SlideShare a Scribd company logo
1 of 24
Download to read offline
g ¡¢£¤¥¦§¨g©©©¨¤nd
Ed.) Homework Solutions: 9/21/2002 1
Chapter 3 Homework Solutions
Problem 3.1-1
Sketch to scale the output characteristics of an enhancement n-channel device if VT = 0.7
volt and ID = 500 µA when VGS = 5 V in saturation. Choose values of VGS = 1, 2, 3, 4,
and 5 V. Assume that the channel modulation parameter is zero.
0.00E+00
1.00E-04
2.00E-04
3.00E-04
4.00E-04
5.00E-04
6.00E-04
0 1 2 3 4 5 6
VGS
IDS
€ !#$ %'()
Sketch to scale the output characteristics of an enhancement p-channel device if VT = -0.7
volt and ID = -500 µA when VGS = -1, -2, -3, -4, and -6 V. Assume that the channel
modulation parameter is zero.
-6.00E-04
-5.00E-04
-4.00E-04
-3.00E-04
-2.00E-04
-1.00E-04
0.00E+00
-6 -5 -4 -3 -2 -1 0
VGS
IDS
01234567890@ABC@DEFG@95HInd
Ed.) Homework Solutions: 9/21/2002 2
Problem 3.1-3
In Table 3.1-2, why is γP greater than γN for a n-well, CMOS technology?
The expression for γ is:
γ =
2εsi q NSUB
Cox
Because γ is a function of substrate doping, a higher doping results in a larger value for γ.
In general, for an nwell process, the well has a greater doping concentration than the
substrate and therefore devices in the well will have a larger γ.
Problem 3.1-4
A large-signal model for the MOSFET which features symmetry for the drain and source
is given as
iD = K'
W
L !

#
$
%

[(vGS − VTS)2 u(vGS − VTS)] − [(vGD − VTD)2 u(vGD − VTD)]
where u(x) is 1 if x is greater than or equal to zero and 0 if x is less than zero (step
function) and VTX is the threshold voltage evaluated from the gate to X where X is either S
(Source) or D (Drain). Sketch this model in the form of iD versus vDS for a constant value
of vGS (vGS  VTS) and identify the saturated and nonsaturated regions. Be sure to extend
this sketch for both positive and negative values of vDS. Repeat the sketch of iD versus
vDS for a constant value of vGD (vGD  VTD). Assume that both VTS and VTD are positive.
vGS
constant
vGD
constant vGD-VTD0
vGS-VTS0vGS-VTS0
vGD-VTD0
K'(W/L)(vGS-VTS)2
-K'(W/L)(vGD-VTD)2
01234567890@ABC@DEFG@95HInd
Ed.) Homework Solutions: 9/21/2002 2
Problem 3.1-3
In Table 3.1-2, why is γP greater than γN for a n-well, CMOS technology?
The expression for γ is:
γ =
2εsi q NSUB
Cox
Because γ is a function of substrate doping, a higher doping results in a larger value for γ.
In general, for an nwell process, the well has a greater doping concentration than the
substrate and therefore devices in the well will have a larger γ.
Problem 3.1-4
A large-signal model for the MOSFET which features symmetry for the drain and source
is given as
iD = K'
W
L !

