pptSmall signal Analysis.ppt
Small signal Analysis.ppt
 
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 NewOriginal MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
 
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
 
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IROriginal P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
 
Khb 7d0n65f2 datasheet
Khb 7d0n65f2 datasheetKhb 7d0n65f2 datasheet
Khb 7d0n65f2 datasheet
 
USA INDIA STOCK Original Mosfet IRF9630 RF9630 F9630 9630 200V 6.5A TO-220 New
USA INDIA STOCK Original Mosfet IRF9630 RF9630 F9630 9630 200V 6.5A TO-220 NewUSA INDIA STOCK Original Mosfet IRF9630 RF9630 F9630 9630 200V 6.5A TO-220 New
USA INDIA STOCK Original Mosfet IRF9630 RF9630 F9630 9630 200V 6.5A TO-220 New
 
Lect2 up100 (100324)
Lect2 up100 (100324)Lect2 up100 (100324)
Lect2 up100 (100324)
 
MTM23223 LTspice Model (Free SPICE Model)
MTM23223 LTspice Model (Free SPICE Model)MTM23223 LTspice Model (Free SPICE Model)
MTM23223 LTspice Model (Free SPICE Model)
 
MTM23223 PSpice Model (Free SPICE Model)
MTM23223 PSpice Model  (Free SPICE Model)MTM23223 PSpice Model  (Free SPICE Model)
MTM23223 PSpice Model (Free SPICE Model)
 
Vlsi design mosfet
Vlsi design mosfetVlsi design mosfet
Vlsi design mosfet
 
Correction subcircuits.pdf
Correction subcircuits.pdfCorrection subcircuits.pdf
Correction subcircuits.pdf
 
Lect2 up190 (100327)
Lect2 up190 (100327)Lect2 up190 (100327)
Lect2 up190 (100327)
 

More from aicdesign

Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)aicdesign
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)aicdesign
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)aicdesign
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)aicdesign
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)aicdesign
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)aicdesign
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)aicdesign
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)aicdesign
 
Lect2 up320 (100328)
Lect2 up320 (100328)Lect2 up320 (100328)
Lect2 up320 (100328)aicdesign
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)aicdesign
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)aicdesign
 
Lect2 up250 (100328)
Lect2 up250 (100328)Lect2 up250 (100328)
Lect2 up250 (100328)aicdesign
 
Lect2 up240 (100328)
Lect2 up240 (100328)Lect2 up240 (100328)
Lect2 up240 (100328)aicdesign
 
Lect2 up230 (100327)
Lect2 up230 (100327)Lect2 up230 (100327)
Lect2 up230 (100327)aicdesign
 
Lect2 up220 (100327)
Lect2 up220 (100327)Lect2 up220 (100327)
Lect2 up220 (100327)aicdesign
 
Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)aicdesign
 
Lect2 up180 (100327)
Lect2 up180 (100327)Lect2 up180 (100327)
Lect2 up180 (100327)aicdesign
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)aicdesign
 
Lect2 up160 (100325)
Lect2 up160 (100325)Lect2 up160 (100325)
Lect2 up160 (100325)aicdesign
 
Lect2 up130 (100325)
Lect2 up130 (100325)Lect2 up130 (100325)
Lect2 up130 (100325)aicdesign
 

More from aicdesign (20)

Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
Lect2 up320 (100328)
Lect2 up320 (100328)Lect2 up320 (100328)
Lect2 up320 (100328)
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)
 
Lect2 up250 (100328)
Lect2 up250 (100328)Lect2 up250 (100328)
Lect2 up250 (100328)
 
Lect2 up240 (100328)
Lect2 up240 (100328)Lect2 up240 (100328)
Lect2 up240 (100328)
 
Lect2 up230 (100327)
Lect2 up230 (100327)Lect2 up230 (100327)
Lect2 up230 (100327)
 
Lect2 up220 (100327)
Lect2 up220 (100327)Lect2 up220 (100327)
Lect2 up220 (100327)
 
Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)
 
Lect2 up180 (100327)
Lect2 up180 (100327)Lect2 up180 (100327)
Lect2 up180 (100327)
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)
 
Lect2 up160 (100325)
Lect2 up160 (100325)Lect2 up160 (100325)
Lect2 up160 (100325)
 
Lect2 up130 (100325)
Lect2 up130 (100325)Lect2 up130 (100325)
Lect2 up130 (100325)
 

Lect2 up090 (100324)

