SlideShare a Scribd company logo
1 of 17
Download to read offline
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-1 
LECTURE 300 – LOW VOLTAGE OP AMPS 
LECTURE ORGANIZATION 
Outline 
• Introduction 
• Low voltage input stages 
• Low voltage gain stages 
• Low voltage bias circuits 
• Low voltage op amps 
• Summary 
CMOS Analog Circuit Design, 2nd Edition Reference 
Pages 415-432 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-2 
INTRODUCTION 
Implications of Low-Voltage, Strong-Inversion Operation 
• Reduced power supply means decreased dynamic range 
• Nonlinearity will increase because the transistor is working close to VDS(sat) 
• Large values of  because the transistor is working close to VDS(sat) 
• Increased drain-bulk and source-bulk capacitances because they are less reverse 
biased. 
• Large values of currents and W/L ratios to get high transconductance 
• Small values of currents and large values of W/L will give smallVDS(sat) 
• Severely reduced input common mode range 
• Switches will require charge pumps 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-3 
What are the Limits of Power Supply? 
The limit comes when there is no signal range left when the dc drops are subtracted from 
VDD. 
Minimum power supply (no signal swing range): 
VDD(min.) = VT + 2VON 
For differential amplifiers, the minimum power 
supply is: 
VDD(min.) = 3VON 
However, to have any input common mode range, the 
effective minimum power supply is, 
VDD(min.) = VT + 2VON 
+ 
VON 
− 
+ 
VT+VON 
− 
060802-01 
VDD 
VPB1 
M2 M3 
VT+VON 
VNB1 
M1 
M4 
+ 
− 
+ 
VON 
− 
VON 
M3 M4 
M1 M2 
VON + 
VT+VON 
060802-02 
VPB1 
VDD 
+ 
VT+VON 
− 
VNB1 
+ 
− 
+ 
− 
VON 
− 
+ 
− 
M5 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-4 
Minimum Power Supply Limit – Continued 
The previous consideration of the differential amplifier did not consider getting the signal 
out of the amplifier. This will add another VON. 
+ 
− 
VON 
VT 
M7 M8 
M9 
060802-03 
VPB1 
VDD 
M3 M4 
M1 M2 
+ 
VT+VON 
− 
VNB1 
+ 
VON + 
− 
+ 
VON 
− 
VON 
− 
+ 
− 
VPB2 
M6 
VT+VON 
M5 
VPB1 
+ 
− 
VT+VON 
Therefore, 
VDD(min.) = VT + 3VON 
This could be reduced to 3VON with the floating battery but its implementation probably 
requires more than 3VON of power supply. 
Note the output signal swing is VT + VON while the input common range is VON. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-5 
LOW VOLTAGE INPUT STAGES 
Input Common Mode Voltage Range 
Minimum power supply (ICMR = 0): 
VDD(min) = VSD3(sat)-VT1+VGS1+VDS5(sat) 
= VSD3(sat)+VDS1(sat)+VDS5(sat) 
Input common-mode range: 
Vicm(upper) = VDD - VSD3(sat) + VT1 
Vicm(lower) = VDS5(sat) + VGS1 
If the threshold magnitudes are 0.7V, VDD = 
1.5V and the saturation voltages are 0.3V, then 
Vicm(upper) = 1.5 - 0.3 + 0.7 = 1.9V 
and 
Vicm(lower) = 0.3 + 1.0 = 1.3V 
giving an ICMR of 0.6V. 
VDD 
M3 M4 
VSD3(sat) 
-VT1 
vicm M1 M2 
M5 
VGS1 
VDS5(sat) 
+ 
- 
VBias 
+ 
- 
VBias 
Fig. 7.6-3 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-6 
Increasing ICMR using Parallel Input Stages 
Turn-on voltage for the n-channel input: 
Vonn = VDSN5(sat) + VGSN1 
Turn-on voltage for the p-channel input: 
Vonp = VDD - VSDP5(sat) - VSGP1 
The sum of Vonn and Vonp equals the minimum 
power supply. 
Regions of operation: 
VDD 
MN3 MP5 
Vicm Vicm 
MP1 MP2 
MN1 MN2 
MP3 
MP4 
MN4 
MN5 
IBias 
M6 
M7 
Fig. 7.6-4 
VDD  Vicm  Vonp: (n-channel on and p-channel off) gm(eq) = gmN 
Vonp  Vicm  Vonn: (n-channel on and p-channel on) gm(eq) = gmN + gmP 
Vonn  Vicm  0 : (n-channel off and p-channel on) gm(eq) = gmP 
where gm(eq) is the equivalent input transconductance of the above input stage, gmN is 
the input transconductance for the n-channel input and gmP is the input trans-conductance 
for the p-channel input. 
gm(eff) 
gmN+gmP 
gmP gmN 
n-channel off Vonn n-channel on Vonp 
n-channel on 
p-channel on p-channel on p-channel off 
0 VSDP5(sat)+VGSN1 VDD-VSDP5(sat)+VGSN1 VDD 
Vicm 
Fig. 7.6-5 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-7 
Removing the Nonlinearity in Transconductances as a Function of ICMR 
Increase the bias current in the differential 
amplifier that is on when the other 
differential amplifier is off. 
Three regions of operation depending on the 
value of Vicm: 
1.) Vicm  Vonn: n-channel diff. amp. off 
and p-channel on with Ip = 4Ib: 
gm(eff) = 
KP’WP 
LP 
2 Ib 
2.) Vonn  Vicm  Vonp: both on with 
In = Ip = Ib: 
gm(eff) = 
KN’WN 
LN 
Ib + 
Inn 
Ip 
Vicm Vicm 
VB2 VB1 
KP’WP 
LP 
MB2 MB1 
Ib 
VDD 
Ib 
MP1 MP2 
Ib 
1:3 
MN1 
In 
3.) Vicm  Vonp: p-channel diff. amp. off and n-channel on with In = 4Ib: 
gm(eff) = 
KN’WN 
LN 
2 Ib 
3:1 
MN2 
Ipp 
Fig. 7.6-6 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-8 
How Does the Current Compensation Work? 
Set VB1 = Vonn and VB2 = Vonp. 
If vicm Vonp then Ip = Ib and Inn=0 
If vicm Vonp then Ip = 0 and Inn=Ib 
Vonn 
vicm vicm 
MN1 MN2 
MB1 
In Ipp 
Ib 
If vicm Vonn then In = Ib and Ipp=0 
If vicm Vonn then In = 0 and Ipp=Ib 
VDD 
Vonp 
Ib 
Inn Ip 
MP1 MP2 
vicm vicm 
MB2 
Fig. 7.6-6A 
Result: 
gm(eff) 
gmN=gmP 
0 Vicm 
Vonn Vonp VDD 
0 
Fig. 7.6-7 
The above techniques and many similar ones are good for power supply values down to 
about 1.5V. Below that, different techniques must be used or the technology must be 
modified (natural devices). 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-9 
Natural Transistors 
Natural or native NMOS transistors normally have a threshold voltage around 0.1V 
before the threshold is increased by increasing the p concentration in the channel. 
If these transistors are characterized, then they provide a means of achieving low voltage 
operation. 
Minimum power supply (ICMR = 0): 
VDD(min) = 3VON 
Input common mode range: 
Vicm(upper) = VDD – VON + VT(natural) 
Vicm(lower) = 2VON + VT(natural) 
If VT(natural)  VON = 0.1V, then 
Vicm(upper) = VDD 
Vicm(lower) = 3VON = 0.3V 
Therefore, 
ICMR = VDD - 3VON = VDD – 0.3V  VDD(min)  1V 
Matching tends to be better (less doping and magnitude is smaller). 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-10 
Bulk-Driven MOSFET 
A depletion device would permit large ICMR even with very small power supply voltages 
because VGS is zero or negative. 
When a MOSFET is driven from the bulk with the gate held constant, it acts like a 
depletion transistor. 
Cross-section of an n-channel 
bulk-driven MOSFET: 
Large signal equation: 
iD = 
KN’W 
2L  
 