#
$
%

[(vGS − VTS)2 u(vGS − VTS)] − [(vGD − VTD)2 u(vGD − VTD)]
where u(x) is 1 if x is greater than or equal to zero and 0 if x is less than zero (step
function) and VTX is the threshold voltage evaluated from the gate to X where X is either S
(Source) or D (Drain). Sketch this model in the form of iD versus vDS for a constant value
of vGS (vGS  VTS) and identify the saturated and nonsaturated regions. Be sure to extend
this sketch for both positive and negative values of vDS. Repeat the sketch of iD versus
vDS for a constant value of vGD (vGD  VTD). Assume that both VTS and VTD are positive.
vGS
constant
vGD
constant vGD-VTD0
vGS-VTS0vGS-VTS0
vGD-VTD0
K'(W/L)(vGS-VTS)2
-K'(W/L)(vGD-VTD)2
qrstuvwxyq‚ƒ„…‚†‡ˆ‰‚v‘nd
Ed.) Homework Solutions: 9/21/2002 4
iD = K'
W
2L (vGS − VT)2
'
)
*
,1 + λ (vDS − vDS(sat)) , 0  (vGS − VT) ≤ vDS
When vDS = vDS(sat) , this expression agrees with the non-saturation equation at the
point of transition into saturation. Beyond saturation, channel-length modulation is
applied to the difference in vDS and vDS(sat) .
Problem 3.2-1
Using the values of Tables 3.1-1 and 3.2-1, calculate the values of CGB, CGS, and CGD
for a MOS device which has a W of 5 µm and an L of 1 µm for all three regions of
operation.
We will need LD in these calculations. LD can be approximated from the value given for
CGSO in Table 3.2-1.
LD =
220 × 10-12
24.7 × 10-4 ≅ 89 × 10-9
Off
CGB = C2 + 2C5 = Cox(Weff)(Leff) + 2CGBO(Leff)
Weff = 5 µm
Leff = 1 µm - 2×89 nm = 822 × 10-9
CGB = 24.7 × 10-4 × (5× 10-6)( 822 × 10-9) + 2×700 × 10-12×822 × 10-9
CGB = 11.3 × 10-15 F
CGS = C1 ≅ Cox(LD)(Weff) = CGSO(Weff)
CGS = ( 220 × 10-12) ( 5 × 10-6) = 1.1 × 10-15
CGD = C2 ≅ Cox(LD)(Weff) = CGDO(Weff)
CGD = ( 220 × 10-12) ( 5 × 10-6)= 1.1 × 10-15
Saturation
CGB = 2C5 = CGBO (Leff)
’“”•–—˜™de’fghifjklmfe—nond
Ed.) Homework Solutions: 9/21/2002 5
CGB = 700 × 10-12 (822 × 10-9) = 575 × 10-18
CGS = CGSO(Weff) + 0.67Cox(Weff)(Leff)
CGS = 220 × 10-12 × 5 × 10-6 + 0.67 × 24.7 × 10-4 × 822 × 10-9 × 5 × 10-6
CGS = 7.868 × 10-15
CGD = C3 ≅ Cox(LD)(Weff) = CGDO(Weff)
CGD = CGDO(Weff) = 220 × 10-12 × 5 × 10-6 = 1.1 × 10-15
Nonsaturated
CGB = 2C5 = CGBO (Leff)
CGB = CGBO (Leff) = 700 × 10-12 × 822 × 10-9 = 574 × 10-18
CGS = (CGSO + 0.5CoxLeff)Weff
CGS = (220 × 10-12 + 0.5 × 24.7 × 10-4 × 822 × 10-9) × 5 × 10-6 = 6.18 × 10-15
CGD = (CGDO + 0.5CoxLeff)Weff
CGD = (220 × 10-12 + 0.5 × 24.7 × 10-4 × 822 × 10-9) × 5 × 10-6 = 6.18 × 10-15
Problem 3.2-2
Find CBX at VBX = 0 V and 0.75 V of Fig. P3.7 assuming the values of Table 3.2-1 apply
to the MOS device where FC = 0.5 and PB = 1 V. Assume the device is n-channel and
repeat for a p-channel device.
Change problem to read: “|VBX |==== 0 V and 0.75 V (with the junction always reverse
biased)…”
pqrµm
Figure P3.2-2
2.0µm
Polysilicon
Metal
Active Area
sqtµm
uvwxyz{|}~u€‚ƒ„…†~z‡ˆnd
Ed.) Homework Solutions: 9/21/2002 6
AX = 1.6 × 10-6 × 2.0 × 10-6 = 3.2 × 10-12
PX = 2×1.6 × 10-6 + 2.0 × 2.0 × 10-6 = 7.2 × 10-6
NMOS case:
CBX =
(CJ)(AX)
'
(
)
*
+
,
1 −
-
.
/
0
1
2vBX
PB
MJ +
(CJSW)(PX)
'
(
)
*
+
,
1 −
-
.
/
0
1
2vBX
PB
MJSW
CBX =
(770 × 10-6)( 3.2 × 10-12)
'
(
)
*
+
,
1 −
-
.
/
0
1
20
PB
MJ +
(380 × 10-12)( 7.2 × 10-6)
'
(
)
*
+
,
1 −
-
.
/
0
1
20
PB
MJSW = 5.2 × 10-15
PMOS case:
CBX =
(560 × 10-6)( 3.2 × 10-12)
'
(
)
*
+
,
1 −
-
.
/
0
1
20
PB
MJ +
(350 × 10-12)( 7.2 × 10-6)
'
(
)
*
+
,
1 −
-
.
/
0
1
20
PB
MJSW = 4.31 × 10-15
|vBX | = 0.75 volts reverse biased
NMOS case:
CBX =
(CJ)(AX)
'
(
)
*
+
,
1 −
-
.
/
0
1
2vBX
PB
MJ +
(CJSW)(PX)
'
(
)
*
+
,
1 −
-
.
/
0
1
2vBX
PB
MJSW ,
CBX =
(770 × 10-6)( 3.2 × 10-12)
'
(
)
*
+
,
1 −
-
.
/
0
1
2-0.75
1
0.5
+
(380 × 10-12)( 7.2 × 10-6)
'
(
)
*
+
,
1 −
-
.
/
0
1
2-0.75
1
0.38
CBX =
2.464 × 10-15
1.323
+
2.736 × 10-15
1.237
= 4.07 × 10-15
PMOS case:
CBX =
(560 × 10-6)( 3.2 × 10-12)
'
(
)
*
+
,
1 −
-
.
/
0
1
2-0.75
1
0.5
+
(350 × 10-12)( 7.2 × 10-6)
'
(
)
*
+
,
1 −
-
.
/
0
1
2-0.75
1
0.35
CBX =
1.79 × 10-15
1.323
+
2.52 × 10-15
1.216
= 3.425 × 10-15
‰Š‹ŒŽ‘’‰“”•–“—˜™š“’Ž›œnd
Ed.) Homework Solutions: 9/21/2002 7
Problem 3.2-3
Calculate the value of CGB, CGS, and CGD for an n-channel device with a length of 1 µm
and a width of 5 µm. Assume VD = 2 V, VG = 2.4 V, and VS = 0.5 V and let VB = 0 V.
Use model parameters from Tables 3.1-1, 3.1-2, and 3.2-1.
LD =
220 × 10-12
24.7 × 10-4 ≅ 89 × 10-9
Leff = L - 2 × LD = 1 × 10-6 − 2 × 89 × 10-9 = 822 × 10-9
VT = VT0 + γ [ ]2|φF| + vSB − 2|φF|
VT = 0.7 + 0.4 [ ]0.7 + 0.5 − 0.7 = 0.803
vGS − vT =2.4 − 0.5 − 0.803 = 1.096  vDS thus saturation region
CGB = CGBO x Leff = 700 × 10-12 × 822 × 10-9 = 0.575 fF
CGS = CGSO(Weff) + 0.67Cox(Weff)(Leff)
CGS = 220 × 10-12 × 5 × 10-6 + 0.67 × 24.7 × 10-4 × 822 × 10-9 × 5 × 10-6
CGS = 7.868 × 10-15