  • 1. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-1 LECTURE 090 – LARGE SIGNAL MOSFET MODEL LECTURE ORGANIZATION Outline • Introduction to modeling • Operation of the MOS transistor • Simple large signal model (SAH model) • Subthreshold model • Short channel, strong inversion model • Summary CMOS Analog Circuit Design, 2nd Edition Reference Pages 73-78 and 97-99 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-2 INTRODUCTION TO MODELING Models Suitable for Understanding Analog Design The model required for analog design with CMOS technology is one that leads to understanding and insight as distinguished from accuracy. Technology Understanding and Usage Thinking Model Updating Model Updating Technology Simple, ±10% to ±50% accuracy Design Decisions- "What can I change to accomplish ....?" Expectations "Ballpark" Computer Simulation Extraction of Simple Model Parameters from Computer Models Comparison of simulation with expectations Refined and optimized design Fig.3.0-02 This lecture is devoted to the simple model suitable for design not using simulation. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 2. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-3 Categorization of Electrical Models Time Dependence Time Independent Time Dependent Linearity Linear Small-signal, midband Rin, Av, Rout (.TF) Small-signal frequency response-poles and zeros (.AC) Nonlinear DC operating point iD = f(vD,vG,vS,vB) (.OP) Large-signal transient response - Slew rate (.TRAN) Based on the simulation capabilities of SPICE. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-4 OPERATION OF THE MOS TRANSISTOR Formation of the Channel for an Enhancement MOS Transistor Subthreshold (VG<VT) VB = 0 VS = 0 VG < VT VD = 0 Polysilicon n+ n+ Depletion Region Polysilicon p+ p- substrate Threshold (VG=VT) VB = 0 VS = 0 VG =VT VD = 0 p+ n+ n+ p- substrate n+ n+ Fig.3.1-02 Inverted Region Strong Threshold (VGVT) VB = 0 VS = 0 VG VT VD = 0 Polysilicon p+ p- substrate Inverted Region CMOS Analog Circuit Design © P.E. Allen - 2010
  • 3. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-5 Transconductance Characteristics of an Enhancement NMOSFET when VDS = 0.1V VB = 0 VS = 0 vG =VT VD = 0.1V Polysilicon n+ n+ Depletion Region Polysilicon p+ p- substrate iD VB = 0 VS = 0 VG = 2VT VD = 0.1V p+ VGS=2VT: n+ n+ p- substrate vGS vGS vGS Fig.3.1-03 iD Inverted Region VB = 0 VS = 0 VG = 3VT VD = 0.1V Polysilicon p+ VGS=3VT: n+ n+ p- substrate VGS≤VT: Inverted Region iD 0 VT 2VT 3VT 0 iD 0 VT 2VT 3VT 0 iD 0 VT 2VT 3VT 0 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-6 Output Characteristics of the Enhancement NMOS Transistor for VGS = 2VT VGS = 2VT vDS VGS = 2VT vDS VGS = 2VT vDS Fig.3.1-04 vG =2VT VD = 0V VB = 0 VS = 0 n+ n+ p- substrate VDS=0.5VT: Polysilicon p+ Inverted Region iD Polysilicon VB = 0 VS = 0 VG = 2VT VD = 0.5VT p+ n+ n+ p- substrate Channel current iD VB = 0 VS = 0 VD =VT VDS=0: iD 0 0.5VT VT 0 VDS=VT: VG = 2VT iD 0 0.5VT VT 0 iD 0 0.5VT VT 0 Polysilicon p+ n+ p- substrate A depletion region iD n+ forms between the drain and channel CMOS Analog Circuit Design © P.E. Allen - 2010
  • 4. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-7 Output Characteristics of the Enhanced NMOS when vDS = 2VT vDS vDS vDS VGS =VT VGS =2VT VGS =3VT Fig.3.1-05 vG =VT VD = 2VT Polysilicon VB = 0 VS = 0 p+ n+ n+ p- substrate iD Polysilicon VB = 0 VS = 0 VG = 2VT VD = 2VT p+ n+ n+ p- substrate VB = 0 VS = 0 VGS=VT: iD 0 VT 2VT 0 VGS=2VT: VGS=3VT: VG = 3VT Polysilicon iD VD = 2VT p+ n+n+ p- substrate iD iD 0 0 iD 0 0 3VT VT 2VT 3VT VT 2VT 3VT Further increase in VG will cause the FET to become active CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-8 