 
  
vBS VDS VGS VDD 
Bulk Drain Gate Source Substrate 
 p+ n+ 
Channel 
 
 
p-well 
 
Depletion 
Region 
n substrate 
VGS-VT0- 2|F|-vBS+ 2|F| 2 
 
Small-signal transconductance: 
gmbs = 
 (2KN’W/L)ID 
2 2|F|-VBS 
 
n+ 
 
n+ 
 
QP 
QV 
Fig. 7.6-8 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-11 
Bulk-Driven MOSFET - Continued 
Transconductance characteristics: 
Saturation: VDS  VBS – VP gives, 
VBS = VP + VON 
iD = IDSS  
VBS 
VP 
 
1- 
2 
2000 
1500 
1000 
500 
Drain Current (μA) 
IDSS 
Bulk-source driven 
Gate-source 
driven 
Comments: 
0 
• gm (bulk)  gm(gate) if VBS  0 
-3 -2 -1 0 1 2 3 
Gate-Source or Bulk-Source Voltage (Volts) 
(forward biased ) 
• Noise of both configurations are the same (any differences comes from the gate versus 
bulk noise) 
• Bulk-driven MOSFET tends to be more linear at lower currents than the gate-driven 
MOSFET 
• Very useful for generation of IDSS floating current sources. 
Fig. 7.6-9 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-12 
Bulk-Driven, n-channel Differential Amplifier 
What is the ICMR? 
Vicm(min) = VSS + VDS5(sat) + VBS1 = VSS + VDS5(sat) - |VP1| + VDS1(sat) 
Note that Vicm can be less than VSS if |VP1|  VDS5(sat) + VDS1(sat) 
Vicm(max) = ? 
As Vicm increases, the current through 
M1 and M2 is constant so the source 
increases. However, the gate voltage stays 
constant so that VGS1 decreases. Since the 
current must remain constant through M1 
and M2 because of M5, the bulk-source 
voltage becomes less negative causing VTN1 
to decrease and maintain the currents 
through M1 and M2 constant. If Vicm is 
increased sufficiently, the bulk-source 
voltage will become positive. However, 
current does not start to flow until VBS is 
greater than 0.3 volts so the effective 
Vicm(max) is 
M7 
vi1 vi2 
+ 
VBS1 - 
+ 
VGS - 
M6 M5 
IBias 
Vicm(max)  VDD - VSD3(sat) - VDS1(sat) + VBS1. 
VDD 
M3 M4 
VBS2 - 
M1 M2 
VSS 
+ 
Fig. 7.6-10 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-13 
Illustration of the ICMR of the Bulk-Driven, Differential Amplifier 
250nA 
200nA 
150nA 
100nA 
50nA 
0 
-50nA 
Bulk-Source Current 
-0.50V -0.25V 0.00V 0.25V 0.50V 
Input Common-Mode Voltage 
Fig. 7.6-10A 
Comments: 
• Effective ICMR is from VSS to VDD -0.3V 
• The transconductance of the input stage can vary as much as 100% over the ICMR 
which makes it very difficult to compensate 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-14 
Reduction of VT through Forward Biasing the Bulk-Source 
The bulk can be used to reduce the threshold sufficiently to permit low voltage 
applications. The key is to control the amount of forward bias of the bulk-source. 
Current-Driven Bulk Technique†: 
S 
D 
IBB 
G 
B 
S 
D 
IBB 
G 
B 
IE 
ICD ICS 
Reduced Threshold MOSFET Parasitic BJT 
Gate 
 