CGD = C3 ≅ Cox(LD)(Weff) = CGDO(Weff)
CGD = CGDO(Weff) = 220 × 10-12 × 5 × 10-6 = 1.1 × 10-15
Problem 3.3-1
Calculate the transfer function vout(s)/vin(s) for the circuit shown in Fig. P3.3-1. The
W/L of M1 is 2µm/0.8µm and the W/L of M2 is 4µm/4µm. Note that this is a small-
signal analysis and the input voltage has a dc value of 2 volts.
žŸ ¡¢£¤¥¦§¨©ª§«¬­®§¦¢¯°nd
Ed.) Homework Solutions: 9/21/2002 8
±²³´µ¶·¸¹¸º»
5 Volts
vIN = 2V(dc) + 1mV(rms)
vout
+
-
W/L = 2/0.8
W/L = 4/4
M1
M2
vIN
= 2V(dc)
+ 1mV(rms)
R
M1
C
M2
±²³´µ¶·¸¹¸º»¼
vout
+
-
½out(s)
vIN (s)
=
1/SCM2
RM1 + 1/SCM2
=
1
SCM2RM1 + 1
VT1 = VT0 + γ [ ]2|φF| + vSB − 2|φF|
VT1 = 0.7 + 0.4 [ ]0.7 + 2.0 − 0.7 = 1.02
RM1 =
1
K'(W/L)M1 (vGS1 − VT1)
= 1.837 kΩ
CM2 = WM2 × LM2 × Cox = 4 × 10-6 × 4 × 10-6 × 24.7 × 10-4 = 39.52 × 10-15
RM1CM2 = 1.837 kΩ × 39.52 × 10-15 = 72.6 × 10-12
vout(s)
vIN (s) ==
1
S
13.77 × 109 + 1
Problem 3.3-2
Design a low-pass filter patterened after the circuit in Fig. P3.3-1 that achieves a -3dB
frequency of 100 KHz.
1
2πRC
= 100,000
There is more than one answer to this problem because there are two free parameters.
Use the resistance from Problem 3.3-1.
¾¿ÀÁÂÃÄÅÆǾÈÉÊËÈÌÍÎÏÈÇÃÐÑnd
Ed.) Homework Solutions: 9/21/2002 9
RM1 = 1.837 kΩ
CM2 =
1
2π ×1.837× 103×1 × 105 = 866.4 pF
Choose W = L
CM2 = WM2 × LM2 × Cox = W
2
M2 × 24.7 × 10-4 = 866.4 × 10-12
W
2
M2 = 350.8 × 10-9
WM2 = 592 × 10-6
Problem 3.3-3
Repeat Examples 3.3-1 and 3.3-2 if the W/L ratio is 100 µm/10 µm.
Problem correction: Assume λλλλ = 0.01.
Repeat of Example 3.3-1
N-Channel Device
gm = (2K'W/L)|ID|
gm = 2×110 × 10-6 ×10 × 50 × 10-6 = 332 × 10-6
gmbs = gm
γ
2(2|φF| + VSB)1/2
gmbs = 332 × 10-6 0.4
2(0.7+2.0)1/2 = 40.4 × 10-6
gds = ID λ
gds = 50 × 10-6 × 0.01 = 500 × 10-9
P-Channel Device
gm = (2K'W/L)|ID|
PQRSTUVWXYP`abc`defh`YUipnd
Ed.) Homework Solutions: 9/21/2002 3
Problem 3.1-5
Equation (3.1-12) and Eq. (3.1-18) describe the MOS model in nonsaturation and
saturation region, respectively. These equations do not agree at the point of transition
between saturation and nonsaturation regions. For hand calculations, this is not an issue,
but for computer analysis, it is. How would you change Eq. (3.1-18) so that it would
agree with Eq. (3.1-12) at vDS = vDS (sat)?
iD = K'
W
L '
(
)
*
+
,
(vGS − VT) −
vDS
2
vDS (3.1-12)
iD = K'
W
2L
(vGS − VT)2
(1 + λvDS), 0  (vGS − VT) ≤ vDS (3.1-18)
What happens to Eq. 3.1-12 at the point where saturation occurs?
iD = K'
W
L '
(
)
*
+
,
(vGS − VT) −
vDS (sat)
2 vDS(sat)
vDS (sat)= vGS − VT
then
iD = K'
W
L '
(
(
)
*
+
+
,
(vGS − VT) vDS(sat) −
v
2
DS
(sat)
2
iD = K'
W
L '
(
)
*
+
,
(vGS − VT) (vGS − VT) −
(vGS − VT)2
2
iD = K'
W
L '
(
)
*
+
,
( vGS − VT) 2 −
(vGS − VT)2
2
= K'
W
L '
(
)
*
+
,(vGS − VT)2
2
iD = K'
W
L '
(
)
*
+
,(vGS − VT)2
2
which is not equal to Eq.(3.1-18) because of the channel-length modulation term.
Since Eq. (3.1-18) is valid only during saturation when vDS  vDS(sat) we can subtract
vDS(sat) from the vDS in the channel-length modulation term. Doing this results in the
following modification of Eq. (3.1-18).
æçèéêëìíîïæðñòóðôõö÷ðïëøùnd
Ed.) Homework Solutions: 9/21/2002 11
gds = β(VGS − VT − VDS) = 10 ×50 × 10-6 (5 − 1.144− 1) = 1.428 × 10-3
Problem 3.3-4
Find the complete small-signal model for an n-channel transistor with the drain at 4 V,
gate at 4 V, source at 2 V, and the bulk at 0 V. Assume the model parameters from Tables
3.1-1, 3.1-2, and 3.2-1, and W/L = 10 µm/1 µm.
VT = VT0 + γ [ ]2|φF| + vSB − 2|φF|
VT = 0.7 + 0.4 [ ]0.7 + 2.0 − 0.7 = 1.02
ID =
K'W
2L ( )vGS − vT
2
(1 + λ vDS) =
110 × 10-6 ×10
2 ( )2 - 1.02 2(1 + 0.4×2) = 570 × 10-6
gm = (2K'W/L)|ID|
gm = 2×110 × 10-6 ×10 × 570 × 10-6 = 1.12 × 10-3
gmbs = gm
γ
2(2|φF| + VSB)1/2
gmbs = 1.12 × 10-3 0.4
2(0.7+2.0)1/2 = 136 × 10-6
gds = ID λ
gds = 570 × 10-6 × 0.04 = 22.8 × 10-9
LD =
220 × 10-12
24.7 × 10-4 ≅ 89 × 10-9
Leff = L - 2 × LD = 1 × 10-6 − 2 × 89 × 10-9 = 822 × 10-9
CGB = CGBO x Leff = 700 × 10-12 × 822 × 10-9 = 0.575 fF
CGS = CGSO(Weff) + 0.67Cox(Weff)(Leff)
úûüýþÿg ¡¢ ú£¤¥¦£§ ¨©£¢ÿ
nd
Ed.) Homework Solutions: 9/21/2002 12
CGS = 220 × 10-12 × 10 × 10-6 + 0.67 × 24.7 × 10-4 × 822 × 10-9 × 10 × 10-6
CGS = 15.8 × 10-15
CGD = CGDO(Weff)
CGD = CGDO(Weff) = 220 × 10-12 × 10 × 10-6 = 2.2 × 10-15
Problem 3.3-5
Consider the circuit in Fig P3.3-5. It is a parallel connection of n mosfet transistors.
Each transistor has the same length, L, but each transistor can have a different width, W.
Derive an expression for W and L for a single transistor that replaces, and is equivalent to,
the multiple parallel transistors.
The expression for drain current in saturation is:
ID =
K'W
2L ( )vGS − vT
2
(1 + λ vDS)
