SlideShare a Scribd company logo
1 of 12
Download to read offline
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-1 
LECTURE 280 – DIFFERENTIAL-IN, DIFFERENTIAL-OUT OP 
AMPS 
LECTURE ORGANIZATION 
Outline 
• Introduction 
• Examples of differential output op amps 
• Common mode output voltage stabilization 
• Summary 
CMOS Analog Circuit Design, 2nd Edition Reference 
Pages 384-393 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-2 
INTRODUCTION 
Why Differential Output Op Amps? 
• Cancellation of common mode signals including clock feedthrough 
• Increased signal swing 
v1 
v2 
v1-v2 
A 
-A 
A 
-A 
t 
t 
2A 
t 
-2A Fig. 7.3-1 
• Cancellation of even-order harmonics 
Symbol: 
- 
- 
+ 
+ 
vin vout 
+ 
+ 
- 
- 
Fig. 7.3-1A 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-3 
Common Mode Output Voltage Stabilization 
If the common mode gain not small, it may cause the common mode output voltage to 
be poorly defined. 
Illustration: 
vod 
VDD 
t 
t 
CM output voltage too small, 
Vcm 
070506-01 
0 
VSS 
vod 
VDD 
t 
0 
VSS 
vod 
VDD 
0 
VSS 
CM output voltage properly defined, 
Vcm = 0 
CM output voltage too large, 
Vcm 
= 0.5VDD 
= 0.5VSS 
Remember that: 
vOUT = Avd(vID) ± Acm(vCM) 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-4 
EXAMPLES OF DIFFERENTIAL OUTPUT OP AMPS (OTA’S) 
Two-Stage, Miller, Differential-In, Differential-Out Op Amp 
Note that the 
upper ICMR is 
VDD - VSGP + VTN 
(OCMR) = VDD+ |VSS| - VSDP(sat) - VDSN(sat) 
The maximum peak-to-peak output voltage 
 2·OCMR 
VDD 
+ 
- 
VBP 
M8 M6 
M3 M4 
Cc 
Rz Rz vo 
vi1 M1 M2 
+ 
- 
VBN 
M9 
vo1 
Conversion between differential outputs and single-ended outputs: 
+ 
- 
vod CL 
+ 
- 
+ 
- 
+ 
- 
vid 
+ 
- 
VSS 
vo1 2CL 
+ 
- 
+- 
+ 
- 
vid 
+ 
- 
vo2 
2CL 
Fig. 7.3-4 
M5 
Cc 
vi2 
M7 
Fig. 7.3-3 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-5 
Two-Stage, Miller, Differential-In, Differential-Out Op Amp with Push-Pull Output 
M13 
M14 
vo1 Rz Rz vo2 
vi1 
VDD 
+ 
- 
VBP 
M3 M4 
M1 M2 
M5 
M6 
M7 
M10 M12 
VSS 
+ 
- 
VBN 
Cc 
M9 
Cc 
vi2 
M8 
Fig. 7.3-6 
Comments: 
• Able to actively source and sink output current 
• Output quiescent current poorly defined 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-6 
Folded-Cascode, Differential Output Op Amp 
VDD 
I4 I5 
M4 M5 
I7 
M6 M7 
C − vOUT 
+ L 
M8 M9 
VNB1 
M10 M11 
CL 
060717-01 
VPB1 
I6 VPB2 
VNB2 
+ 
− 
vIN 
I1 I2 
VNB1 
M1 M2 
M3 
I3 
• No longer has the low-frequency asymmetry in signal path gains. 
• Class A 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-7 
Enhanced-Gain, Folded-Cascode, Differential Output Op Amp 
What about the A amplifier? 
Below is the upper A amplifier: 
M7 M8 
M9 M10 
+ vin 
- 
VPB2 VPB2 
- M1 
M2 M3 
vout + 
vout 
M12 
060718-02 
VDD 
VPB1 
vin 
VNB1 VBias 
M4 
M5 M6 
M11 
Note that VBias controls the dc voltage at the 
input of the A amplifier through the negative 
feedback loop. 
VPB1 
+ 
− 
M1 M2 
060718-01 
M3 
vIN 
VNB1 
• Balanced inputs 
• Class A 
VDD 
VPB1 
M10 M11 
+A 
− + 
− 
M8 M9 
− + 
vOUT 
M4 
M7 
M5 
M6 
− + 
− A 
+ 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-8 
Push-Pull Cascode Op Amp with Differential-Outputs 
VDD 
M7 M5 M3 M4 M6 M8 
M21 
M9 M10 
vi1 M1 M2 
vi2 
vo2 
M15 M16 
M17 
vo1 
M13 M12 
VSS 
VBias 
R2 M22 
M23 
R1 
M20 
M19 
M11 
M14 
M18 
Fig. 7.3-8 
• Output quiescent currents are well defined 
• Self-biased circuits can be replaced with VNB2 and VPB2 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-9 
Folded-Cascode, Push-Pull, Differential Output Op Amp 
I7 
I9 
0.5gm2vin 
0.5gm4vin 
I8 
M8 M9 
0.5g 0.5gm4vin m2vin 
vOUT 
CL CL − + 
0.5gm3vin 
0.5gm1vin 
M10 M11 
M12 M13 
060717-02 
VPB1 
M6 M7 
I6 
I4 VPB2 
VNB2 
+ 
− 
I14 I15 
I17 
M16 M17 
vIN 
I2 
VDD 
M2 M3 
I1 
M1 
VNB1 
I3 
M5 
I5 
VNB2 
M4 
M18 
M19 
M20 
M21 
VPB1 
M14 M15 
I16 VPB2 
0.5gm1vin 
0.5gm3vin 
I6 = I7 = I14 = I15  0.5I5 
I5 = I1 + I2 + I3 + I4 
Av = gmRout(diff) 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-10 
Enhanced-Gain, Folded-Cascode with Push-Pull Outputs 
VPB1 
M10 M11 
VPB2 
M12 M13 
060718-06 
VPB1 
M6 M7 
+A 
− + 
− 
M8 M9 
vOUT 
CL CL − + 
M18 
M20 
M19 
VNB2 
M21 
+ 