Source Drain 
n+ 
 
n-well 
p+ p+ 
p- substrate 
Layout Fig. 7.6-19 
Problem: 
Want to limit the BJT current to some value called, Imax. 
Therefore, 
IBB = 
Imax 
CS+CD+1 
† T. Lehmann and M. Cassia, “1V Power Supply CMOS Cascode Amplifier,” IEEE J. of Solid-State Circuits, Vol. 36, No. 7, 2001. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-15 
Current-Driven Bulk Technique 
Bias circuit for keeping the Imax defined 
independent of BJT betas. 
Note: 
ID,C = ICD + ID 
IS,E = ID + IE + IR 
The circuit feedback causes a bulk bias 
current IBB and hence a bias voltage VBIAS 
such that 
IS,E = ID + IBB(1+CS + CD) + IR 
M3 
VDD 
M1 M2 
M7 
R 
IBB 
IS,E 
ID,C 
M5 M4 
M6 
VBias1 
M8 
VBias2 
+ 
VBias 
IR 
- 
Use VBias1 and VBias2 to set ID,C  1.1ID, 
IS,E  1.3ID and IR  0.1ID which sets IBB at 0.1ID assuming we can neglect ICS with 
respect to ICD. 
For this circuit to work, the following conditions must be satisfied: 
VBE  VTN + IRR and |VTP| + VDS(sat)  VTN + IRR 
If |VTP|  VTN, then the level shifter IRR can be eliminated. 
VSS 
Fig. 7.6-20 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-16 
LOW VOLTAGE GAIN STAGES 
Cascade Stages 
Simple cascade of inverters: 
-gm4 
R4 
060803-01 
VDD 
VPB1 
M2 M3 
VNB1 
M1 
M4 
VPB1 
M5 
M6 
M7 
VNB1 
M8 
-gm1 
R1 
-gm2 
R2 
-gm3 
R3 
The problem with this approach is the number of poles that occur (one per stage) if the 
amplifier is to be used in a closed loop application. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-17 
Nested Miller Compensation 
Principle: Use Miller compensation 
Cm3 
to split the poles within a feedback 
loop. 
Cm2 Cm1 
Compensating Results: 
1) Cm1 pushes p4 to higher 
vin 
frequencies and p3 down to lower 
frequencies 
2) Cm2 pushes p2 to higher 
frequencies and p1 down to lower frequencies 
3) Cm3 pushes p3 to higher frequencies (feedback path)  pulls p1 further to lower 
frequencies 
Equations: 
p1 p2 p3 p4 
v -g out -gm1 -gm2 m3 -gm4 
060812-01 
R1 R2 R3 RL CL 
GB  gm1/C m3 p2  gm2/Cm3 p3  gm3Cm3/(Cm1Cm2) p4  gm4/CL 
The objective is to get all poles larger than GB: 
GB  p2, p3, p4 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-18 
Illustration of the Nested Miller Compensation Technique 
jω 
σ 
p4 p3 p2 p1 
jω 
σ 
p4 p3 p2 p1 
jω 
σ 
p4 p2 p3 p1 
jω 
σ 
p4 p3 p2 p1 
Cm1 
Cm2 
Cm3 
-GB 070508-01 
This approach is complicated by the feedforward paths which create RHP zeros. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-19 
Elimination of the RHP Zeros 
The following are least three ways in which the RHP zeros can be eliminated. 
1.) Nulling resistor. 
VPB1 
Cc1 
Rz1 
060803-02 
VDD 
M2 
M1 
z1 = 
1 
Cc1(1/gm1Rz1) 
2.) Feedback only – buffer. 
Cc1 
VPN1 
VDD 
060803-03 
VDD 
VPB1 
M2 
M1 
M3 
Increases the minimum power 
supply by VON. 
3.) Feedback only – gain. 
VPB1 
VDD 
VPB2 
VNB1 
060803-04 
VDD 
Cc1 
M2 
M1 
M3 
M4 
M5 
Increases the pole and 
increases the minimum 
power supply by VON. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-20 
Use of LHP Zeros to Compensate Cascaded Amplifiers 
Principle: Feedforward around a noninverting stage creates a LHP zero or inverting 
feedforward around an inverting stage also creates a LHP zero. 
Example of Multipath, Nested Miller Compensation†: 
CM1 
CM2 
Vin Vout 
+gm1 +gm2 
060803-05 
R3 
R1 
+gm4 
C3 
-gm3 
R2,4 
M5 M6 
VPB1 
C CM1 M2 
M1 M3 M4 M2 
M8 
VNB1 
M7 
VDD 
M11 
M9 M10 
VRef1 
M12 
M14 
M13 
VRef2 
Vout 
C3 
Vin 
Unfortunately, the analysis becomes quite complex - for the details refer to the reference 
below. 
† R. Hogervorst and J. H. Huijsing, Design of Low-Voltage, Low-Power Operational Amplifier Cells, Kluwer Academic Publishers, 1996, pp. 127-131. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-21 
Cascoding 
Possibilities that trade off output resistance and headroom: 
Rout 
vout 
M2 
M1 
Sat. 
Act. 
Gate-Connected Cascode 
051205-01 
VGG 
ID 
+ 
− v 
Rout 
out 
No Cascoding 
VT+2Von 
VGG 
ID 
+ 
Rout 
vout 
− 
M2 
M1 
Sat. 
Sat. 
Normal Cascoding 
VT+2Von 
VGG 
ID 
+ 
Rout 
vout 
− 
M2 
M1 
Sat. 
Act. 
Reduced Headroom Cascoding 
VGG 
ID 
+ 
− 
No 
Cascode 
Normal 
Cascode 
Reduced Headroom 
Cascode 
Gate-Connected 
Cascode 
vout 
Von1 1 
1 + 
ß1 
ß2 1 + 
ß1 
ß2(2x-x2) 2x + 
ß1 
ß2(2x-x2) 
Rout 
rds 1 2ß2 
2ID 
2ß2(x-0.5x2) 
ß1(1-x)+ ID x-0.5x2 
2ß2(x-0.5x2) 
ß1(1-x)+ ID x-0.5x2 
Note: vDS(active) = x·Von1 = x·(VGG–VT) 
x = 0.1 and ß2 = 9ß1  vout=1.145Von1 and Rout=1.45rds for reduced headroom cascode 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-22 
Solutions to the Low Headroom Problem – High Voltage Tolerant Circuits 
High voltage tolerant transistors in standard CMOS†: 
VDD(nom.) 
Upper gate 
switched 
to highest 
potential 
Thick oxide 
transistor Thick oxide 
050416-02 
cascode 
VDD(nom.) 
Retractable cascode 
composite transistor 
(Transistor symbols with additional separation between the gate line and the channel line 
represent thick oxide transistors.) 
† Anne-Johan Annema, et. Al., “5.5-V I/O in a 2.5-V 0.25μm CMOS Technology,” IEEE J. of Solid-State Circuits, Vol. 36, No. 3, March 2001, pp. 
528-538. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-23 
LOW VOLTAGE BIAS CIRCUITS 
A Low-Voltage Current Mirror with Wide Input and Output Swings 
The current mirror below requires a power supply of VT+3VON and has a Vin(min) = 
VON and a Vout(min) = 2VON (less for the regulated cascode output mirror). 
I1-IB IB I2 
iin 
IB 
M3 
VDD 
M4 
M6 
iout 
M7 
M1 M2 
M5 
or 
iin 
I1 IB2 IB1 I2 
M1 
M2 
IB1 
M3 
VDD 
M4 
M6 M5 
iout 
M7 
IB2 
Fig. 7.6-13A 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-24 
Low-Voltage Current Mirrors using the Bulk-Driven MOSFET 
The biggest problem with current mirrors is the large minimum input voltage required for 
previously examined current mirrors. 
If the bulk-driven MOSFET is biased with a current that exceeds IDSS then it is 
enhancement and can be used as a current mirror. 
VDD 
iin 
iout 
M1 M2 
+ 
- 
VGS 
+ 
- 
VBS 
+ 
- 
VGS 
VDD 
iin iout 
M3 M4 
+ 
- 
VBS3 
+ 
VGS4 
- 
M1 M2 
+ 
VGS3 
+ 
- 
VGS1 
- 
+ 
- 
VBS1 
+ 
- 
VGS2 
Simple bulk-driven 
current mirror 
Cascodebulk-driven 
current mirror. Fig.7.6-11 
6 10-5 
5 10-5 
4 10-5 
3 10-5 
2 10-5 
1 10-5 
0 
Cascode Current Mirror 
All W/L's = 200μm/4μm 
Iin=50μA 
Iin=10μA 
2μm CMOS 
0 0.2 0.4 0.6 0.8 1 
Iout (A) 
Vout (V) 
Iin=40μA 
Iin=30μA 
Iin=20μA 
Fig. 7.6-12 
The cascode current mirror gives a minimum input voltage of less than 0.5V for currents 
less than 100μA 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-25 
Bandgap Topologies Compatible with Low Voltage Power Supply 
VDD 
VPTAT 
VBE 
IPTAT 
VRef 
Voltage-mode bandgap topology. 
INL 
IPTAT 
VRef 
VDD 
IVBE 
VDD 
VDD 
Current-mode bandgap topology. 
IVBE 
VRef 
VDD 
VDD VDD 
IPTAT 
INL 
R2 
R3 
R1 
Voltage-current mode bandgap topology 
Fig. 7.6-14 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-26 
Technique for Canceling the Bandgap Curvature 
VDD 
1:K2 1:K3 
M1 M2 M3 M4 
I2 INL 
IVBE K1IPTAT 
K3INL 
Current 
M2 active 
M3 off 
M2 sat. 
M3 on 
K2IVBE K1IPTAT 
Temperature 
INL 
Circuit to generate nonlinear correction term, INL. Illustration of the various currents. 
Fig. 7.6-16 
INL =  
0 
K1IPTAT-K2IVBE 
, 
, 
K2IVBEK1IPTAT 
K2IVBEK1IPTAT 
The combination of the above concept with the previous slide yielded a curvature-corrected 
bandgap reference of 0.596V with a TC of 20ppm/C° from -15C° to 90C° using 
a 1.1V power supply.† In addition, the line regulation was 408 ppm/V for 1.2VDD10V 
and 2000 ppm/V for 1.1VDD10V. The quiescent current was 14μA. 
† G.A. Rincon-Mora and P.E. Allen, “A 1.1-V Current-Mode and Piecewise-Linear Curvature-Corrected Bandgap Reference,” J. of Solid-State 
Circuits, vol. 33, no. 10, October 1998, pp. 1551-1554. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-27 
LOW VOLTAGE OP AMPS 
A Low Voltage Op Amp using Normal Technology 
VDD(min) = 3VON + VT (ICMR = VON): 
M11 
vOUT 
Cc 
M6 M7 
M8 M9 M10 
060804-01 
VDD 
VPB1 
M3 M4 
M1 M2 
VNB1 
VPB2 
+ 
− 
vIN 
M5 
Performance: 
Gain  gm2rds2 
Miller compensated 
Output swing is VDD -2VON 
Max. CM input = VDD 
Min. CM input = 2VON + VT 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-28 
A Low-Voltage, Wide ICMR Op Amp 
VDD(min) = 4VON + 2VT (ICMR = VDD): 
3:1 
+ − 
1:3 
041231-15 
VDD 
VDD-VT-VDS(sat) 
VDD-VT-2VDS(sat) 
VT+2VDS(sat) 
VT+VDS(sat) 
vOUT 
Performance: 
Gain  gm2rds2, self compensated, and output swing is VDD -4VON 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-29 
An Alternate Low-Voltage, Wide ICMR Op Amp 
VDD(min) = 4VON + 2VT (ICMR = VDD): 
VDD 
3:1 
VPB2 
VPB1 
+ − vOUT 
1:3 
VNB2 
060804-02 
VPB2 
VNB2 
VNB1 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-30 
A 1-Volt, Two-Stage Op Amp 
Uses a bulk-driven differential input amplifier. 
VDD=1V 
6000/6 6000/6 3000/6 6000/6 
M8 M9 M10 M11 
vin+ 
vout 
IBias 
Cc=30pF 
CL 
Rz=1kΩ 
vin- 
2000/2 
M1 M2 
Q5 M3 M4 Q6 
M12 
M7 
400/2 400/2 400/2 
Fig. 7.6-18 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-31 
Performance of the 1-Volt, Two-Stage Op Amp 
Specification (VDD=0.5V, VSS=-0.5V) Measured Performance (CL = 22pF) 
DC open-loop gain 49dB (Vicm mid range) 
Power supply current 300μA 
Unity-gainbandwidth (GB) 1.3MHz (Vicm mid range) 
Phase margin 57° (Vicm mid range) 
Input offset voltage ±3mV 
Input common mode voltage range -0.475V to 0.450V 
Output swing -0.475V to 0.491V 
Positive slew rate +0.7V/μsec 
Negative slew rate -1.6V/μsec 
THD, closed loop gain of -1V/V -60dB (0.75Vp-p, 1kHz sinewave) 
-59dB (0.75Vp-p, 10kHz sinewave) 
THD, closed loop gain of +1V/V -59dB (0.75Vp-p, 1kHz sinewave) 
-57dB (0.75Vp-p, 10kHz sinewave) 
Spectral noise voltage density 367nV/ Hz @ 1kHz 
181nV/ Hz @ 10kHz, 
81nV/ Hz @ 100kHz 
444nV/ Hz @ 1MHz 
Positive Power Supply Rejection 61dB at 10kHz, 55dB at 100kHz, 22dB at 1MHz 
Negative Power Supply Rejection 45dB at 10kHz, 27dB at 100kHz, 5dB at 1MHz 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-32 
A 1-Volt, Folded-Cascode OTA using the Current-Driven Bulk Technique 
M6 
Cx 
VBiasP 
+ 
vin M1 M2 
- 
M3 M5 M4 
M11 M12 
M9 M10 
M7 
vout 
VDD 
M17 
VSS 
VBiasN 
CL 
M8 
M13 
M14 
M15 
M16 
Fig. 7.6-21 
Transistors with forward-biased bulks are in a shaded box. 
For large common mode input changes, Cx, is necessary to avoid slewing in the input 
stage. 
To get more voltage headroom at the output, the transistors of the cascode mirror have 
their bulks current driven. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-33 
A 1-Volt, Folded-Cascode OTA using the Current-Driven Bulk Technique - 
Continued 
Experimental results: 
0.5μm CMOS, 40μA total bias current (Cx = 10pF) 
Supply Voltage 1.0V 0.8V 0.7V 
Common-mode input 
range 
0.0V-0.65V 0.0V-0.4V 0.0V-0.3V 
High gain output range 0.35V-0.75V 0.25V-0.5V 0.2V-0.4V 
Output saturation limits 0.1V-0.9V 0.15V-0.65V 0.1V-0.6V 
DC gain 62dB-69dB 46dB-53dB 33dB-36dB 
Gain-Bandwidth 2.0MHz 0.8MHz 1.3MHz 
Slew-Rate (CL=20pF) 0.5V/μs 0.4V/μs 0.1V/μs 
Phase margin (CL=20pF) 57° 54° 48° 
The nominal value of bulk current is 10nA gives a 10% increase in differential pair 
quiescent current assuming a BJT  of 100. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-34 
SUMMARY 
• Integrated circuit power supplies are rapidly decreasing (today 2-3Volts) 
• Classical analog circuit design techniques begin to deteriorate at 1.5-2 Volts 
• Approaches for lower voltage circuits: 
- Use natural NMOS transistors (VT  0.1V) 
- Drive the bulk terminal 
- Forward bias the bulk 
- Use depeletion devices 
• The dynamic range will be compressed if the noise is not also reduced 
• Fortunately, the threshold reduction continues to allow the techniques of this section to 
be used in today’s technology 
CMOS Analog Circuit Design © P.E. Allen - 2010