For multiple transistors with the same drain, gate, and source voltage, the drain current
can be expressed simply as
ID(i) =
-
.
/
0
1
2W
L i
( )vGS − vT
2
(1 + λ vDS)
The drain current in each transistor is additive to the total current, thus
ID(TOTAL) = ( )vGS − vT
2
(1 + λ vDS)
'
(
)
*
+
,
3-
.
/
0
1
2W
L i
Since the lengths are the same, we have
ID(TOTAL) =
1
L( )vGS − vT
2
(1 + λ vDS)
'
(
)
*
+
,
3Wi
Problem 3.3-6
Consider the circuit in Fig P3.3-6. It is a series connection of n mosfet transistors. Each
transistor has the same width, W, but each transistor can have a different length, L.
Derive an expression for W and L for a single transistor that replaces, and is equivalent to,
the multiple parallel transistors. When using the simple model, you must ignore body
effect.
Error in problem statement : replace “parallel” with “series”
! #$%#' ()0# 12
nd
Ed.) Homework Solutions: 9/21/2002 13
Figure P3.3-6
M1
M2
Mn
Assume that all devices are in the non-saturation region.
Consider the case for two transistors in series as illustrated below.
M1
M2
v1
v2
vG
w3
v2
vG
„45 6789@ AB775@C 9@ DE 9F
i1 =
K'W
L '
(
(
)
*
+
+
,
(vGS − VT) vDS −
v
2
DS
2
i1 = β1 '
(
(
)
*
+
+
,
(vGS − VT) v1 −
v
2
1
2 = β1 '
(
(
)
*
+
+
,
(vG − VT) v1 −
v
2
1
2
i1 = β1 '
(
(
)
*
+
+
,
Von v1 −
v
2
1
2
where
GHIP QRSTUV GWXY`Wa bcdWVR ef
nd
Ed.) Homework Solutions: 9/21/2002 14
Von = vG − VT
v1 = Von − V
2
on
−
2i1
β1
v
2
1 = 2Von − 2Von V
2
on
−
2i1
β1
−
2i1
β1
The drain current in M2 is
i2 = β2 '
(
)
*
+
,
(vG − v1 − VT)( v2 − v1) −
( v2 − v1)
2
2
i2 = β2 '
(
)
*
+
,
( Von − v1)( v2 − v1) −
( v2 − v1)
2
2
i2 = β2 '
(
(
)
*
+
+
,
Von v2 − Vonv1 +
v
2
1
2 −
v
2
2
2
Substitue the earlier expression for v1 and equate the drain currents (drain currents must
be equal)
i2 =
β1 β2
β1 + β2 '
(
(
)
*
+
+
,
Von v2 −
v
2
2
2
The expression for the current in M3 is
i3 = β3 '
(
(
)
*
+
+
,
(vGS − VT) v2 −
v
2
2
2
= β3 '
(
(
)
*
+
+
,
Von v2 −
v
2
2
2
The drain current in M3 must be equivalent to the drain current in M1 and M2, thus
β3 =
β1 β2
β1 + β2
=
-
.
/
0
1
21
β1
+
1
β2
-1
=
-
.
/
0
1
2L1
K'W1
+
L2
K'W2
-1
qrstuvwxyq‚ƒ„…‚†‡ˆ‰‚v‘nd
Ed.) Homework Solutions: 9/21/2002 4
iD = K'
W
2L (vGS − VT)2
'
)
*
,1 + λ (vDS − vDS(sat)) , 0  (vGS − VT) ≤ vDS
When vDS = vDS(sat) , this expression agrees with the non-saturation equation at the
point of transition into saturation. Beyond saturation, channel-length modulation is
applied to the difference in vDS and vDS(sat) .
Problem 3.2-1
Using the values of Tables 3.1-1 and 3.2-1, calculate the values of CGB, CGS, and CGD
for a MOS device which has a W of 5 µm and an L of 1 µm for all three regions of
operation.
We will need LD in these calculations. LD can be approximated from the value given for
CGSO in Table 3.2-1.
LD =
220 × 10-12
24.7 × 10-4 ≅ 89 × 10-9
Off
CGB = C2 + 2C5 = Cox(Weff)(Leff) + 2CGBO(Leff)
Weff = 5 µm
Leff = 1 µm - 2×89 nm = 822 × 10-9
CGB = 24.7 × 10-4 × (5× 10-6)( 822 × 10-9) + 2×700 × 10-12×822 × 10-9
CGB = 11.3 × 10-15 F
CGS = C1 ≅ Cox(LD)(Weff) = CGSO(Weff)
CGS = ( 220 × 10-12) ( 5 × 10-6) = 1.1 × 10-15
CGD = C2 ≅ Cox(LD)(Weff) = CGDO(Weff)
CGD = ( 220 × 10-12) ( 5 × 10-6)= 1.1 × 10-15
Saturation
CGB = 2C5 = CGBO (Leff)
‘’“ ”•–—˜™ defgdh ijkd™• lm
nd
Ed.) Homework Solutions: 9/21/2002 16
fast = 0.0259 (1 + .453 + 0.739) = 56.77 × 10-3
von = VT + fast =0.0259 + 56.77 × 10-3 = 82.67 × 10-3
Problem 3.5-2
Develop an expression for the small signal transconductance of a MOS device operating
in weak inversion using the large signal expression of Eq. (3.5-5).
iD ≅
W
L IDO exp
-
.
/
0
1
2vGS
n(kT/q)
gm =
∂ID
∂VGS
=
W
L -
.
/
0
1
21
n(kT/q) IDO exp
-
.
/
0
1
2vGS
n(kT/q) =
ID
n(kT/q)
Problem 3.5-3
Another way to approximate the transition from strong inversion to weak inversion is to
find the current at which the weak-inversion transconductance and the strong-inversion
transconductance are equal. Using this method and the approximation for drain current in
weak inversion (Eq. (3.5-5)), derive an expression for drain current at the transition
between strong and weak inversion.
gm =
W
L -
.
/
0
1
21
n(kT/q)
IDO exp
-
.
/
0
1
2vGS
n(kT/q) = (2K'W/L)ID
-
.
/
0
1
2W
L
2
-
.
/
0
1
21
n(kT/q)
2
I
2
DO
exp
-
.
/
0
1
22vGS
n(kT/q) = (2K'W/L)ID
ID =
-
.
/
0
1
21
2K' -
.
/
0
1
2W
L -
.
/
0
1
2IDO
n(kT/q)
2
exp
-
.
/
0
1
22vGS
n(kT/q)
ID =
-
.
/
0
1
21
2K' IDO -
.
/
0
1
21
n(kT/q)
2
exp
-
.
/
0
1
2vGS
n(kT/q)
×
-
.
/
0
1
2W
L IDO exp
-
.
/
0
1
2vGS
n(kT/q)
ID =
-
.
/
0
1
21
2K' IDO -
.
/
0
1
21
n(kT/q)
2
exp
-
.
/
0
1
2vGS
n(kT/q) × ID
2K' [n(kT/q)]
2
= IDO exp
-
.
/
0
1
2vGS
n(kT/q) =
ID
W/L
nopq rstuvw nxyz{x| }~xws €
nd
Ed.) Homework Solutions: 9/21/2002 17
ID = 2K'
W
L [n(kT/q)]
2
Problem 3.6-1