− 
vIN 
VDD 
M2 M3 
M1 
VNB1 
M5 
M4 
VNB2 
M14 
M15 
M16 M17 
− A 
+ 
− 
+ 
• Gain approaches gm 
3rds 
3 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-11 
Cross-Coupled Differential Amplifier Stage 
The cross-coupled input stage allows the push-pull output quiescent current to be well 
defined. 
i1 
M1 M2 
+ 
vGS1 
- 
+ 
vGS2 
- 
vi1 vi2 
+ 
vSG4 
M3 M4 
VGS2 
VSG4 
VGS1 
VSG3 
i2 
i2 i1 
Fig. 7.3-9 
- 
+ 
vSG3 
- 
Operation: 
Voltage loop vi1 - vi2 = -VGS1+ vGS1 + vSG4 - VSG4 = VSG3 - vSG3 - vGS2 + VGS2 
Using the notation for ac, dc, and total variables gives, 
vi2 - vi1 = vid = (vsg1 + vgs4) = -(vsg3 + vgs2) 
If gm1 = gm2 = gm3 = gm4, then half of the differential input is applied across each 
transistor with the correct polarity. 
 i1 = 
gm1vid 
2 = 
gm4vid 
2 and i2 = - 
gm2vid 
2 = - 
gm3vid 
2 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-12 
Class AB, Differential Output Op Amp using a Cross-Coupled Differential Input 
Stage 
VDD 
M9 M7 
M8 M10 
vi1 vi2 
M1M2 
M21 M22 
M19 M20 
M3 M4 
M13 
M14 
vo1 
M15 
vo2 
M16 
M17 M18 
M26 
M23 
M11 M12 
M5 M6 
VSS 
+ 
R2 
M28 
VBias 
- 
M25 
R1 
M24 
M27 
Fig. 7.3-10 
Quiescent output currents are defined by the current in the input cross-coupled 
differential amplifier. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-13 
COMMON MODE OUTPUT VOLTAGE STABILIZATION 
Common Mode Feedback Circuits 
Because the common mode gain is undefined, any common mode signal at the input 
can cause the output common mode voltage to be improperly defined. The common 
mode output voltage is stabilized by sensing the common mode output voltage and using 
negative feedback to adjust the common mode voltage to the desired value. 
Model for the Output of Differential Output Op Amps: 
VDD 
io1(source) Ro1 
vo1 
io1(sink) Ro3 
io2(source) 
vo2 
io2(sink) 
Ro2 
Ro4 
VDD 
io1(source) Ro1 
vo1 
Io1(sink) Ro3 
io2(source) 
vo2 
Io2(sink) 
Ro2 
Ro4 
Class A Output Push-Pull Output 060718-08 
Roi represents the self-resistance of the output sink/sources. 
1.) If the common mode output voltage increases the sourcing current is too large. 
2.) If the common mode output voltage decreases the sinking current is too large. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-14 
Conceptual View of Common-Mode Feedback 
060718-09 
VDD 
Common Mode 
Sensing Circuit 
VCMREF 
+ 
− 
vo2 
vo1 
Output 
Stage 
Model 
Function of the common-mode feedback circuit: 
1.) If the common-mode output voltage increases, decrease the upper currents sources or 
increase the lower current sink until the common-mode voltage is equal to VCMREF. 
2.) If the common-mode output voltage decreases, increase the upper currents sources or 
decrease the lower current sink until the common-mode voltage is equal to VCMREF. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-15 
Two-Stage, Miller, Differential-In, Differential-Out Op Amp with Common-Mode 
Feedback 
VDD 
+ 
M10 M11 
VBP 
- 
M7 M6 
M3 M4 
Cc 
Rz Rz vo2 
vi1 M1 M2 
M5 
VSS 
+ 
- 
VBN 
Cc 
M9 
vi2 
vo1 
M8 
Fig. 7.3-12 
Comments: 
• Simple 
• Unreferenced – value of common mode output voltage determined by the circuit 
characteristics 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-16 
Common Mode Feedback Circuits 
Implementation of common mode feedback circuit: 
M3 M4 
I3 I4 
Ro1 Ro2 
M1 M2 
vo2 
vi2 
060718-10 
vi1 
M5 
VDD 
IBias 
Common-mode 
feed-back 
circuit 
VCM 
vo1 
IC3 IC4 
MC2A 
MC4 
MC2B 
MC1 
MC3 
MC5 
MB 
This scheme can be applied to any differential output amplifier. 
CM Loop Gain = -gmC1Ro1 which can be large if the output of the differential output 
amplifier is cascaded or a gain-enhanced cascode. 
The common-mode loop gain may need to be compensated for proper dynamic 
performance. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-17 
Common Mode Feedback Circuits – Continued 
The previous circuit suffers when the input common mode voltage is low because the 
transistors MC2A and MC2B have a poor negative input common mode voltage. 
The following circuit alleviates this disadvantage: 
M3 M4 
I3 I4 
vo1 vo2 
RCM1 RCM2 
M1 M2 
vi2 
060718-11 
vi1 
M5 
VDD 
IBias 
Common-mode 