More Related Content

What's hot

Operational Amplifiers I
Operational Amplifiers IOperational Amplifiers I
Operational Amplifiers Iali_craigslist
 
DIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFETDIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFETPraveen Kumar
 
Lect2 up240 (100328)
Lect2 up240 (100328)Lect2 up240 (100328)
Lect2 up240 (100328)aicdesign
 
Ece 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampEce 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampKarthik Rathinavel
 
Power Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusPower Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusSteve Mappus
 
Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)aicdesign
 
Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
Wide Vin DC/DC Converters: Reliable Power for Demanding ApplicationsDesign World
 
ECE 626 project report Switched Capacitor
ECE 626 project report Switched CapacitorECE 626 project report Switched Capacitor
ECE 626 project report Switched CapacitorKarthik Rathinavel
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)aicdesign
 
Current_Shap_Strat_Buck_PFC
Current_Shap_Strat_Buck_PFCCurrent_Shap_Strat_Buck_PFC
Current_Shap_Strat_Buck_PFCSteve Mappus
 
Design of oscillators using cmos ota
Design of oscillators using cmos otaDesign of oscillators using cmos ota
Design of oscillators using cmos otaRamesh Patriotic
 
Passive component z versus freq
Passive component z versus freqPassive component z versus freq
Passive component z versus freqPei-Che Chang
 
Design of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierDesign of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierSteven Ernst, PE
 
Lab 4 EEL 3552 Amplitude Modulation with MATLAB Simulations
Lab 4 EEL 3552 Amplitude Modulation with MATLAB SimulationsLab 4 EEL 3552 Amplitude Modulation with MATLAB Simulations
Lab 4 EEL 3552 Amplitude Modulation with MATLAB SimulationsKatrina Little
 

What's hot (19)

Operational Amplifiers I
Operational Amplifiers IOperational Amplifiers I
Operational Amplifiers I
 
DIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFETDIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFET
 
Lect2 up240 (100328)
Lect2 up240 (100328)Lect2 up240 (100328)
Lect2 up240 (100328)
 
Ece 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampEce 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op amp
 
Power Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusPower Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_Mappus
 
Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)
 
Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
 
Folded cascode1
Folded cascode1Folded cascode1
Folded cascode1
 
ECE 626 project report Switched Capacitor
ECE 626 project report Switched CapacitorECE 626 project report Switched Capacitor
ECE 626 project report Switched Capacitor
 
Ece523 folded cascode design
Ece523 folded cascode designEce523 folded cascode design
Ece523 folded cascode design
 
ECNG 6503 #2
ECNG 6503  #2ECNG 6503  #2
ECNG 6503 #2
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)
 
Current_Shap_Strat_Buck_PFC
Current_Shap_Strat_Buck_PFCCurrent_Shap_Strat_Buck_PFC
Current_Shap_Strat_Buck_PFC
 
Design of oscillators using cmos ota
Design of oscillators using cmos otaDesign of oscillators using cmos ota
Design of oscillators using cmos ota
 
Passive component z versus freq
Passive component z versus freqPassive component z versus freq
Passive component z versus freq
 
ECNG 3013 B
ECNG 3013 BECNG 3013 B
ECNG 3013 B
 
Design of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierDesign of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational Amplifier
 
Lab 4 EEL 3552 Amplitude Modulation with MATLAB Simulations
Lab 4 EEL 3552 Amplitude Modulation with MATLAB SimulationsLab 4 EEL 3552 Amplitude Modulation with MATLAB Simulations
Lab 4 EEL 3552 Amplitude Modulation with MATLAB Simulations
 
ECNG 3013 C
ECNG 3013 CECNG 3013 C
ECNG 3013 C
 

Viewers also liked

Cs with active load
Cs with active loadCs with active load
Cs with active loadsam910
 
Vub ecco gbi jv tdef
Vub ecco gbi jv tdefVub ecco gbi jv tdef
Vub ecco gbi jv tdefJaap van Till
 
Mi primera presentacion
Mi primera presentacionMi primera presentacion
Mi primera presentacionLidiaVarela15
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)aicdesign
 
Czolg renault-ft-powstanie-budowa-i-uzycie-w-boju-na-froncie-zachodnim
Czolg renault-ft-powstanie-budowa-i-uzycie-w-boju-na-froncie-zachodnimCzolg renault-ft-powstanie-budowa-i-uzycie-w-boju-na-froncie-zachodnim
Czolg renault-ft-powstanie-budowa-i-uzycie-w-boju-na-froncie-zachodnimKsięgarnia Grzbiet
 
Billige dæk online
Billige dæk onlineBillige dæk online
Billige dæk onlineJonas Larsen
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)aicdesign
 
Lect2 up280 (100328)
Lect2 up280 (100328)Lect2 up280 (100328)
Lect2 up280 (100328)aicdesign
 
Lucas a aprendizaje colaborativo
Lucas a aprendizaje colaborativoLucas a aprendizaje colaborativo
Lucas a aprendizaje colaborativoLLLLLAAAA
 
tax law should be reformed to encourage savings ?
tax law should be reformed to encourage savings ?tax law should be reformed to encourage savings ?
tax law should be reformed to encourage savings ?tripti4
 

Viewers also liked (14)

Cs with active load
Cs with active loadCs with active load
Cs with active load
 
Vub ecco gbi jv tdef
Vub ecco gbi jv tdefVub ecco gbi jv tdef
Vub ecco gbi jv tdef
 
Dywizje waffen-ss-1939-1945
Dywizje waffen-ss-1939-1945Dywizje waffen-ss-1939-1945
Dywizje waffen-ss-1939-1945
 
Mi primera presentacion
Mi primera presentacionMi primera presentacion
Mi primera presentacion
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)
 
Czolg renault-ft-powstanie-budowa-i-uzycie-w-boju-na-froncie-zachodnim
Czolg renault-ft-powstanie-budowa-i-uzycie-w-boju-na-froncie-zachodnimCzolg renault-ft-powstanie-budowa-i-uzycie-w-boju-na-froncie-zachodnim
Czolg renault-ft-powstanie-budowa-i-uzycie-w-boju-na-froncie-zachodnim
 
Billige dæk online
Billige dæk onlineBillige dæk online
Billige dæk online
 
Mapa conceptual
Mapa conceptualMapa conceptual
Mapa conceptual
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)
 
Lect2 up280 (100328)
Lect2 up280 (100328)Lect2 up280 (100328)
Lect2 up280 (100328)
 
Lucas a aprendizaje colaborativo
Lucas a aprendizaje colaborativoLucas a aprendizaje colaborativo
Lucas a aprendizaje colaborativo
 
tax law should be reformed to encourage savings ?
tax law should be reformed to encourage savings ?tax law should be reformed to encourage savings ?
tax law should be reformed to encourage savings ?
 