Consider the circuit illustrated in Fig. P3.6-1. (a) Write a SPICE netlist that describes
this circuit. (b) Repeat part (a) with M2 being 2µm/1µm and it is intended that M3 and
M2 are ratio matched, 1:2.
Part (a)
Problem 3.6-1 (a)
M1 2 1 0 0 nch W=1u L=1u
M2 2 3 4 4 pch w=1u L=1u
M3 3 3 4 4 pch w=1u L=1u
R1 3 0 50k
Vin 1 0 dc 1
Vdd 4 0 dc 5
.MODEL nch NMOS VTO=0.7 KP=110U GAMMA=0.4 LAMBDA=0.04 PHI=0.7
.MODEL pch PMOS VTO=-0.7 KP=50U GAMMA=0.57 LAMBDA=0.05 PHI=0.8
.op
.end
Part (b)
Problem 3.6-1 (b)
M1 2 1 0 0 nch W=1u L=1u
M2 2 3 4 4 pch w=1u L=1u M=2
M3 3 3 4 4 pch w=1u L=1u
R1 3 0 50k
Vin 1 0 dc 1
Vdd 4 0 dc 5
.MODEL nch NMOS VTO=0.7 KP=110U GAMMA=0.4 LAMBDA=0.04 PHI=0.7
.MODEL pch PMOS VTO=-0.7 KP=50U GAMMA=0.57 LAMBDA=0.05 PHI=0.8
.op
.end
Problem 3.6-2
Use SPICE to perform the following analyses on the circuit shown in Fig. P3.6-1: (a) Plot
vOUT versus vIN for the nominal parameter set shown. (b) Separately, vary K' and VT by
+10% and repeat part (a)—four simulations.
Parameter N-Channel P-Channel Units
VT 0.7 -0.7 V
K' 110 50 µA/V2
l 0.04 0.05 V-1
‚ƒ„… †‡ˆ‰Š‹ ‚ŒŽŒ ‘’“Œ‹‡ ”•
nd
Ed.) Homework Solutions: 9/21/2002 18
–
IN
vOUT
R =50kΩ
1
2
3
4
Figure P3.6-1
VDD = 5 V
M1
M2
M3
W/L = 1µ/1µ W/L = 1µ/1µ
W/L = 1µ/1µ
Problem 3.6-2
M1 2 1 0 0 nch W=1u L=1u
M2 2 3 4 4 pch w=1u L=1u
M3 3 3 4 4 pch w=1u L=1u
R1 3 0 50k
Vin 1 0 dc 1
Vdd 4 0 dc 5
*.MODEL nch NMOS VTO=0.7 KP=110U LAMBDA=0.04
*.MODEL pch PMOS VTO=-0.7 KP=50U LAMBDA=0.05
*
*.MODEL nch NMOS VTO=0.77 KP=110U LAMBDA=0.04
*.MODEL pch PMOS VTO=-0.7 KP=50U LAMBDA=0.05
*
*.MODEL nch NMOS VTO=0.7 KP=110U LAMBDA=0.04
*.MODEL pch PMOS VTO=-0.77 KP=50U LAMBDA=0.05
*
*.MODEL nch NMOS VTO=0.7 KP=121U LAMBDA=0.04
*.MODEL pch PMOS VTO=-0.7 KP=50U LAMBDA=0.05
*
.MODEL nch NMOS VTO=0.7 KP=110U LAMBDA=0.04
.MODEL pch PMOS VTO=-0.7 KP=55U LAMBDA=0.05
.dc vin 0 5 .1
.probe
.end
—˜™š ›œžŸ  —¡¢£¤¡¥ ¦§¨¡ œ ©ª
nd
Ed.) Homework Solutions: 9/21/2002 19
«¬ ­¬ 4V
«¬
2V
4V
K'N
=121u
VTN
= 0.77
K'
P
= 55u
V
TP
= -0.77
VOUT
V
IN
®¯°±²³´ µ¶·¸µ
Use SPICE to plot i2 as a function of v2 when i1 has values of 10, 20, 30, 40, 50, 60, and
70 µA for Fig. P3.6-3. The maximum value of v2 is 5 V. Use the model parameters of VT
= 0.7 V and K' = 110 µA/V2 and λ = 0.01 V-1. Repeat with λ = 0.04 V-1.
¹
2
Figure P3.6-3
M1 M2
W/L = 10µm/2µm
i1 i2
W/L = 10µm/2µm
+
−
º»¼½¾»
M1 1 1 0 0 nch l = 2u w = 10u
M2 2 1 0 0 nch l = 2u w = 10u
I1 0 1 DC 0
V1 3 0 DC 0
V_I2 3 2 DC 0
.MODEL nch NMOS VTO=0.7 KP=110U LAMBDA=0.01 GAMMA = 0.4 PHI = 0.7
*.MODEL nch NMOS VTO=0.7 KP=110U LAMBDA=0.04 GAMMA = 0.4 PHI = 0.7
.dc V1 0 5 .1 I1 10u 80u 10u
.END
’“”•–—˜™de’fghifjklmfe—nond
Ed.) Homework Solutions: 9/21/2002 5
CGB = 700 × 10-12 (822 × 10-9) = 575 × 10-18
CGS = CGSO(Weff) + 0.67Cox(Weff)(Leff)
CGS = 220 × 10-12 × 5 × 10-6 + 0.67 × 24.7 × 10-4 × 822 × 10-9 × 5 × 10-6
CGS = 7.868 × 10-15
CGD = C3 ≅ Cox(LD)(Weff) = CGDO(Weff)
CGD = CGDO(Weff) = 220 × 10-12 × 5 × 10-6 = 1.1 × 10-15
Nonsaturated
CGB = 2C5 = CGBO (Leff)
CGB = CGBO (Leff) = 700 × 10-12 × 822 × 10-9 = 574 × 10-18
CGS = (CGSO + 0.5CoxLeff)Weff
CGS = (220 × 10-12 + 0.5 × 24.7 × 10-4 × 822 × 10-9) × 5 × 10-6 = 6.18 × 10-15
CGD = (CGDO + 0.5CoxLeff)Weff
CGD = (220 × 10-12 + 0.5 × 24.7 × 10-4 × 822 × 10-9) × 5 × 10-6 = 6.18 × 10-15
Problem 3.2-2
Find CBX at VBX = 0 V and 0.75 V of Fig. P3.7 assuming the values of Table 3.2-1 apply
to the MOS device where FC = 0.5 and PB = 1 V. Assume the device is n-channel and
repeat for a p-channel device.
Change problem to read: “|VBX |==== 0 V and 0.75 V (with the junction always reverse
biased)…”
pqrµm
Figure P3.2-2
2.0µm
Polysilicon
Metal
Active Area
sqtµm
ÕÖ×Ø ÙÚÛÜÝÞ Õßàáâßã äåæßÞÚ çè
nd
Ed.) Homework Solutions: 9/21/2002 21
VGS 3 0 DC 0
VDS 4 0 DC 0
V_IDS 4 2 DC 0
.MODEL nch NMOS VTO=1 KP=110U LAMBDA=0.01 GAMMA = 0.4 PHI = 0.7
.dc VDS 0 5 .1 VGS 0 5 1
.END
é
DS
IDS
2mA
4mA
1 2 3 4 50
0
VGS= 5
VGS= 4
VGS= 3
VGS= 2
Problem 3.6-5
Repeat Example 3.6-1 if the transistor of Fig. 3.6-5 is a PMOS having the model
parameters given in Table 3.1-2.
p3.6-5
V_IDS 5 2 DC 0
VGS 3 0 DC 0
VDS 5 0 DC 0
M1 2 3 0 0 pch l = 1u w = 5u
.MODEL pch PMOS VTO=-0.7 KP=50U LAMBDA=0.051 GAMMA = 0.57 PHI = 0.8
.dc VDS 0 -5 -.1 VGS 0 -5 -1
.END
êëìí îïðñòó êôõö÷ôø ùúûôóï üý
nd
Ed.) Homework Solutions: 9/21/2002 22
þ
DS
IDS
-1mA
-4 -3 -2 -1 0-5
-2mA
-3mA
0mA
VGS= -5
VGS= -4
VGS= -3
VGS= -2
Problem 3.6-6
Repeat Examples 3.6-2 through 3.6-4 for the circuit of Fig. 3.6-2 if R1 = 200 KΩ.
0V 2V 4V
0V
2V
4V
VIN
VOUT
ÿg ¡ ¢£¤¥¦§ ÿ¨©¨ ¨§£ nd
Ed.) Homework Solutions: 9/21/2002 23
AC Analysis
-20
20
40
e2 e4 e6 e8
0
Frequency
vdb(2)
e e e e!
0
-90
Frequency
vp(2)
E
Transient Analysis
#$% '()012 #345637 89@32( ABnd
Ed.) Homework Solutions: 9/21/2002 24
2us 6us
0V
2V
4V
4us
0V
2V
4V
0
V(2)