Output Characteristics of an Enhancement NMOS Transistor SPICE Input File: 2000 1500 1000 500 iD(μA) Output Characteristics for NMOS M1 6 1 0 0 MOS1 w=5u l=1.0u VGS1 1 0 1.0 M2 6 2 0 0 MOS1 w=5u l=1.0u VGS2 2 0 1.5 M3 6 3 0 0 MOS1 w=5u l=1.0u VGS3 3 0 2.0 M4 6 4 0 0 MOS1 w=5u l=1.0u VGS4 4 0 2.5 VGS = 3.0 VGS = 2.5 VGS = 2.0 VGS = 1.5 VGS = 1.0 0 1 2 3 4 5 vDS (Volts) Fig. 3.1-6 M5 6 5 0 0 MOS1 w=5u l=1.0u VGS5 5 0 3.0 VDS 6 0 5 .model mos1 nmos (vto=0.7 kp=110u +gamma=0.4 +lambda=.04 phi=.7) .dc vds 0 5 .2 .print dc ID(M1), ID(M2), ID(M3), ID(M4), ID(M5) .end 0 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 5. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-9 Transconductance Characteristics of an Enhancement NMOS Transistor SPICE Input File: 6000 5000 4000 3000 2000 1000 0 VDS = 5V VDS = 4V VDS = 2V VDS = 1V VDS = 3V 0 1 2 3 4 5 iD(μA) Transconductance Characteristics for NMOS M1 1 6 0 0 MOS1 w=5u l=1.0u VDS1 1 0 1.0 M2 2 6 0 0 MOS1 w=5u l=1.0u VDS2 2 0 2.0 M3 3 6 0 0 MOS1 w=5u l=1.0u VDS3 3 0 3.0 M4 4 6 0 0 MOS1 w=5u l=1.0u VDS4 4 0 4.0 vGS (Volts) Fig. 3.1-7 M5 5 6 0 0 MOS1 w=5u l=1.0u VDS5 5 0 5.0 VGS 6 0 5 .model mos1 nmos (vto=0.7 kp=110u +gamma=0.4 lambda=.04 phi=.7) .dc vgs 0 5 .2 .print dc ID(M1), ID(M2), ID(M3), ID(M4), ID(M5) .probe .end CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-10 SIMPLE LARGE SIGNAL MODEL (SAH MODEL) Large Signal Model Derivation 1.) Let the charge per unit area in the channel inversion layer be QI(y) = -Cox[vGS-v(y)-VT] (coul./cm2) + - vGS + iD vD n+ n+ 2.) Define sheet conductivity of the inversion layer per square as S = μoQI(y) cm2 v·s
  • 7. amps volt = Source Drain 0 y y+dy L p- 1 /sq. 3.) Ohm's Law for current in a sheet is JS = iD W = -SEy = -S dv dy dv = -iD SW dy = y v(y) dy - Fig.110-03 -iDdy μoQI(y)W iD dy = -WμoQI(y)dv 4.) Integrating along the channel for 0 to L gives vDS WμoQI(y)dv = L iDdy = - 0 0 vDS WμoCox[vGS-v(y)-VT]dv 0 5.) Evaluating the limits gives iD = WμoCox L v2(y) 2 (vGS-VT)v(y)- vDS 0 WμoCox iD= L vDS2 2 (vGS-VT)vDS- CMOS Analog Circuit Design © P.E. Allen - 2010
  • 8. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-11 Saturation Voltage - VDS(sat) Interpretation of the large signal model: vDS = vGS-VT Active Region Saturation Region iD The saturation voltage for MOSFETs is the value of drain-source voltage at the peak of the inverted parabolas. diD dvDS = μoCoxW L [(vGS-VT) - vDS] = 0 vDS(sat)=vGS-VT Useful definitions: μoCoxW L = K’W L = Increasing values of vDS vGS Fig. 110-04 vDS vGS Cutoff Saturation Active 0 0 Fig. 3.2-4 VT vDS = vGS - VT CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-12 The Simple Large Signal MOSFET Model Regions of Operation of the MOS Transistor: 1.) Cutoff Region: vGS - VT 0 iD = 0 (Ignores subthreshold currents) 2.) Active Region 0 vDS vGS - VT iD = μoCoxW 2L 2(vGS-VT)-vDS vDS 3.) Saturation Region 0 vGS - VT vDS μoCoxW iD = 2L vGS-VT 2 Output Characteristics of the MOSFET: iD/ID0 1.0 0.75 0.5 0.25 vDS = vGS-VT Active Region Saturation Region Channel modulation effects Cutoff Region 0 0 0.5 1.0 1.5 2.0 2.5 vGS-VT VGS0-VT vGS-VT VGS0-VT vGS-VT VGS0-VT vGS-VT VGS0-VT = 1.0 = 0.86 = 0.70 = 0.5 = 0 vGS-VT VGS0-VT vDS VGS0-VT Fig. 110-05 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 9. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-13 Illustration of the Need to Account for the Influence of vDS on the Simple Sah Model Compare the Simple Sah model to SPICE level 2: K' = 44.8μA/V k=0.5, v (sat) = 1.0V SPICE Level 2 K' = 29.6μA/V k = 0, v (sat) = 1.0V K' = 44.8μA/V k = 0, v (sat) = 1.0V 2 DS DS 2 DS 2 0 0.2 0.4 0.6 0.8 1 25μA 20μA 15μA 10μA 5μA 0μA vDS (volts) iD VGS = 2.0V, W/L = 100μm/100μm, and no mobility effects. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-14 Modification of the Previous Model to Include the Effects of vDS on VT From the previous derivation: vDS WμoQI(y)dv = L iDdy = - 0 0 vDS WμoCox[vGS-v(y)-VT]dv 0 Assume that the threshold voltage varies across the channel in the following way: VT(y) = VT + kv(y) where VT is the value of VT the at the source end of the channel and k is a constant. Integrating the above gives, iD = WμoCox L v2(y) 2 (vGS-VT)v(y)-(1+k) vDS 0 or iD = WμoCox L v2DS 2 (vGS-VT)vDS-(1+k) To find vDS(sat), set the diD/dvDS equal to zero and solve for vDS = vDS(sat), vDS(sat) = vGS-VT 1+k Therefore, in the saturation region, the drain current is iD = WμoCox 2(1+k)L (vGS - VT)2 For k = 0.5 and K’ = 44.8μA/V2, excellent correlation is achieved with SPICE 2 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 10. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-15 Influence of vDS on the Output Characteristics Channel modulation effect: As the value of vDS increases, the effective L decreases causing the current to increase. Illustration: Note that Leff = L - Xd Therefore the model in saturation becomes, iD = K’W 2Leff (vGS-VT)2 Depletion Region B S n+n+ p- substrate diD dvDS = - VG VT VD VDS(sat) Polysilicon p+ K’W 2Leff2 (vGS - VT)2 Leff dLeff dvDS = Xd iD Leff Fig110-06 dXd dvDS iD Therefore, a good approximation to the influence of vDS on iD is iD iD( = 0) + diD dvDS vDS = iD( = 0)(1 + vDS) = K’W 2L (vGS-VT)2(1+vDS) CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-16 Channel Length Modulation Parameter, Assume the MOS is transistor is saturated- iD = μCoxW 2L (vGS - VT)2(1 + vDS) Define iD(0) = iD when vDS = 0V. iD(0) = μCoxW 2L (vGS- VT)2 Now, iD = iD(0)[1 + vDS] = iD(0) + iD(0) vDS Matching with y = mx + b gives the value of iD3(0 VGS3 VGS2 VGS1 vDS iD -1 ) iD2(0) iD1(0) CMOS Analog Circuit Design © P.E. Allen - 2010
  • 11. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-17 Influence of Channel Length on Note that the value of varies with channel length, L. The data below is from a 0.25μm CMOS technology. 0.6 0.5 0.4 0.3 0.2 0.1 0 PMOS NMOS 0 0.5 1 1.5 2 2.5 Channel Length Modulation (V-1) Channel Length (microns) Fig.130-6 Most analog designers stay away from minimum channel length to get better gains and matching at the sacrifice of speed. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-18 Influence of the Bulk Voltage on the Large Signal MOSFET Model The components of the threshold voltage are: VT = Gate-bulk work function (MS) + voltage to change the surface potential (-2F) + voltage to offset the channel-bulk depletion charge (-Qb/Cox) + voltage to compensate the undesired interface charge (-Qss/Cox) We know that Qb = |2F|+|vBS| Therefore, as the bulk becomes more reverse biased with respect to the source, the threshold voltage must increase to offset the increased channel-bulk depletion charge. VD 0 VBS0 = 0V VGS n+ n+ VD 0 iD iD VBS1 0V VGS Polysilicon n+ n+ VD 0 iD = 0 VSB2 VSB1: VGS n+ n+ 060613-02 VSB0 = 0: VSB1 0: p- substrate p- substrate VSB2 VSB1: Polysilicon Polysilicon p+ p+ p+ p- substrate CMOS Analog Circuit Design © P.E. Allen - 2010
  • 12. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-19 Influence of the Bulk Voltage on the Large Signal MOSFET Model - Continued Bulk-Source (vBS) influence on the transconductance characteristics- Decreasing values of bulk-source voltage vGS 060612-02 VBS = 0 iD vDS vGS-VT VT0 VT1 VT2 VT3 ID VGS In general, the simple model incorporates the bulk effect into VT by the previously developed relationship: VT(vBS) = VT0 + 2|f|+|vBS| - 2|f| CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-20 Summary of the Simple Large Signal MOSFET Model N-channel reference convention: Non-saturation-iD = WμoCox L vDS2 2 (1 + vDS) (vGS-VT)vDS- Saturation-iD = WμoCox L vDS(sat)2 (vGS-VT)vDS(sat)- 2 (1+vDS)= G iD + vGS WμoCox D B + + vBS - S vDS - Fig. 110-10 2L (vGS-VT)2(1+vDS) where: μo = zero field mobility (cm2/volt·sec) Cox = gate oxide capacitance per unit area (F/cm2) = channel-length modulation parameter (volts-1) VT = VT0 +