Escultura s xx
Escultura s xxEscultura s xx
Escultura s xx
 
ゼロからのscrum
ゼロからのscrumゼロからのscrum
ゼロからのscrum
 

Similar to Lect2 up300 (100328)

Lect2 up250 (100328)
Lect2 up250 (100328)Lect2 up250 (100328)
Lect2 up250 (100328)aicdesign
 
Lect2 up160 (100325)
Lect2 up160 (100325)Lect2 up160 (100325)
Lect2 up160 (100325)aicdesign
 
Lect2 up190 (100327)
Lect2 up190 (100327)Lect2 up190 (100327)
Lect2 up190 (100327)aicdesign
 
Lect2 up220 (100327)
Lect2 up220 (100327)Lect2 up220 (100327)
Lect2 up220 (100327)aicdesign
 
Lect2 up090 (100324)
Lect2 up090 (100324)Lect2 up090 (100324)
Lect2 up090 (100324)aicdesign
 
A Low Power Low Voltage High Performance CMOS Current Mirror
A Low Power Low Voltage High Performance CMOS Current MirrorA Low Power Low Voltage High Performance CMOS Current Mirror
A Low Power Low Voltage High Performance CMOS Current MirrorIJERA Editor
 
Lect2 up200 (100327)
Lect2 up200 (100327)Lect2 up200 (100327)
Lect2 up200 (100327)aicdesign
 
Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)aicdesign
 
Basic CMOS differential pair (qualitative analysis)
Basic CMOS differential pair (qualitative analysis)Basic CMOS differential pair (qualitative analysis)
Basic CMOS differential pair (qualitative analysis)shantanu Chutiya begger
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)aicdesign
 
Komponen ecu lm393 d
Komponen ecu lm393 dKomponen ecu lm393 d
Komponen ecu lm393 dRochimunaja
 
Fuente sin transformador
Fuente sin transformadorFuente sin transformador
Fuente sin transformadorCincoC
 
Ha ap 220v xuong 5v
Ha ap 220v xuong 5vHa ap 220v xuong 5v
Ha ap 220v xuong 5vholinh7
 
IRJET- Comparison of Power Dissipation in Inverter using SVL Techniques
IRJET- Comparison of Power Dissipation in Inverter using SVL TechniquesIRJET- Comparison of Power Dissipation in Inverter using SVL Techniques
IRJET- Comparison of Power Dissipation in Inverter using SVL TechniquesIRJET Journal
 
A Sub-1-V 15-ppm/ C CMOS Band gap Voltage Reference
A Sub-1-V 15-ppm/ C CMOS Band gap Voltage ReferenceA Sub-1-V 15-ppm/ C CMOS Band gap Voltage Reference
A Sub-1-V 15-ppm/ C CMOS Band gap Voltage Referenceijsrd.com
 
Original IGBT 6MBP20XSF060-50 20XSF060 060 20A 600V New Fuji
Original IGBT 6MBP20XSF060-50 20XSF060 060 20A 600V New FujiOriginal IGBT 6MBP20XSF060-50 20XSF060 060 20A 600V New Fuji
Original IGBT 6MBP20XSF060-50 20XSF060 060 20A 600V New FujiAUTHELECTRONIC
 
Lect2 up230 (100327)
Lect2 up230 (100327)Lect2 up230 (100327)
Lect2 up230 (100327)aicdesign
 
Design of oscillators using cmos ota
Design of oscillators using cmos otaDesign of oscillators using cmos ota
Design of oscillators using cmos otaIISRT
 

Similar to Lect2 up300 (100328) (20)

Lect2 up250 (100328)
Lect2 up250 (100328)Lect2 up250 (100328)
Lect2 up250 (100328)
 
Lect2 up160 (100325)
Lect2 up160 (100325)Lect2 up160 (100325)
Lect2 up160 (100325)
 
Lect2 up190 (100327)
Lect2 up190 (100327)Lect2 up190 (100327)
Lect2 up190 (100327)
 
Lect2 up220 (100327)
Lect2 up220 (100327)Lect2 up220 (100327)
Lect2 up220 (100327)
 
Lect2 up090 (100324)
Lect2 up090 (100324)Lect2 up090 (100324)
Lect2 up090 (100324)
 
A Low Power Low Voltage High Performance CMOS Current Mirror
A Low Power Low Voltage High Performance CMOS Current MirrorA Low Power Low Voltage High Performance CMOS Current Mirror
A Low Power Low Voltage High Performance CMOS Current Mirror
 
Lect2 up200 (100327)
Lect2 up200 (100327)Lect2 up200 (100327)
Lect2 up200 (100327)
 
Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)
 
Basic CMOS differential pair (qualitative analysis)
Basic CMOS differential pair (qualitative analysis)Basic CMOS differential pair (qualitative analysis)
Basic CMOS differential pair (qualitative analysis)
 
irs2092.pdf
irs2092.pdfirs2092.pdf
irs2092.pdf
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
Voltage Drop Calculation.pdf
Voltage Drop Calculation.pdfVoltage Drop Calculation.pdf
Voltage Drop Calculation.pdf
 
Komponen ecu lm393 d
Komponen ecu lm393 dKomponen ecu lm393 d
Komponen ecu lm393 d
 
Fuente sin transformador
Fuente sin transformadorFuente sin transformador
Fuente sin transformador
 
Ha ap 220v xuong 5v
Ha ap 220v xuong 5vHa ap 220v xuong 5v
Ha ap 220v xuong 5v
 
IRJET- Comparison of Power Dissipation in Inverter using SVL Techniques
IRJET- Comparison of Power Dissipation in Inverter using SVL TechniquesIRJET- Comparison of Power Dissipation in Inverter using SVL Techniques
IRJET- Comparison of Power Dissipation in Inverter using SVL Techniques
 
A Sub-1-V 15-ppm/ C CMOS Band gap Voltage Reference
A Sub-1-V 15-ppm/ C CMOS Band gap Voltage ReferenceA Sub-1-V 15-ppm/ C CMOS Band gap Voltage Reference
A Sub-1-V 15-ppm/ C CMOS Band gap Voltage Reference
 
Original IGBT 6MBP20XSF060-50 20XSF060 060 20A 600V New Fuji
Original IGBT 6MBP20XSF060-50 20XSF060 060 20A 600V New FujiOriginal IGBT 6MBP20XSF060-50 20XSF060 060 20A 600V New Fuji
Original IGBT 6MBP20XSF060-50 20XSF060 060 20A 600V New Fuji
 
Lect2 up230 (100327)
Lect2 up230 (100327)Lect2 up230 (100327)
Lect2 up230 (100327)
 
Design of oscillators using cmos ota
Design of oscillators using cmos otaDesign of oscillators using cmos ota
Design of oscillators using cmos ota
 

More from aicdesign

Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)aicdesign
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)aicdesign
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)aicdesign
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)aicdesign
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)aicdesign
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)aicdesign
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)aicdesign
 
Lect2 up320 (100328)
Lect2 up320 (100328)Lect2 up320 (100328)
Lect2 up320 (100328)aicdesign
 
Lect2 up180 (100327)
Lect2 up180 (100327)Lect2 up180 (100327)
Lect2 up180 (100327)aicdesign
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)aicdesign
 