More Related Content

What's hot

Rectangular patch Antenna
Rectangular patch AntennaRectangular patch Antenna
Rectangular patch Antennasulaim_qais
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartSimen Li
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Simen Li
 
Communicationlabmanual
CommunicationlabmanualCommunicationlabmanual
Communicationlabmanualjkanth26
 
Intelligent reflecting surface 2
Intelligent reflecting surface 2Intelligent reflecting surface 2
Intelligent reflecting surface 2VARUN KUMAR
 
Quadrature amplitude modulation
Quadrature amplitude modulationQuadrature amplitude modulation
Quadrature amplitude modulationAanchalKumari4
 
Lecture Notes: EEEC6440315 Communication Systems - Inter Symbol Interference...
Lecture Notes:  EEEC6440315 Communication Systems - Inter Symbol Interference...Lecture Notes:  EEEC6440315 Communication Systems - Inter Symbol Interference...
Lecture Notes: EEEC6440315 Communication Systems - Inter Symbol Interference...AIMST University
 
Basics of Analogue Filters
Basics of Analogue FiltersBasics of Analogue Filters
Basics of Analogue Filtersop205
 
Lecture22 non linear fiber optics
Lecture22 non linear fiber opticsLecture22 non linear fiber optics
Lecture22 non linear fiber opticsnadia abd
 
Interventional spine & pain management dr manish raj
Interventional spine & pain management  dr manish rajInterventional spine & pain management  dr manish raj
Interventional spine & pain management dr manish rajManish Raj
 
Dense wavelength division multiplexing
Dense wavelength division multiplexingDense wavelength division multiplexing
Dense wavelength division multiplexingBise Mond
 
Govind agrawal's fiber optical communication
Govind agrawal's fiber optical  communicationGovind agrawal's fiber optical  communication
Govind agrawal's fiber optical communicationsmartknight
 
Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)altaf423
 
Comparison of Single Carrier and Multi-carrier.ppt
Comparison of Single Carrier and Multi-carrier.pptComparison of Single Carrier and Multi-carrier.ppt
Comparison of Single Carrier and Multi-carrier.pptStefan Oprea
 
Monolithic implementation of parasitic elements
Monolithic implementation of parasitic elementsMonolithic implementation of parasitic elements
Monolithic implementation of parasitic elementsGOPICHAND NAGUBOINA
 

What's hot (20)

Rectangular patch Antenna
Rectangular patch AntennaRectangular patch Antenna
Rectangular patch Antenna
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
Communicationlabmanual
CommunicationlabmanualCommunicationlabmanual
Communicationlabmanual
 
Optical amplifiers
Optical amplifiersOptical amplifiers
Optical amplifiers
 
Dsp algorithms 02
Dsp algorithms 02Dsp algorithms 02
Dsp algorithms 02
 
Intelligent reflecting surface 2
Intelligent reflecting surface 2Intelligent reflecting surface 2
Intelligent reflecting surface 2
 
Quadrature amplitude modulation
Quadrature amplitude modulationQuadrature amplitude modulation
Quadrature amplitude modulation
 
Lecture Notes: EEEC6440315 Communication Systems - Inter Symbol Interference...
Lecture Notes:  EEEC6440315 Communication Systems - Inter Symbol Interference...Lecture Notes:  EEEC6440315 Communication Systems - Inter Symbol Interference...
Lecture Notes: EEEC6440315 Communication Systems - Inter Symbol Interference...
 
Basics of Analogue Filters
Basics of Analogue FiltersBasics of Analogue Filters
Basics of Analogue Filters
 
dsp-processor-ppt.ppt
dsp-processor-ppt.pptdsp-processor-ppt.ppt
dsp-processor-ppt.ppt
 
Lecture22 non linear fiber optics
Lecture22 non linear fiber opticsLecture22 non linear fiber optics
Lecture22 non linear fiber optics
 
Multidisciplinary pain management rsuh dr. takdri
Multidisciplinary pain management rsuh dr. takdriMultidisciplinary pain management rsuh dr. takdri
Multidisciplinary pain management rsuh dr. takdri
 
Interventional spine & pain management dr manish raj
Interventional spine & pain management  dr manish rajInterventional spine & pain management  dr manish raj
Interventional spine & pain management dr manish raj
 
Dense wavelength division multiplexing
Dense wavelength division multiplexingDense wavelength division multiplexing
Dense wavelength division multiplexing
 
Govind agrawal's fiber optical communication
Govind agrawal's fiber optical  communicationGovind agrawal's fiber optical  communication
Govind agrawal's fiber optical communication
 
Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)
 
Cmos process flow
Cmos process flowCmos process flow
Cmos process flow
 
Comparison of Single Carrier and Multi-carrier.ppt
Comparison of Single Carrier and Multi-carrier.pptComparison of Single Carrier and Multi-carrier.ppt
Comparison of Single Carrier and Multi-carrier.ppt
 
Monolithic implementation of parasitic elements
Monolithic implementation of parasitic elementsMonolithic implementation of parasitic elements
Monolithic implementation of parasitic elements
 

Viewers also liked (16)

Advanced structures india introduction
Advanced structures india introductionAdvanced structures india introduction
Advanced structures india introduction
 
Caud 17
Caud 17Caud 17
Caud 17
 
YDIL
YDILYDIL
YDIL
 
YDIL
YDILYDIL
YDIL
 
و کشف بد افزار OSSEC
 و کشف بد افزار OSSEC و کشف بد افزار OSSEC
و کشف بد افزار OSSEC
 
Word 2013,
Word 2013,Word 2013,
Word 2013,
 
Jose marc3ada-mellado
Jose marc3ada-melladoJose marc3ada-mellado
Jose marc3ada-mellado
 
YOUTH DEVELOPMENT INITIATIVE LIMITED (YDIL)
YOUTH DEVELOPMENT INITIATIVE LIMITED (YDIL)YOUTH DEVELOPMENT INITIATIVE LIMITED (YDIL)
YOUTH DEVELOPMENT INITIATIVE LIMITED (YDIL)
 
Las funciones de las imagenes
Las funciones de las imagenesLas funciones de las imagenes
Las funciones de las imagenes
 
Human Performance Management
Human Performance ManagementHuman Performance Management
Human Performance Management
 
Sheyla
SheylaSheyla
Sheyla
 
Irene MacBain Final Report
Irene MacBain Final ReportIrene MacBain Final Report
Irene MacBain Final Report
 
Launeddas
LauneddasLauneddas
Launeddas
 
International Review of Compliance & Business Ethics
International Review of Compliance & Business EthicsInternational Review of Compliance & Business Ethics
International Review of Compliance & Business Ethics
 
Chema madoz-power-point1
Chema madoz-power-point1Chema madoz-power-point1
Chema madoz-power-point1
 
Q Mobile Presentation
Q Mobile PresentationQ Mobile Presentation
Q Mobile Presentation
 

Similar to Correction subcircuits.pdf

Lecture12.fm5
Lecture12.fm5Lecture12.fm5
Lecture12.fm5tuanbk1
 
Lect2 up090 (100324)
Lect2 up090 (100324)Lect2 up090 (100324)
Lect2 up090 (100324)aicdesign
 
Lect2 up200 (100327)
Lect2 up200 (100327)Lect2 up200 (100327)
Lect2 up200 (100327)aicdesign
 
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 NewOriginal MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 NewAUTHELECTRONIC
 