feed-back 
circuit 
VCM 
MC3 
IC4 IC3 
MC1 MC2 
MC4 
MC5 
MB 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-18 
An Improved Common-Mode Feedback Circuit 
The resistance loading of the previous circuit can be avoided in the following CM 
feedback implementation: 
VDD 
CM Correction Circuitry 
M5 M6 
M1 M2 M3 M4 
vo1 vo2 
060718-12 
RCM RCM 
VCMREF 
This circuit is capable of sustaining a large differential voltage without loading the output 
of the differential output op amp. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-19 
Frequency Response of the CM Feedback Circuit 
Consider the following CM feedback circuit implementation: 
− + 
M12 
M13 M14 
Cc 
M3 VCMREF 
070506-02 
VPB1 
M4 M5 
VPB2 
VDD 
M6 M7 
vOUT 
VNB2 
M8 
M10 
M9 
M11 
+ 
− 
vIN 
VNB1 
M1 M2 
M15 M16 
Cc 
The CM feedback path has two poles – one at the gates of M10 and M11 and the 
dominant output pole of the differential output op amp. 
Can compensate with Miller capacitors as shown. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-20 
Improved CM Feedback Frequency Response 
The circuit on the previous page can be modified to eliminate the pole at the gates of 
M10 and M11 as follows: 
VCMREF 
060718-14 
VPB1 
M4 M5 
VPB2 
VDD 
M6 M7 
VNB2 
M8 
vo1 
M9 
VNB1 
vo2 
M10 M11 
+ 
− 
vin 
VNB1 
M1 M2 
M3 
M12 
M13 M14 
VNB2 
M19 M18 
M16 
M15 
M17 
• The need for compensation of the common mode loop no longer exists since there is 
only one dominant pole 
• The dominant pole of the differential amplifier becomes the dominant pole of the 
common mode feedback 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-21 
A Common Mode Feedback Correction Scheme for Discrete Time Applications 
Correction Scheme: 
φ1 φ2 
vo1 
φ1 
+ Ccm 
- 
+- 
+ 
- 
vid 
CMbias 
vo2 
φ1 
Ccm Vocm 
φ1 φ2 
φ1 Fig. 7.3-14 
Operation: 
1.) During the 1 phase, both Ccm are charged to the desired value of Vocm and CMbias 
= Vocm. 
2.) During the 2 phase, the Ccm capacitors are connected between the differential 
outputs and the CMbias node. The average value applied to the CMbias node will be 
Vocm. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-22 
Example of a Common-Mode Output Voltage Stabilization Scheme for Discrete- 
Time Applications 
Common mode 
adjustment phase: 
Switches S1, S2 and S3 
are closed. C1 and C2 
are charged to the value 
necessary for I12 and I13 
to keep the common 
mode output voltage at 
VCM. 
Amplification phase: 
Switches S4 and S5 are 
closed. If the common 
mode output voltage is 
not at VCM, the currents 
I12 and I13 will change 
to force the value of the common mode output voltage back to VCM. 
M15 
Discrete time common 
mode correction circuit 
S4 
C1 
C2 
S5 
S1 
S2 
S3 
M12 M13 M14 
070506-03 
VPB1 
M4 M5 
VPB2 
VDD 
M6 M7 
− + 
vOUT 
VNB2 
M8 
M9 
VNB1 
I12 
I13 
M10 M11 
+ 
− 
vIN 
VNB1 
M1 M2 
M3 
VCM 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-23 
Correction of Channel Charge and Clock Feedthrough 
In the discrete-time common mode correction schemes, the switches can introduce 
error due to channel charge and clock feedthrough. 
Through simulation, these errors can be predicted and corrected by applying a 
correction signal superimposed upon the error signal to achieve the desired (target) 
common mode voltage. 
General principle: 
Unwanted Charge 
Injection Error 
CMFB 
Amplifier 
CMFB 
Sense 
Differential 
Outputs 
VBias 
ΔV 
Vcm 
(Target voltage) 
Correction 
Signal 
Error 
Signal 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-24 
SUMMARY 
• Advantages of differential output op amps: 
- 6 dB increase in signal amplitude 
- Cancellation of even harmonics 
- Cancellation of common mode signals including clock feedthrough 
• Disadvantages of differential output op amps: 
- Need for common mode output voltage stabilization 
- Compensation of common mode feedback loop 
- Difficult to interface with single-ended circuits 
• Most differential output op amps are truly balanced 
• For push-pull outputs, the quiescent current should be well defined 
• Common mode feedback schemes include, 
- Continuous time 
- Discrete time 
CMOS Analog Circuit Design © P.E. Allen - 2010