Lect2 up130 (100325)
Lect2 up130 (100325)Lect2 up130 (100325)
Lect2 up130 (100325)aicdesign
 
Lect2 up120 (100325)
Lect2 up120 (100325)Lect2 up120 (100325)
Lect2 up120 (100325)aicdesign
 
Lect2 up100 (100324)
Lect2 up100 (100324)Lect2 up100 (100324)
Lect2 up100 (100324)aicdesign
 

More from aicdesign (13)

Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)
 
Lect2 up320 (100328)
Lect2 up320 (100328)Lect2 up320 (100328)
Lect2 up320 (100328)
 
Lect2 up180 (100327)
Lect2 up180 (100327)Lect2 up180 (100327)
Lect2 up180 (100327)
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)
 
Lect2 up130 (100325)
Lect2 up130 (100325)Lect2 up130 (100325)
Lect2 up130 (100325)
 
Lect2 up120 (100325)
Lect2 up120 (100325)Lect2 up120 (100325)
Lect2 up120 (100325)
 
Lect2 up100 (100324)
Lect2 up100 (100324)Lect2 up100 (100324)
Lect2 up100 (100324)
 

Lect2 up300 (100328)

  • 1. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-1 LECTURE 300 – LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline • Introduction • Low voltage input stages • Low voltage gain stages • Low voltage bias circuits • Low voltage op amps • Summary CMOS Analog Circuit Design, 2nd Edition Reference Pages 415-432 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-2 INTRODUCTION Implications of Low-Voltage, Strong-Inversion Operation • Reduced power supply means decreased dynamic range • Nonlinearity will increase because the transistor is working close to VDS(sat) • Large values of because the transistor is working close to VDS(sat) • Increased drain-bulk and source-bulk capacitances because they are less reverse biased. • Large values of currents and W/L ratios to get high transconductance • Small values of currents and large values of W/L will give smallVDS(sat) • Severely reduced input common mode range • Switches will require charge pumps CMOS Analog Circuit Design © P.E. Allen - 2010
  • 2. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-3 What are the Limits of Power Supply? The limit comes when there is no signal range left when the dc drops are subtracted from VDD. Minimum power supply (no signal swing range): VDD(min.) = VT + 2VON For differential amplifiers, the minimum power supply is: VDD(min.) = 3VON However, to have any input common mode range, the effective minimum power supply is, VDD(min.) = VT + 2VON + VON − + VT+VON − 060802-01 VDD VPB1 M2 M3 VT+VON VNB1 M1 M4 + − + VON − VON M3 M4 M1 M2 VON + VT+VON 060802-02 VPB1 VDD + VT+VON − VNB1 + − + − VON − + − M5 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-4 Minimum Power Supply Limit – Continued The previous consideration of the differential amplifier did not consider getting the signal out of the amplifier. This will add another VON. + − VON VT M7 M8 M9 060802-03 VPB1 VDD M3 M4 M1 M2 + VT+VON − VNB1 + VON + − + VON − VON − + − VPB2 M6 VT+VON M5 VPB1 + − VT+VON Therefore, VDD(min.) = VT + 3VON This could be reduced to 3VON with the floating battery but its implementation probably requires more than 3VON of power supply. Note the output signal swing is VT + VON while the input common range is VON. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 3. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-5 LOW VOLTAGE INPUT STAGES Input Common Mode Voltage Range Minimum power supply (ICMR = 0): VDD(min) = VSD3(sat)-VT1+VGS1+VDS5(sat) = VSD3(sat)+VDS1(sat)+VDS5(sat) Input common-mode range: Vicm(upper) = VDD - VSD3(sat) + VT1 Vicm(lower) = VDS5(sat) + VGS1 If the threshold magnitudes are 0.7V, VDD = 1.5V and the saturation voltages are 0.3V, then Vicm(upper) = 1.5 - 0.3 + 0.7 = 1.9V and Vicm(lower) = 0.3 + 1.0 = 1.3V giving an ICMR of 0.6V. VDD M3 M4 VSD3(sat) -VT1 vicm M1 M2 M5 VGS1 VDS5(sat) + - VBias + - VBias Fig. 7.6-3 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-6 Increasing ICMR using Parallel Input Stages Turn-on voltage for the n-channel input: Vonn = VDSN5(sat) + VGSN1 Turn-on voltage for the p-channel input: Vonp = VDD - VSDP5(sat) - VSGP1 The sum of Vonn and Vonp equals the minimum power supply. Regions of operation: VDD MN3 MP5 Vicm Vicm MP1 MP2 MN1 MN2 MP3 MP4 MN4 MN5 IBias M6 M7 Fig. 7.6-4 VDD Vicm Vonp: (n-channel on and p-channel off) gm(eq) = gmN Vonp Vicm Vonn: (n-channel on and p-channel on) gm(eq) = gmN + gmP Vonn Vicm 0 : (n-channel off and p-channel on) gm(eq) = gmP where gm(eq) is the equivalent input transconductance of the above input stage, gmN is the input transconductance for the n-channel input and gmP is the input trans-conductance for the p-channel input. gm(eff) gmN+gmP gmP gmN n-channel off Vonn n-channel on Vonp n-channel on p-channel on p-channel on p-channel off 0 VSDP5(sat)+VGSN1 VDD-VSDP5(sat)+VGSN1 VDD Vicm Fig. 7.6-5 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 4. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-7 Removing the Nonlinearity in Transconductances as a Function of ICMR Increase the bias current in the differential amplifier that is on when the other differential amplifier is off. Three regions of operation depending on the value of Vicm: 1.) Vicm Vonn: n-channel diff. amp. off and p-channel on with Ip = 4Ib: gm(eff) = KP’WP LP 2 Ib 2.) Vonn Vicm Vonp: both on with In = Ip = Ib: gm(eff) = KN’WN LN Ib + Inn Ip Vicm Vicm VB2 VB1 KP’WP LP MB2 MB1 Ib VDD Ib MP1 MP2 Ib 1:3 MN1 In 3.) Vicm Vonp: p-channel diff. amp. off and n-channel on with In = 4Ib: gm(eff) = KN’WN LN 2 Ib 3:1 MN2 Ipp Fig. 7.6-6 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-8 How Does the Current Compensation Work? Set VB1 = Vonn and VB2 = Vonp. If vicm Vonp then Ip = Ib and Inn=0 If vicm Vonp then Ip = 0 and Inn=Ib Vonn vicm vicm MN1 MN2 MB1 In Ipp Ib If vicm Vonn then In = Ib and Ipp=0 If vicm Vonn then In = 0 and Ipp=Ib VDD Vonp Ib Inn Ip MP1 MP2 vicm vicm MB2 Fig. 7.6-6A Result: gm(eff) gmN=gmP 0 Vicm Vonn Vonp VDD 0 Fig. 7.6-7 The above techniques and many similar ones are good for power supply values down to about 1.5V. Below that, different techniques must be used or the technology must be modified (natural devices). CMOS Analog Circuit Design © P.E. Allen - 2010
  • 5. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-9 Natural Transistors Natural or native NMOS transistors normally have a threshold voltage around 0.1V before the threshold is increased by increasing the p concentration in the channel. If these transistors are characterized, then they provide a means of achieving low voltage operation. Minimum power supply (ICMR = 0): VDD(min) = 3VON Input common mode range: Vicm(upper) = VDD – VON + VT(natural) Vicm(lower) = 2VON + VT(natural) If VT(natural) VON = 0.1V, then Vicm(upper) = VDD Vicm(lower) = 3VON = 0.3V Therefore, ICMR = VDD - 3VON = VDD – 0.3V VDD(min) 1V Matching tends to be better (less doping and magnitude is smaller). CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-10 Bulk-Driven MOSFET A depletion device would permit large ICMR even with very small power supply voltages because VGS is zero or negative. When a MOSFET is driven from the bulk with the gate held constant, it acts like a depletion transistor. Cross-section of an n-channel bulk-driven MOSFET: Large signal equation: iD = KN’W 2L vBS VDS VGS VDD Bulk Drain Gate Source Substrate p+ n+ Channel p-well Depletion Region n substrate VGS-VT0- 2|F|-vBS+ 2|F| 2 Small-signal transconductance: gmbs = (2KN’W/L)ID 2 2|F|-VBS n+ n+ QP QV Fig. 7.6-8 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 6. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-11 Bulk-Driven MOSFET - Continued Transconductance characteristics: Saturation: VDS VBS – VP gives, VBS = VP + VON iD = IDSS VBS VP 1- 2 2000 1500 1000 500 Drain Current (μA) IDSS Bulk-source driven Gate-source driven Comments: 0 • gm (bulk) gm(gate) if VBS 0 -3 -2 -1 0 1 2 3 Gate-Source or Bulk-Source Voltage (Volts) (forward biased ) • Noise of both configurations are the same (any differences comes from the gate versus bulk noise) • Bulk-driven MOSFET tends to be more linear at lower currents than the gate-driven MOSFET • Very useful for generation of IDSS floating current sources. Fig. 7.6-9 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-12 Bulk-Driven, n-channel Differential Amplifier What is the ICMR? Vicm(min) = VSS + VDS5(sat) + VBS1 = VSS + VDS5(sat) - |VP1| + VDS1(sat) Note that Vicm can be less than VSS if |VP1| VDS5(sat) + VDS1(sat) Vicm(max) = ? As Vicm increases, the current through M1 and M2 is constant so the source increases. However, the gate voltage stays constant so that VGS1 decreases. Since the current must remain constant through M1 and M2 because of M5, the bulk-source voltage becomes less negative causing VTN1 to decrease and maintain the currents through M1 and M2 constant. If Vicm is increased sufficiently, the bulk-source voltage will become positive. However, current does not start to flow until VBS is greater than 0.3 volts so the effective Vicm(max) is M7 vi1 vi2 + VBS1 - + VGS - M6 M5 IBias Vicm(max) VDD - VSD3(sat) - VDS1(sat) + VBS1. VDD M3 M4 VBS2 - M1 M2 VSS + Fig. 7.6-10 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 7. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-13 Illustration of the ICMR of the Bulk-Driven, Differential Amplifier 250nA 200nA 150nA 100nA 50nA 0 -50nA Bulk-Source Current -0.50V -0.25V 0.00V 0.25V 0.50V Input Common-Mode Voltage Fig. 7.6-10A Comments: • Effective ICMR is from VSS to VDD -0.3V • The transconductance of the input stage can vary as much as 100% over the ICMR which makes it very difficult to compensate CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-14 Reduction of VT through Forward Biasing the Bulk-Source The bulk can be used to reduce the threshold sufficiently to permit low voltage applications. The key is to control the amount of forward bias of the bulk-source. Current-Driven Bulk Technique†: S D IBB G B S D IBB G B IE ICD ICS Reduced Threshold MOSFET Parasitic BJT Gate Source Drain n+ n-well p+ p+ p- substrate Layout Fig. 7.6-19 Problem: Want to limit the BJT current to some value called, Imax. Therefore, IBB = Imax CS+CD+1 † T. Lehmann and M. Cassia, “1V Power Supply CMOS Cascode Amplifier,” IEEE J. of Solid-State Circuits, Vol. 36, No. 7, 2001. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 8. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-15 Current-Driven Bulk Technique Bias circuit for keeping the Imax defined independent of BJT betas. Note: ID,C = ICD + ID IS,E = ID + IE + IR The circuit feedback causes a bulk bias current IBB and hence a bias voltage VBIAS such that IS,E = ID + IBB(1+CS + CD) + IR M3 VDD M1 M2 M7 R IBB IS,E ID,C M5 M4 M6 VBias1 M8 VBias2 + VBias IR - Use VBias1 and VBias2 to set ID,C 1.1ID, IS,E 1.3ID and IR 0.1ID which sets IBB at 0.1ID assuming we can neglect ICS with respect to ICD. For this circuit to work, the following conditions must be satisfied: VBE VTN + IRR and |VTP| + VDS(sat) VTN + IRR If |VTP| VTN, then the level shifter IRR can be eliminated. VSS Fig. 7.6-20 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-16 LOW VOLTAGE GAIN STAGES Cascade Stages Simple cascade of inverters: -gm4 R4 060803-01 VDD VPB1 M2 M3 VNB1 M1 M4 VPB1 M5 M6 M7 VNB1 M8 -gm1 R1 -gm2 R2 -gm3 R3 The problem with this approach is the number of poles that occur (one per stage) if the amplifier is to be used in a closed loop application. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 9. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-17 Nested Miller Compensation Principle: Use Miller compensation Cm3 to split the poles within a feedback loop. Cm2 Cm1 Compensating Results: 1) Cm1 pushes p4 to higher vin frequencies and p3 down to lower frequencies 2) Cm2 pushes p2 to higher frequencies and p1 down to lower frequencies 3) Cm3 pushes p3 to higher frequencies (feedback path) pulls p1 further to lower frequencies Equations: p1 p2 p3 p4 v -g out -gm1 -gm2 m3 -gm4 060812-01 R1 R2 R3 RL CL GB gm1/C m3 p2 gm2/Cm3 p3 gm3Cm3/(Cm1Cm2) p4 gm4/CL The objective is to get all poles larger than GB: GB p2, p3, p4 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-18 Illustration of the Nested Miller Compensation Technique jω σ p4 p3 p2 p1 jω σ p4 p3 p2 p1 jω σ p4 p2 p3 p1 jω σ p4 p3 p2 p1 Cm1 Cm2 Cm3 -GB 070508-01 This approach is complicated by the feedforward paths which create RHP zeros. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 10. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-19 Elimination of the RHP Zeros The following are least three ways in which the RHP zeros can be eliminated. 1.) Nulling resistor. VPB1 Cc1 Rz1 060803-02 VDD M2 M1 z1 = 1 Cc1(1/gm1Rz1) 2.) Feedback only – buffer. Cc1 VPN1 VDD 060803-03 VDD VPB1 M2 M1 M3 Increases the minimum power supply by VON. 3.) Feedback only – gain. VPB1 VDD VPB2 VNB1 060803-04 VDD Cc1 M2 M1 M3 M4 M5 Increases the pole and increases the minimum power supply by VON. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-20 Use of LHP Zeros to Compensate Cascaded Amplifiers Principle: Feedforward around a noninverting stage creates a LHP zero or inverting feedforward around an inverting stage also creates a LHP zero. Example of Multipath, Nested Miller Compensation†: CM1 CM2 Vin Vout +gm1 +gm2 060803-05 R3 R1 +gm4 C3 -gm3 R2,4 M5 M6 VPB1 C CM1 M2 M1 M3 M4 M2 M8 VNB1 M7 VDD M11 M9 M10 VRef1 M12 M14 M13 VRef2 Vout C3 Vin Unfortunately, the analysis becomes quite complex - for the details refer to the reference below. † R. Hogervorst and J. H. Huijsing, Design of Low-Voltage, Low-Power Operational Amplifier Cells, Kluwer Academic Publishers, 1996, pp. 127-131. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 11. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-21 Cascoding Possibilities that trade off output resistance and headroom: Rout vout M2 M1 Sat. Act. Gate-Connected Cascode 051205-01 VGG ID + − v Rout out No Cascoding VT+2Von VGG ID + Rout vout − M2 M1 Sat. Sat. Normal Cascoding VT+2Von VGG ID + Rout vout − M2 M1 Sat. Act. Reduced Headroom Cascoding VGG ID + − No Cascode Normal Cascode Reduced Headroom Cascode Gate-Connected Cascode vout Von1 1 1 + ß1 ß2 1 + ß1 ß2(2x-x2) 2x + ß1 ß2(2x-x2) Rout rds 1 2ß2 2ID 2ß2(x-0.5x2) ß1(1-x)+ ID x-0.5x2 2ß2(x-0.5x2) ß1(1-x)+ ID x-0.5x2 Note: vDS(active) = x·Von1 = x·(VGG–VT) x = 0.1 and ß2 = 9ß1 vout=1.145Von1 and Rout=1.45rds for reduced headroom cascode CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-22 Solutions to the Low Headroom Problem – High Voltage Tolerant Circuits High voltage tolerant transistors in standard CMOS†: VDD(nom.) Upper gate switched to highest potential Thick oxide transistor Thick oxide 050416-02 cascode VDD(nom.) Retractable cascode composite transistor (Transistor symbols with additional separation between the gate line and the channel line represent thick oxide transistors.) † Anne-Johan Annema, et. Al., “5.5-V I/O in a 2.5-V 0.25μm CMOS Technology,” IEEE J. of Solid-State Circuits, Vol. 36, No. 3, March 2001, pp. 528-538. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 12. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-23 LOW VOLTAGE BIAS CIRCUITS A Low-Voltage Current Mirror with Wide Input and Output Swings The current mirror below requires a power supply of VT+3VON and has a Vin(min) = VON and a Vout(min) = 2VON (less for the regulated cascode output mirror). I1-IB IB I2 iin IB M3 VDD M4 M6 iout M7 M1 M2 M5 or iin I1 IB2 IB1 I2 M1 M2 IB1 M3 VDD M4 M6 M5 iout M7 IB2 Fig. 7.6-13A CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-24 Low-Voltage Current Mirrors using the Bulk-Driven MOSFET The biggest problem with current mirrors is the large minimum input voltage required for previously examined current mirrors. If the bulk-driven MOSFET is biased with a current that exceeds IDSS then it is enhancement and can be used as a current mirror. VDD iin iout M1 M2 + - VGS + - VBS + - VGS VDD iin iout M3 M4 + - VBS3 + VGS4 - M1 M2 + VGS3 + - VGS1 - + - VBS1 + - VGS2 Simple bulk-driven current mirror Cascodebulk-driven current mirror. Fig.7.6-11 6 10-5 5 10-5 4 10-5 3 10-5 2 10-5 1 10-5 0 Cascode Current Mirror All W/L's = 200μm/4μm Iin=50μA Iin=10μA 2μm CMOS 0 0.2 0.4 0.6 0.8 1 Iout (A) Vout (V) Iin=40μA Iin=30μA Iin=20μA Fig. 7.6-12 The cascode current mirror gives a minimum input voltage of less than 0.5V for currents less than 100μA CMOS Analog Circuit Design © P.E. Allen - 2010
  • 13. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-25 Bandgap Topologies Compatible with Low Voltage Power Supply VDD VPTAT VBE IPTAT VRef Voltage-mode bandgap topology. INL IPTAT VRef VDD IVBE VDD VDD Current-mode bandgap topology. IVBE VRef VDD VDD VDD IPTAT INL R2 R3 R1 Voltage-current mode bandgap topology Fig. 7.6-14 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-26 Technique for Canceling the Bandgap Curvature VDD 1:K2 1:K3 M1 M2 M3 M4 I2 INL IVBE K1IPTAT K3INL Current M2 active M3 off M2 sat. M3 on K2IVBE K1IPTAT Temperature INL Circuit to generate nonlinear correction term, INL. Illustration of the various currents. Fig. 7.6-16 INL = 0 K1IPTAT-K2IVBE , , K2IVBEK1IPTAT K2IVBEK1IPTAT The combination of the above concept with the previous slide yielded a curvature-corrected bandgap reference of 0.596V with a TC of 20ppm/C° from -15C° to 90C° using a 1.1V power supply.† In addition, the line regulation was 408 ppm/V for 1.2VDD10V and 2000 ppm/V for 1.1VDD10V. The quiescent current was 14μA. † G.A. Rincon-Mora and P.E. Allen, “A 1.1-V Current-Mode and Piecewise-Linear Curvature-Corrected Bandgap Reference,” J. of Solid-State Circuits, vol. 33, no. 10, October 1998, pp. 1551-1554. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 14. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-27 LOW VOLTAGE OP AMPS A Low Voltage Op Amp using Normal Technology VDD(min) = 3VON + VT (ICMR = VON): M11 vOUT Cc M6 M7 M8 M9 M10 060804-01 VDD VPB1 M3 M4 M1 M2 VNB1 VPB2 + − vIN M5 Performance: Gain gm2rds2 Miller compensated Output swing is VDD -2VON Max. CM input = VDD Min. CM input = 2VON + VT CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-28 A Low-Voltage, Wide ICMR Op Amp VDD(min) = 4VON + 2VT (ICMR = VDD): 3:1 + − 1:3 041231-15 VDD VDD-VT-VDS(sat) VDD-VT-2VDS(sat) VT+2VDS(sat) VT+VDS(sat) vOUT Performance: Gain gm2rds2, self compensated, and output swing is VDD -4VON CMOS Analog Circuit Design © P.E. Allen - 2010
  • 15. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-29 An Alternate Low-Voltage, Wide ICMR Op Amp VDD(min) = 4VON + 2VT (ICMR = VDD): VDD 3:1 VPB2 VPB1 + − vOUT 1:3 VNB2 060804-02 VPB2 VNB2 VNB1 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-30 A 1-Volt, Two-Stage Op Amp Uses a bulk-driven differential input amplifier. VDD=1V 6000/6 6000/6 3000/6 6000/6 M8 M9 M10 M11 vin+ vout IBias Cc=30pF CL Rz=1kΩ vin- 2000/2 M1 M2 Q5 M3 M4 Q6 M12 M7 400/2 400/2 400/2 Fig. 7.6-18 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 16. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-31 Performance of the 1-Volt, Two-Stage Op Amp Specification (VDD=0.5V, VSS=-0.5V) Measured Performance (CL = 22pF) DC open-loop gain 49dB (Vicm mid range) Power supply current 300μA Unity-gainbandwidth (GB) 1.3MHz (Vicm mid range) Phase margin 57° (Vicm mid range) Input offset voltage ±3mV Input common mode voltage range -0.475V to 0.450V Output swing -0.475V to 0.491V Positive slew rate +0.7V/μsec Negative slew rate -1.6V/μsec THD, closed loop gain of -1V/V -60dB (0.75Vp-p, 1kHz sinewave) -59dB (0.75Vp-p, 10kHz sinewave) THD, closed loop gain of +1V/V -59dB (0.75Vp-p, 1kHz sinewave) -57dB (0.75Vp-p, 10kHz sinewave) Spectral noise voltage density 367nV/ Hz @ 1kHz 181nV/ Hz @ 10kHz, 81nV/ Hz @ 100kHz 444nV/ Hz @ 1MHz Positive Power Supply Rejection 61dB at 10kHz, 55dB at 100kHz, 22dB at 1MHz Negative Power Supply Rejection 45dB at 10kHz, 27dB at 100kHz, 5dB at 1MHz CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-32 A 1-Volt, Folded-Cascode OTA using the Current-Driven Bulk Technique M6 Cx VBiasP + vin M1 M2 - M3 M5 M4 M11 M12 M9 M10 M7 vout VDD M17 VSS VBiasN CL M8 M13 M14 M15 M16 Fig. 7.6-21 Transistors with forward-biased bulks are in a shaded box. For large common mode input changes, Cx, is necessary to avoid slewing in the input stage. To get more voltage headroom at the output, the transistors of the cascode mirror have their bulks current driven. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 17. Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-33 A 1-Volt, Folded-Cascode OTA using the Current-Driven Bulk Technique - Continued Experimental results: 0.5μm CMOS, 40μA total bias current (Cx = 10pF) Supply Voltage 1.0V 0.8V 0.7V Common-mode input range 0.0V-0.65V 0.0V-0.4V 0.0V-0.3V High gain output range 0.35V-0.75V 0.25V-0.5V 0.2V-0.4V Output saturation limits 0.1V-0.9V 0.15V-0.65V 0.1V-0.6V DC gain 62dB-69dB 46dB-53dB 33dB-36dB Gain-Bandwidth 2.0MHz 0.8MHz 1.3MHz Slew-Rate (CL=20pF) 0.5V/μs 0.4V/μs 0.1V/μs Phase margin (CL=20pF) 57° 54° 48° The nominal value of bulk current is 10nA gives a 10% increase in differential pair quiescent current assuming a BJT of 100. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-34 SUMMARY • Integrated circuit power supplies are rapidly decreasing (today 2-3Volts) • Classical analog circuit design techniques begin to deteriorate at 1.5-2 Volts • Approaches for lower voltage circuits: - Use natural NMOS transistors (VT 0.1V) - Drive the bulk terminal - Forward bias the bulk - Use depeletion devices • The dynamic range will be compressed if the noise is not also reduced • Fortunately, the threshold reduction continues to allow the techniques of this section to be used in today’s technology CMOS Analog Circuit Design © P.E. Allen - 2010