Eda solutions tutorials_applications_notes_acm_examples
Eda solutions tutorials_applications_notes_acm_examplesEda solutions tutorials_applications_notes_acm_examples
Eda solutions tutorials_applications_notes_acm_examplescintia costa
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)aicdesign
 
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IR
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IROrriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IR
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IRAUTHELECTRONIC
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Maamoun Hennache
 
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...Valerio Salvucci
 

Similar to Correction subcircuits.pdf (20)

Lecture12.fm5
Lecture12.fm5Lecture12.fm5
Lecture12.fm5
 
Lect2 up090 (100324)
Lect2 up090 (100324)Lect2 up090 (100324)
Lect2 up090 (100324)
 
Ch03s
Ch03sCh03s
Ch03s
 
Lect2 up200 (100327)
Lect2 up200 (100327)Lect2 up200 (100327)
Lect2 up200 (100327)
 
Ch04s
Ch04sCh04s
Ch04s
 
Ch08p
Ch08pCh08p
Ch08p
 
vertical-curves
vertical-curvesvertical-curves
vertical-curves
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 NewOriginal MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
 
Eda solutions tutorials_applications_notes_acm_examples
Eda solutions tutorials_applications_notes_acm_examplesEda solutions tutorials_applications_notes_acm_examples
Eda solutions tutorials_applications_notes_acm_examples
 
Lecture 11
Lecture 11Lecture 11
Lecture 11
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)
 
Chapter 03 drill_solution
Chapter 03 drill_solutionChapter 03 drill_solution
Chapter 03 drill_solution
 
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IR
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IROrriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IR
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IR
 
Chapter 04 drill_solution
Chapter 04 drill_solutionChapter 04 drill_solution
Chapter 04 drill_solution
 
MOSFET Operation
MOSFET OperationMOSFET Operation
MOSFET Operation
 
Lec17 mosfet iv
Lec17 mosfet ivLec17 mosfet iv
Lec17 mosfet iv
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
 
Ch03p
Ch03pCh03p
Ch03p
 
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
 

Recently uploaded

Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........LeaCamillePacle
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationAadityaSharma884161
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 

Recently uploaded (20)

Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint Presentation
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 