More Related Content

What's hot

Lect2 up090 (100324)
Lect2 up090 (100324)Lect2 up090 (100324)
Lect2 up090 (100324)aicdesign
 
Design of Two CMOS Differential Amplifiers
Design of Two CMOS Differential AmplifiersDesign of Two CMOS Differential Amplifiers
Design of Two CMOS Differential Amplifiersbastrikov
 
Design of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierDesign of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierSteven Ernst, PE
 
Rectifiers Simulation
Rectifiers SimulationRectifiers Simulation
Rectifiers SimulationZunAib Ali
 
Univ Of Zagreb Uglesic Prevention Of Flashover
Univ Of Zagreb Uglesic Prevention Of FlashoverUniv Of Zagreb Uglesic Prevention Of Flashover
Univ Of Zagreb Uglesic Prevention Of Flashovercorinne rocherieux
 
Lect2 up290 (100328)
Lect2 up290 (100328)Lect2 up290 (100328)
Lect2 up290 (100328)aicdesign
 
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541マルツエレック株式会社 marutsuelec
 
Ee660 ex 24_bi_cmos_comparisons_all
Ee660 ex 24_bi_cmos_comparisons_allEe660 ex 24_bi_cmos_comparisons_all
Ee660 ex 24_bi_cmos_comparisons_allLoren Schwappach
 
Ece 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampEce 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampKarthik Rathinavel
 
Design of a Two-Stage Single Ended CMOS Op-Amp
Design of a Two-Stage Single Ended CMOS Op-AmpDesign of a Two-Stage Single Ended CMOS Op-Amp
Design of a Two-Stage Single Ended CMOS Op-AmpSteven Ernst, PE
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)aicdesign
 
Emtp rv ic-part1
Emtp rv ic-part1Emtp rv ic-part1
Emtp rv ic-part1Julian Reis
 
Datasheet acs 30 d
Datasheet acs 30 dDatasheet acs 30 d
Datasheet acs 30 d101conan
 
Differntial Input to Single Ended Output, Two stage Op-amp
Differntial Input to Single Ended Output, Two stage Op-ampDifferntial Input to Single Ended Output, Two stage Op-amp
Differntial Input to Single Ended Output, Two stage Op-ampKarthik Rathinavel
 
The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalAlan Elbanhawy
 
DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model) DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model) Tsuyoshi Horigome
 

What's hot (20)

Lect2 up090 (100324)
Lect2 up090 (100324)Lect2 up090 (100324)
Lect2 up090 (100324)
 
Design of Two CMOS Differential Amplifiers
Design of Two CMOS Differential AmplifiersDesign of Two CMOS Differential Amplifiers
Design of Two CMOS Differential Amplifiers
 
Design of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierDesign of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational Amplifier
 
Inverter
InverterInverter
Inverter
 
Rectifiers Simulation
Rectifiers SimulationRectifiers Simulation
Rectifiers Simulation
 
Univ Of Zagreb Uglesic Prevention Of Flashover
Univ Of Zagreb Uglesic Prevention Of FlashoverUniv Of Zagreb Uglesic Prevention Of Flashover
Univ Of Zagreb Uglesic Prevention Of Flashover
 
Lect2 up290 (100328)
Lect2 up290 (100328)Lect2 up290 (100328)
Lect2 up290 (100328)
 
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
 
Ee660 ex 24_bi_cmos_comparisons_all
Ee660 ex 24_bi_cmos_comparisons_allEe660 ex 24_bi_cmos_comparisons_all
Ee660 ex 24_bi_cmos_comparisons_all
 
Ece 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampEce 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op amp
 
Design of a Two-Stage Single Ended CMOS Op-Amp
Design of a Two-Stage Single Ended CMOS Op-AmpDesign of a Two-Stage Single Ended CMOS Op-Amp
Design of a Two-Stage Single Ended CMOS Op-Amp
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
Emtp rv ic-part1
Emtp rv ic-part1Emtp rv ic-part1
Emtp rv ic-part1
 
Datasheet acs 30 d
Datasheet acs 30 dDatasheet acs 30 d
Datasheet acs 30 d
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Differntial Input to Single Ended Output, Two stage Op-amp
Differntial Input to Single Ended Output, Two stage Op-ampDifferntial Input to Single Ended Output, Two stage Op-amp
Differntial Input to Single Ended Output, Two stage Op-amp
 
Cmos VLSI Design By umakant bhaskar gohatre
Cmos VLSI Design By umakant bhaskar gohatreCmos VLSI Design By umakant bhaskar gohatre
Cmos VLSI Design By umakant bhaskar gohatre
 
The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET Final
 
938 k eletrico w8k
938 k eletrico w8k938 k eletrico w8k
938 k eletrico w8k
 
DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model) DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model)
 

Similar to Differential-In, Differential-Out Op Amp Lecture Guide

Lect2 up240 (100328)
Lect2 up240 (100328)Lect2 up240 (100328)
Lect2 up240 (100328)aicdesign
 
Lect2 up160 (100325)
Lect2 up160 (100325)Lect2 up160 (100325)
Lect2 up160 (100325)aicdesign
 