  • 13. 2|f|+|vBS|- 2|f| VT0 = zero bias threshold voltage = bulk threshold parameter (volts-0.5) 2|f| = strong inversion surface potential (volts) For p-channel MOSFETs, use n-channel equations with p-channel parameters and invert the current. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 14. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-21 Silicon Constants Constant Symbol Constant Description Value Units VG k ni o si ox Silicon bandgap (27°C) Boltzmann’s constant Intrinsic carrier concentration (27°C) Permittivity of free space Permittivity of silicon Permittivity of SiO2 1.205 1.381x10-23 1.45x1010 8.854x10-14 11.7 o 3.9 o V J/K cm-3 F/cm F/cm F/cm CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-22 MOSFET Parameters Model Parameters for a Typical CMOS Bulk Process (0.25μm CMOS n-well): Parameter Parameter Description Typical Parameter Value Symbol N-Channel P-Channel Units VT0 Threshold Voltage (VBS = 0) 0.5± 0.15 -0.5 ± 0.15 V K' Transconductance Para-meter (in saturation) 120.0 ± 10% 25.0 ± 10% μA/V2 Bulk threshold parameter 0.4 0.6 (V)1/2 Channel length modulation parameter 0.32 (L=Lmin) 0.06 (L 2Lmin) 0.56 (L=Lmin) 0.08 (L 2Lmin) (V)-1 2|F| Surface potential at strong inversion 0.7 0.8 V CMOS Analog Circuit Design © P.E. Allen - 2010
  • 15. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-23 SUBTHRESHOLD MODEL Large-Signal Model for Weak Inversion The electrons in the substrate at the source side can be expressed as, s Vt np(0) = npoexp
  • 16. The electrons in the substrate at the drain side can be expressed as, s-vDS Vt np(L) = npoexp
  • 17. Therefore, the drain current due to diffusion is, iD = qADn np(L)-np(0)
  • 18. L = WL s Vt qXDnnpoexp
  • 19. 1-exp
  • 20. vDS Vt - where X is the thickness of the region in which iD flows. In weak inversion, the changes in the surface potential, s are controlled by changes in the gate-source voltage, vGS, through a voltage divider consisting of Cox and Cjs, the depletion region capacitance. ds dvGS = Cox Cox+Cjs = 1n s = vGS n + k1 = vGS-VT n + k2 where Cox Cjs φs 060405-04 Poly Oxide Channel Dep. Substrate vGS k2 = k1 + VT n CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-24 Large-Signal Model for Weak Inversion – Continued Substituting the above relationships back into the expression for iD gives, iD = WL qXDnnpo exp k2 Vt exp
  • 21.
  • 23.
  • 24. 1-exp
  • 25.
  • 26. vDS Vt - Define It as It = qXDnnpo exp k2 Vt
  • 27.
  • 28. to get, iD = WL It exp vGS-VT nVt
  • 29.
  • 30. 1-exp
  • 31.
  • 32. vDS Vt - where n 1.5 – 3 If vDS 0, then iD = It WL exp vGS-VT nVt
  • 33.
  • 34.
  • 35. vDS VA 1+ The boundary between nonsaturated and saturated is found as, Vov = VDS(sat) = VON = VGS -VT = 2nVt VGS=VT VGSVT iD 1μA 0 0 vDS 1V Fig. 140-03 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 36. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-25 SHORT CHANNEL, STRONG INVERSION MODEL What is Velocity Saturation? The most important short-channel effect in MOSFETs is the velocity saturation of carriers in the channel. A plot of electron drift velocity versus electric field is shown below. An expression for the electron drift velocity as a function of the electric field is, vd μnE 1+E/Ec where 105 5x104 2x104 104 5x103 105 106 107 Electric Field (V/m) Electron Drift Velocity (m/s) vd = electron drift velocity (m/s) μn = low-field mobility ( 0.07m2/V·s) Ec = critical electrical field at which velocity saturation occurs Fig130-1 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-26 Short-Channel Model Derivation As before, JD = JS = iD W = QI(y)vd(y) iD = WQI(y)vd(y) = WQI(y)μnE 1+E/Ec iD E Ec = WQI(y)μnE 1+ Replacing E by dv/dy gives, iD dv dy = WQI(y)μn 1 Ec 1+ dv dy Integrating along the channel gives, L iD 0 vDS WQI(y)μndv dv dy dy = 1 Ec 1+ 0 The result of this integration is, μnCox iD = 2 vDS L 1 Ec 1+ WL [2(vGS-VT)vDS-vDS2] = μnCox 2 1+vDS WL [2(vGS-VT)vDS-vDS2] where = 1/(EcL) with dimensions of V-1. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 37. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-27 Saturation Voltage Differentiating iD with respect to vDS and setting equal to zero gives, V’DS(sat) = 1 1+2(VGS-VT-1 (VGS-VT) (VGS-VT) 1- 2 +··· if (VGS-VT) 2 1 Therefore, V’DS(sat) VDS(sat) (VGS-VT) 1- 2 +··· Note that the transistor will enter the saturation region for vDS vGS - VT in the presence of velocity saturation. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-28 Large Signal Model for the Saturation Region Assuming that (VGS-VT) 2 1 gives V’DS(sat) (VGS-VT) Therefore the large signal model in the saturation region becomes, iD = K’ 2[1+(vGS-VT)] WL [ vGS - VT]2, vDS (VGS-VT) (VGS-VT) 1- 2 +··· CMOS Analog Circuit Design © P.E. Allen - 2010
  • 38. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-29 The Influence of Velocity Saturation on the Transconductance Characteristics The following plot was made for K’ = 110μA/V2 and W/L = 1: 1000 800 600 400 200 0 θ = 0 θ = 0.2 θ = 0.4 θ = 0.6 θ = 0.8 θ = 1.0 0.5 1 1.5 2 2.5 3 iD/W (μA/μm) vGS (V) Fig130-2 Note as the velocity saturation effect becomes stronger, that the drain current-gate voltage relationship becomes linear. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-30 Circuit Model for Velocity Saturation A simple circuit model to include the influence of velocity saturation is is shown: We know that iD = K’W 2L (vGS’ -VT)2 and vGS = vGS’ + iD RSX or vGS’ = vGS - iDRXS Substituting vGS’ into the current relationship gives, iD = K’W 2L (vGS - iDRSX -VT)2 Solving for iD results in, iD = K’ 2 WL 1+K’ RSX(vGS-VT) WL (vGS - VT)2 Comparing with the previous result, we see that = K’ WL RSX RSX = L K’W = 1 EcK’W Therefore for K’ = 110μA/V2, W = 1μm and Ec = 1.5x106V/m, we get RSX = 6.06k. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 39. Lecture 090 – Large Signal MOSFET Model (3/24/10) Page 090-31 SUMMARY • The modeling of this lecture is devoted to understanding how the circuit works • The two primary current-voltage characteristics of the MOSFET are the transconductance characteristic and the output characteristic • The simple Sah large signal model is good enough for most applications and technology • The Sah model can be improved in the region of the knee and for the weak dependence of drain current on drain-source voltage in the saturation region • Most designers do not work at minimum channel length because of the channel length modulation effect and because worse matching occurs for small areas • The threshold voltage is increased as the bulk-source is reverse biased • The subthreshold model accounts for very small currents that flow in the channel when the gate-source voltage is smaller than the threshold voltage • The subthreshold current is exponentially related to the gate-source voltage • Velocity saturation occurs at minimum channel length and can be modeled by including a source degeneration resistor with the simple large signal model CMOS Analog Circuit Design © P.E. Allen - 2010