Lect2 up320 (100328)
Lect2 up320 (100328)Lect2 up320 (100328)
Lect2 up320 (100328)aicdesign
 
Lect2 up180 (100327)
Lect2 up180 (100327)Lect2 up180 (100327)
Lect2 up180 (100327)aicdesign
 
Advanced motion controls ab200a100
Advanced motion controls ab200a100Advanced motion controls ab200a100
Advanced motion controls ab200a100Electromate
 
Fed e-quick-start-manual-bientanfuji-dienhathe.com
Fed e-quick-start-manual-bientanfuji-dienhathe.comFed e-quick-start-manual-bientanfuji-dienhathe.com
Fed e-quick-start-manual-bientanfuji-dienhathe.comDien Ha The
 
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...AUTHELECTRONIC
 
Avnet Electronics Marketing and STMicro Power Devices for Solar Inverters
Avnet Electronics Marketing and STMicro Power Devices for Solar InvertersAvnet Electronics Marketing and STMicro Power Devices for Solar Inverters
Avnet Electronics Marketing and STMicro Power Devices for Solar InvertersAvnet Electronics Marketing
 
Advanced motion controls se10a20ac
Advanced motion controls se10a20acAdvanced motion controls se10a20ac
Advanced motion controls se10a20acElectromate
 
Advanced motion controls se10a40ac
Advanced motion controls se10a40acAdvanced motion controls se10a40ac
Advanced motion controls se10a40acElectromate
 
Advanced motion controls se30a20ac
Advanced motion controls se30a20acAdvanced motion controls se30a20ac
Advanced motion controls se30a20acElectromate
 
Lect2 up150 (100325)
Lect2 up150 (100325)Lect2 up150 (100325)
Lect2 up150 (100325)aicdesign
 
Advanced motion controls ab100c200
Advanced motion controls ab100c200Advanced motion controls ab100c200
Advanced motion controls ab100c200Electromate
 
Advanced motion controls mf2x510
Advanced motion controls mf2x510Advanced motion controls mf2x510
Advanced motion controls mf2x510Electromate
 
Advanced motion controls mf1x510
Advanced motion controls mf1x510Advanced motion controls mf1x510
Advanced motion controls mf1x510Electromate
 

Similar to Differential-In, Differential-Out Op Amp Lecture Guide (20)

Lect2 up240 (100328)
Lect2 up240 (100328)Lect2 up240 (100328)
Lect2 up240 (100328)
 
Lect2 up160 (100325)
Lect2 up160 (100325)Lect2 up160 (100325)
Lect2 up160 (100325)
 
Lect2 up320 (100328)
Lect2 up320 (100328)Lect2 up320 (100328)
Lect2 up320 (100328)
 
Lect2 up180 (100327)
Lect2 up180 (100327)Lect2 up180 (100327)
Lect2 up180 (100327)
 
1-3-phacMC Pres-EDAS
1-3-phacMC Pres-EDAS1-3-phacMC Pres-EDAS
1-3-phacMC Pres-EDAS
 
Cycle-by-Cycle Simulation
Cycle-by-Cycle SimulationCycle-by-Cycle Simulation
Cycle-by-Cycle Simulation
 
44
4444
44
 
Catalogue mitsubishi thiet bi dien acb
Catalogue mitsubishi thiet bi dien acbCatalogue mitsubishi thiet bi dien acb
Catalogue mitsubishi thiet bi dien acb
 
Thông số kĩ thuật mitsubishi thiet bi dien acb
Thông số kĩ thuật mitsubishi thiet bi dien acbThông số kĩ thuật mitsubishi thiet bi dien acb
Thông số kĩ thuật mitsubishi thiet bi dien acb
 
Advanced motion controls ab200a100
Advanced motion controls ab200a100Advanced motion controls ab200a100
Advanced motion controls ab200a100
 
Fed e-quick-start-manual-bientanfuji-dienhathe.com
Fed e-quick-start-manual-bientanfuji-dienhathe.comFed e-quick-start-manual-bientanfuji-dienhathe.com
Fed e-quick-start-manual-bientanfuji-dienhathe.com
 
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
 
Avnet Electronics Marketing and STMicro Power Devices for Solar Inverters
Avnet Electronics Marketing and STMicro Power Devices for Solar InvertersAvnet Electronics Marketing and STMicro Power Devices for Solar Inverters
Avnet Electronics Marketing and STMicro Power Devices for Solar Inverters
 
Advanced motion controls se10a20ac
Advanced motion controls se10a20acAdvanced motion controls se10a20ac
Advanced motion controls se10a20ac
 
Advanced motion controls se10a40ac
Advanced motion controls se10a40acAdvanced motion controls se10a40ac
Advanced motion controls se10a40ac
 
Advanced motion controls se30a20ac
Advanced motion controls se30a20acAdvanced motion controls se30a20ac
Advanced motion controls se30a20ac
 
Lect2 up150 (100325)
Lect2 up150 (100325)Lect2 up150 (100325)
Lect2 up150 (100325)
 
Advanced motion controls ab100c200
Advanced motion controls ab100c200Advanced motion controls ab100c200
Advanced motion controls ab100c200
 
Advanced motion controls mf2x510
Advanced motion controls mf2x510Advanced motion controls mf2x510
Advanced motion controls mf2x510
 
Advanced motion controls mf1x510
Advanced motion controls mf1x510Advanced motion controls mf1x510
Advanced motion controls mf1x510
 

More from aicdesign

Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)aicdesign
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)aicdesign
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)aicdesign
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)aicdesign
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)aicdesign
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)aicdesign
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)aicdesign
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)aicdesign
 
Lect2 up250 (100328)
Lect2 up250 (100328)Lect2 up250 (100328)
Lect2 up250 (100328)aicdesign
 
Lect2 up230 (100327)
Lect2 up230 (100327)Lect2 up230 (100327)
Lect2 up230 (100327)aicdesign
 
Lect2 up200 (100327)
Lect2 up200 (100327)Lect2 up200 (100327)
Lect2 up200 (100327)aicdesign
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)aicdesign
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)aicdesign
 
Lect2 up130 (100325)
Lect2 up130 (100325)Lect2 up130 (100325)
Lect2 up130 (100325)aicdesign
 
Lect2 up120 (100325)
Lect2 up120 (100325)Lect2 up120 (100325)
Lect2 up120 (100325)aicdesign
 
Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)aicdesign
 
Lect2 up100 (100324)
Lect2 up100 (100324)Lect2 up100 (100324)
Lect2 up100 (100324)aicdesign
 

More from aicdesign (17)

Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)
 
Lect2 up250 (100328)
Lect2 up250 (100328)Lect2 up250 (100328)
Lect2 up250 (100328)
 
Lect2 up230 (100327)
Lect2 up230 (100327)Lect2 up230 (100327)
Lect2 up230 (100327)
 
Lect2 up200 (100327)
Lect2 up200 (100327)Lect2 up200 (100327)
Lect2 up200 (100327)
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)
 
Lect2 up130 (100325)
Lect2 up130 (100325)Lect2 up130 (100325)
Lect2 up130 (100325)
 
Lect2 up120 (100325)
Lect2 up120 (100325)Lect2 up120 (100325)
Lect2 up120 (100325)
 
Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)
 
Lect2 up100 (100324)
Lect2 up100 (100324)Lect2 up100 (100324)
Lect2 up100 (100324)
 

Differential-In, Differential-Out Op Amp Lecture Guide

  • 1. Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-1 LECTURE 280 – DIFFERENTIAL-IN, DIFFERENTIAL-OUT OP AMPS LECTURE ORGANIZATION Outline • Introduction • Examples of differential output op amps • Common mode output voltage stabilization • Summary CMOS Analog Circuit Design, 2nd Edition Reference Pages 384-393 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-2 INTRODUCTION Why Differential Output Op Amps? • Cancellation of common mode signals including clock feedthrough • Increased signal swing v1 v2 v1-v2 A -A A -A t t 2A t -2A Fig. 7.3-1 • Cancellation of even-order harmonics Symbol: - - + + vin vout + + - - Fig. 7.3-1A CMOS Analog Circuit Design © P.E. Allen - 2010
  • 2. Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-3 Common Mode Output Voltage Stabilization If the common mode gain not small, it may cause the common mode output voltage to be poorly defined. Illustration: vod VDD t t CM output voltage too small, Vcm 070506-01 0 VSS vod VDD t 0 VSS vod VDD 0 VSS CM output voltage properly defined, Vcm = 0 CM output voltage too large, Vcm = 0.5VDD = 0.5VSS Remember that: vOUT = Avd(vID) ± Acm(vCM) CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-4 EXAMPLES OF DIFFERENTIAL OUTPUT OP AMPS (OTA’S) Two-Stage, Miller, Differential-In, Differential-Out Op Amp Note that the upper ICMR is VDD - VSGP + VTN (OCMR) = VDD+ |VSS| - VSDP(sat) - VDSN(sat) The maximum peak-to-peak output voltage 2·OCMR VDD + - VBP M8 M6 M3 M4 Cc Rz Rz vo vi1 M1 M2 + - VBN M9 vo1 Conversion between differential outputs and single-ended outputs: + - vod CL + - + - + - vid + - VSS vo1 2CL + - +- + - vid + - vo2 2CL Fig. 7.3-4 M5 Cc vi2 M7 Fig. 7.3-3 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 3. Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-5 Two-Stage, Miller, Differential-In, Differential-Out Op Amp with Push-Pull Output M13 M14 vo1 Rz Rz vo2 vi1 VDD + - VBP M3 M4 M1 M2 M5 M6 M7 M10 M12 VSS + - VBN Cc M9 Cc vi2 M8 Fig. 7.3-6 Comments: • Able to actively source and sink output current • Output quiescent current poorly defined CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-6 Folded-Cascode, Differential Output Op Amp VDD I4 I5 M4 M5 I7 M6 M7 C − vOUT + L M8 M9 VNB1 M10 M11 CL 060717-01 VPB1 I6 VPB2 VNB2 + − vIN I1 I2 VNB1 M1 M2 M3 I3 • No longer has the low-frequency asymmetry in signal path gains. • Class A CMOS Analog Circuit Design © P.E. Allen - 2010
  • 4. Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-7 Enhanced-Gain, Folded-Cascode, Differential Output Op Amp What about the A amplifier? Below is the upper A amplifier: M7 M8 M9 M10 + vin - VPB2 VPB2 - M1 M2 M3 vout + vout M12 060718-02 VDD VPB1 vin VNB1 VBias M4 M5 M6 M11 Note that VBias controls the dc voltage at the input of the A amplifier through the negative feedback loop. VPB1 + − M1 M2 060718-01 M3 vIN VNB1 • Balanced inputs • Class A VDD VPB1 M10 M11 +A − + − M8 M9 − + vOUT M4 M7 M5 M6 − + − A + CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-8 Push-Pull Cascode Op Amp with Differential-Outputs VDD M7 M5 M3 M4 M6 M8 M21 M9 M10 vi1 M1 M2 vi2 vo2 M15 M16 M17 vo1 M13 M12 VSS VBias R2 M22 M23 R1 M20 M19 M11 M14 M18 Fig. 7.3-8 • Output quiescent currents are well defined • Self-biased circuits can be replaced with VNB2 and VPB2 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 5. Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-9 Folded-Cascode, Push-Pull, Differential Output Op Amp I7 I9 0.5gm2vin 0.5gm4vin I8 M8 M9 0.5g 0.5gm4vin m2vin vOUT CL CL − + 0.5gm3vin 0.5gm1vin M10 M11 M12 M13 060717-02 VPB1 M6 M7 I6 I4 VPB2 VNB2 + − I14 I15 I17 M16 M17 vIN I2 VDD M2 M3 I1 M1 VNB1 I3 M5 I5 VNB2 M4 M18 M19 M20 M21 VPB1 M14 M15 I16 VPB2 0.5gm1vin 0.5gm3vin I6 = I7 = I14 = I15 0.5I5 I5 = I1 + I2 + I3 + I4 Av = gmRout(diff) CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-10 Enhanced-Gain, Folded-Cascode with Push-Pull Outputs VPB1 M10 M11 VPB2 M12 M13 060718-06 VPB1 M6 M7 +A − + − M8 M9 vOUT CL CL − + M18 M20 M19 VNB2 M21 + − vIN VDD M2 M3 M1 VNB1 M5 M4 VNB2 M14 M15 M16 M17 − A + − + • Gain approaches gm 3rds 3 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 6. Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-11 Cross-Coupled Differential Amplifier Stage The cross-coupled input stage allows the push-pull output quiescent current to be well defined. i1 M1 M2 + vGS1 - + vGS2 - vi1 vi2 + vSG4 M3 M4 VGS2 VSG4 VGS1 VSG3 i2 i2 i1 Fig. 7.3-9 - + vSG3 - Operation: Voltage loop vi1 - vi2 = -VGS1+ vGS1 + vSG4 - VSG4 = VSG3 - vSG3 - vGS2 + VGS2 Using the notation for ac, dc, and total variables gives, vi2 - vi1 = vid = (vsg1 + vgs4) = -(vsg3 + vgs2) If gm1 = gm2 = gm3 = gm4, then half of the differential input is applied across each transistor with the correct polarity. i1 = gm1vid 2 = gm4vid 2 and i2 = - gm2vid 2 = - gm3vid 2 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-12 Class AB, Differential Output Op Amp using a Cross-Coupled Differential Input Stage VDD M9 M7 M8 M10 vi1 vi2 M1M2 M21 M22 M19 M20 M3 M4 M13 M14 vo1 M15 vo2 M16 M17 M18 M26 M23 M11 M12 M5 M6 VSS + R2 M28 VBias - M25 R1 M24 M27 Fig. 7.3-10 Quiescent output currents are defined by the current in the input cross-coupled differential amplifier. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 7. Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-13 COMMON MODE OUTPUT VOLTAGE STABILIZATION Common Mode Feedback Circuits Because the common mode gain is undefined, any common mode signal at the input can cause the output common mode voltage to be improperly defined. The common mode output voltage is stabilized by sensing the common mode output voltage and using negative feedback to adjust the common mode voltage to the desired value. Model for the Output of Differential Output Op Amps: VDD io1(source) Ro1 vo1 io1(sink) Ro3 io2(source) vo2 io2(sink) Ro2 Ro4 VDD io1(source) Ro1 vo1 Io1(sink) Ro3 io2(source) vo2 Io2(sink) Ro2 Ro4 Class A Output Push-Pull Output 060718-08 Roi represents the self-resistance of the output sink/sources. 1.) If the common mode output voltage increases the sourcing current is too large. 2.) If the common mode output voltage decreases the sinking current is too large. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-14 Conceptual View of Common-Mode Feedback 060718-09 VDD Common Mode Sensing Circuit VCMREF + − vo2 vo1 Output Stage Model Function of the common-mode feedback circuit: 1.) If the common-mode output voltage increases, decrease the upper currents sources or increase the lower current sink until the common-mode voltage is equal to VCMREF. 2.) If the common-mode output voltage decreases, increase the upper currents sources or decrease the lower current sink until the common-mode voltage is equal to VCMREF. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 8. Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-15 Two-Stage, Miller, Differential-In, Differential-Out Op Amp with Common-Mode Feedback VDD + M10 M11 VBP - M7 M6 M3 M4 Cc Rz Rz vo2 vi1 M1 M2 M5 VSS + - VBN Cc M9 vi2 vo1 M8 Fig. 7.3-12 Comments: • Simple • Unreferenced – value of common mode output voltage determined by the circuit characteristics CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-16 Common Mode Feedback Circuits Implementation of common mode feedback circuit: M3 M4 I3 I4 Ro1 Ro2 M1 M2 vo2 vi2 060718-10 vi1 M5 VDD IBias Common-mode feed-back circuit VCM vo1 IC3 IC4 MC2A MC4 MC2B MC1 MC3 MC5 MB This scheme can be applied to any differential output amplifier. CM Loop Gain = -gmC1Ro1 which can be large if the output of the differential output amplifier is cascaded or a gain-enhanced cascode. The common-mode loop gain may need to be compensated for proper dynamic performance. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 9. Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-17 Common Mode Feedback Circuits – Continued The previous circuit suffers when the input common mode voltage is low because the transistors MC2A and MC2B have a poor negative input common mode voltage. The following circuit alleviates this disadvantage: M3 M4 I3 I4 vo1 vo2 RCM1 RCM2 M1 M2 vi2 060718-11 vi1 M5 VDD IBias Common-mode feed-back circuit VCM MC3 IC4 IC3 MC1 MC2 MC4 MC5 MB CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-18 An Improved Common-Mode Feedback Circuit The resistance loading of the previous circuit can be avoided in the following CM feedback implementation: VDD CM Correction Circuitry M5 M6 M1 M2 M3 M4 vo1 vo2 060718-12 RCM RCM VCMREF This circuit is capable of sustaining a large differential voltage without loading the output of the differential output op amp. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 10. Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-19 Frequency Response of the CM Feedback Circuit Consider the following CM feedback circuit implementation: − + M12 M13 M14 Cc M3 VCMREF 070506-02 VPB1 M4 M5 VPB2 VDD M6 M7 vOUT VNB2 M8 M10 M9 M11 + − vIN VNB1 M1 M2 M15 M16 Cc The CM feedback path has two poles – one at the gates of M10 and M11 and the dominant output pole of the differential output op amp. Can compensate with Miller capacitors as shown. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-20 Improved CM Feedback Frequency Response The circuit on the previous page can be modified to eliminate the pole at the gates of M10 and M11 as follows: VCMREF 060718-14 VPB1 M4 M5 VPB2 VDD M6 M7 VNB2 M8 vo1 M9 VNB1 vo2 M10 M11 + − vin VNB1 M1 M2 M3 M12 M13 M14 VNB2 M19 M18 M16 M15 M17 • The need for compensation of the common mode loop no longer exists since there is only one dominant pole • The dominant pole of the differential amplifier becomes the dominant pole of the common mode feedback CMOS Analog Circuit Design © P.E. Allen - 2010
  • 11. Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-21 A Common Mode Feedback Correction Scheme for Discrete Time Applications Correction Scheme: φ1 φ2 vo1 φ1 + Ccm - +- + - vid CMbias vo2 φ1 Ccm Vocm φ1 φ2 φ1 Fig. 7.3-14 Operation: 1.) During the 1 phase, both Ccm are charged to the desired value of Vocm and CMbias = Vocm. 2.) During the 2 phase, the Ccm capacitors are connected between the differential outputs and the CMbias node. The average value applied to the CMbias node will be Vocm. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-22 Example of a Common-Mode Output Voltage Stabilization Scheme for Discrete- Time Applications Common mode adjustment phase: Switches S1, S2 and S3 are closed. C1 and C2 are charged to the value necessary for I12 and I13 to keep the common mode output voltage at VCM. Amplification phase: Switches S4 and S5 are closed. If the common mode output voltage is not at VCM, the currents I12 and I13 will change to force the value of the common mode output voltage back to VCM. M15 Discrete time common mode correction circuit S4 C1 C2 S5 S1 S2 S3 M12 M13 M14 070506-03 VPB1 M4 M5 VPB2 VDD M6 M7 − + vOUT VNB2 M8 M9 VNB1 I12 I13 M10 M11 + − vIN VNB1 M1 M2 M3 VCM CMOS Analog Circuit Design © P.E. Allen - 2010
  • 12. Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-23 Correction of Channel Charge and Clock Feedthrough In the discrete-time common mode correction schemes, the switches can introduce error due to channel charge and clock feedthrough. Through simulation, these errors can be predicted and corrected by applying a correction signal superimposed upon the error signal to achieve the desired (target) common mode voltage. General principle: Unwanted Charge Injection Error CMFB Amplifier CMFB Sense Differential Outputs VBias ΔV Vcm (Target voltage) Correction Signal Error Signal CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 280 – Differential-In, Differential-Out Op Amps (3/28/10) Page 280-24 SUMMARY • Advantages of differential output op amps: - 6 dB increase in signal amplitude - Cancellation of even harmonics - Cancellation of common mode signals including clock feedthrough • Disadvantages of differential output op amps: - Need for common mode output voltage stabilization - Compensation of common mode feedback loop - Difficult to interface with single-ended circuits • Most differential output op amps are truly balanced • For push-pull outputs, the quiescent current should be well defined • Common mode feedback schemes include, - Continuous time - Discrete time CMOS Analog Circuit Design © P.E. Allen - 2010