Correction subcircuits.pdf

  • 1. g ¡¢£¤¥¦§¨g©©©¨¤nd Ed.) Homework Solutions: 9/21/2002 1 Chapter 3 Homework Solutions Problem 3.1-1 Sketch to scale the output characteristics of an enhancement n-channel device if VT = 0.7 volt and ID = 500 µA when VGS = 5 V in saturation. Choose values of VGS = 1, 2, 3, 4, and 5 V. Assume that the channel modulation parameter is zero. 0.00E+00 1.00E-04 2.00E-04 3.00E-04 4.00E-04 5.00E-04 6.00E-04 0 1 2 3 4 5 6 VGS IDS € !#$ %'() Sketch to scale the output characteristics of an enhancement p-channel device if VT = -0.7 volt and ID = -500 µA when VGS = -1, -2, -3, -4, and -6 V. Assume that the channel modulation parameter is zero. -6.00E-04 -5.00E-04 -4.00E-04 -3.00E-04 -2.00E-04 -1.00E-04 0.00E+00 -6 -5 -4 -3 -2 -1 0 VGS IDS
  • 2. 01234567890@ABC@DEFG@95HInd Ed.) Homework Solutions: 9/21/2002 2 Problem 3.1-3 In Table 3.1-2, why is γP greater than γN for a n-well, CMOS technology? The expression for γ is: γ = 2εsi q NSUB Cox Because γ is a function of substrate doping, a higher doping results in a larger value for γ. In general, for an nwell process, the well has a greater doping concentration than the substrate and therefore devices in the well will have a larger γ. Problem 3.1-4 A large-signal model for the MOSFET which features symmetry for the drain and source is given as iD = K' W L ! # $ % [(vGS − VTS)2 u(vGS − VTS)] − [(vGD − VTD)2 u(vGD − VTD)] where u(x) is 1 if x is greater than or equal to zero and 0 if x is less than zero (step function) and VTX is the threshold voltage evaluated from the gate to X where X is either S (Source) or D (Drain). Sketch this model in the form of iD versus vDS for a constant value of vGS (vGS VTS) and identify the saturated and nonsaturated regions. Be sure to extend this sketch for both positive and negative values of vDS. Repeat the sketch of iD versus vDS for a constant value of vGD (vGD VTD). Assume that both VTS and VTD are positive. vGS constant vGD constant vGD-VTD0 vGS-VTS0vGS-VTS0 vGD-VTD0 K'(W/L)(vGS-VTS)2 -K'(W/L)(vGD-VTD)2
  • 3. 01234567890@ABC@DEFG@95HInd Ed.) Homework Solutions: 9/21/2002 2 Problem 3.1-3 In Table 3.1-2, why is γP greater than γN for a n-well, CMOS technology? The expression for γ is: γ = 2εsi q NSUB Cox Because γ is a function of substrate doping, a higher doping results in a larger value for γ. In general, for an nwell process, the well has a greater doping concentration than the substrate and therefore devices in the well will have a larger γ. Problem 3.1-4 A large-signal model for the MOSFET which features symmetry for the drain and source is given as iD = K' W L ! # $ % [(vGS − VTS)2 u(vGS − VTS)] − [(vGD − VTD)2 u(vGD − VTD)] where u(x) is 1 if x is greater than or equal to zero and 0 if x is less than zero (step function) and VTX is the threshold voltage evaluated from the gate to X where X is either S (Source) or D (Drain). Sketch this model in the form of iD versus vDS for a constant value of vGS (vGS VTS) and identify the saturated and nonsaturated regions. Be sure to extend this sketch for both positive and negative values of vDS. Repeat the sketch of iD versus vDS for a constant value of vGD (vGD VTD). Assume that both VTS and VTD are positive. vGS constant vGD constant vGD-VTD0 vGS-VTS0vGS-VTS0 vGD-VTD0 K'(W/L)(vGS-VTS)2 -K'(W/L)(vGD-VTD)2
  • 4. qrstuvwxyq‚ƒ„…‚†‡ˆ‰‚v‘nd Ed.) Homework Solutions: 9/21/2002 4 iD = K' W 2L (vGS − VT)2 ' ) * ,1 + λ (vDS − vDS(sat)) , 0 (vGS − VT) ≤ vDS When vDS = vDS(sat) , this expression agrees with the non-saturation equation at the point of transition into saturation. Beyond saturation, channel-length modulation is applied to the difference in vDS and vDS(sat) . Problem 3.2-1 Using the values of Tables 3.1-1 and 3.2-1, calculate the values of CGB, CGS, and CGD for a MOS device which has a W of 5 µm and an L of 1 µm for all three regions of operation. We will need LD in these calculations. LD can be approximated from the value given for CGSO in Table 3.2-1. LD = 220 × 10-12 24.7 × 10-4 ≅ 89 × 10-9 Off CGB = C2 + 2C5 = Cox(Weff)(Leff) + 2CGBO(Leff) Weff = 5 µm Leff = 1 µm - 2×89 nm = 822 × 10-9 CGB = 24.7 × 10-4 × (5× 10-6)( 822 × 10-9) + 2×700 × 10-12×822 × 10-9 CGB = 11.3 × 10-15 F CGS = C1 ≅ Cox(LD)(Weff) = CGSO(Weff) CGS = ( 220 × 10-12) ( 5 × 10-6) = 1.1 × 10-15 CGD = C2 ≅ Cox(LD)(Weff) = CGDO(Weff) CGD = ( 220 × 10-12) ( 5 × 10-6)= 1.1 × 10-15 Saturation CGB = 2C5 = CGBO (Leff)
  • 5. ’“”•–—˜™de’fghifjklmfe—nond Ed.) Homework Solutions: 9/21/2002 5 CGB = 700 × 10-12 (822 × 10-9) = 575 × 10-18 CGS = CGSO(Weff) + 0.67Cox(Weff)(Leff) CGS = 220 × 10-12 × 5 × 10-6 + 0.67 × 24.7 × 10-4 × 822 × 10-9 × 5 × 10-6 CGS = 7.868 × 10-15 CGD = C3 ≅ Cox(LD)(Weff) = CGDO(Weff) CGD = CGDO(Weff) = 220 × 10-12 × 5 × 10-6 = 1.1 × 10-15 Nonsaturated CGB = 2C5 = CGBO (Leff) CGB = CGBO (Leff) = 700 × 10-12 × 822 × 10-9 = 574 × 10-18 CGS = (CGSO + 0.5CoxLeff)Weff CGS = (220 × 10-12 + 0.5 × 24.7 × 10-4 × 822 × 10-9) × 5 × 10-6 = 6.18 × 10-15 CGD = (CGDO + 0.5CoxLeff)Weff CGD = (220 × 10-12 + 0.5 × 24.7 × 10-4 × 822 × 10-9) × 5 × 10-6 = 6.18 × 10-15 Problem 3.2-2 Find CBX at VBX = 0 V and 0.75 V of Fig. P3.7 assuming the values of Table 3.2-1 apply to the MOS device where FC = 0.5 and PB = 1 V. Assume the device is n-channel and repeat for a p-channel device. Change problem to read: “|VBX |==== 0 V and 0.75 V (with the junction always reverse biased)…” pqrµm Figure P3.2-2 2.0µm Polysilicon Metal Active Area sqtµm
  • 6. uvwxyz{|}~u€‚ƒ„…†~z‡ˆnd Ed.) Homework Solutions: 9/21/2002 6 AX = 1.6 × 10-6 × 2.0 × 10-6 = 3.2 × 10-12 PX = 2×1.6 × 10-6 + 2.0 × 2.0 × 10-6 = 7.2 × 10-6 NMOS case: CBX = (CJ)(AX) ' ( ) * + , 1 − - . / 0 1 2vBX PB MJ + (CJSW)(PX) ' ( ) * + , 1 − - . / 0 1 2vBX PB MJSW CBX = (770 × 10-6)( 3.2 × 10-12) ' ( ) * + , 1 − - . / 0 1 20 PB MJ + (380 × 10-12)( 7.2 × 10-6) ' ( ) * + , 1 − - . / 0 1 20 PB MJSW = 5.2 × 10-15 PMOS case: CBX = (560 × 10-6)( 3.2 × 10-12) ' ( ) * + , 1 − - . / 0 1 20 PB MJ + (350 × 10-12)( 7.2 × 10-6) ' ( ) * + , 1 − - . / 0 1 20 PB MJSW = 4.31 × 10-15 |vBX | = 0.75 volts reverse biased NMOS case: CBX = (CJ)(AX) ' ( ) * + , 1 − - . / 0 1 2vBX PB MJ + (CJSW)(PX) ' ( ) * + , 1 − - . / 0 1 2vBX PB MJSW , CBX = (770 × 10-6)( 3.2 × 10-12) ' ( ) * + , 1 − - . / 0 1 2-0.75 1 0.5 + (380 × 10-12)( 7.2 × 10-6) ' ( ) * + , 1 − - . / 0 1 2-0.75 1 0.38 CBX = 2.464 × 10-15 1.323 + 2.736 × 10-15 1.237 = 4.07 × 10-15 PMOS case: CBX = (560 × 10-6)( 3.2 × 10-12) ' ( ) * + , 1 − - . / 0 1 2-0.75 1 0.5 + (350 × 10-12)( 7.2 × 10-6) ' ( ) * + , 1 − - . / 0 1 2-0.75 1 0.35 CBX = 1.79 × 10-15 1.323 + 2.52 × 10-15 1.216 = 3.425 × 10-15
  • 7. ‰Š‹ŒŽ‘’‰“”•–“—˜™š“’Ž›œnd Ed.) Homework Solutions: 9/21/2002 7 Problem 3.2-3 Calculate the value of CGB, CGS, and CGD for an n-channel device with a length of 1 µm and a width of 5 µm. Assume VD = 2 V, VG = 2.4 V, and VS = 0.5 V and let VB = 0 V. Use model parameters from Tables 3.1-1, 3.1-2, and 3.2-1. LD = 220 × 10-12 24.7 × 10-4 ≅ 89 × 10-9 Leff = L - 2 × LD = 1 × 10-6 − 2 × 89 × 10-9 = 822 × 10-9 VT = VT0 + γ [ ]2|φF| + vSB − 2|φF| VT = 0.7 + 0.4 [ ]0.7 + 0.5 − 0.7 = 0.803 vGS − vT =2.4 − 0.5 − 0.803 = 1.096 vDS thus saturation region CGB = CGBO x Leff = 700 × 10-12 × 822 × 10-9 = 0.575 fF CGS = CGSO(Weff) + 0.67Cox(Weff)(Leff) CGS = 220 × 10-12 × 5 × 10-6 + 0.67 × 24.7 × 10-4 × 822 × 10-9 × 5 × 10-6 CGS = 7.868 × 10-15 CGD = C3 ≅ Cox(LD)(Weff) = CGDO(Weff) CGD = CGDO(Weff) = 220 × 10-12 × 5 × 10-6 = 1.1 × 10-15 Problem 3.3-1 Calculate the transfer function vout(s)/vin(s) for the circuit shown in Fig. P3.3-1. The W/L of M1 is 2µm/0.8µm and the W/L of M2 is 4µm/4µm. Note that this is a small- signal analysis and the input voltage has a dc value of 2 volts.
  • 8. žŸ ¡¢£¤¥¦§¨©ª§«¬­®§¦¢¯°nd Ed.) Homework Solutions: 9/21/2002 8 ±²³´µ¶·¸¹¸º» 5 Volts vIN = 2V(dc) + 1mV(rms) vout + - W/L = 2/0.8 W/L = 4/4 M1 M2 vIN = 2V(dc) + 1mV(rms) R M1 C M2 ±²³´µ¶·¸¹¸º»¼ vout + - ½out(s) vIN (s) = 1/SCM2 RM1 + 1/SCM2 = 1 SCM2RM1 + 1 VT1 = VT0 + γ [ ]2|φF| + vSB − 2|φF| VT1 = 0.7 + 0.4 [ ]0.7 + 2.0 − 0.7 = 1.02 RM1 = 1 K'(W/L)M1 (vGS1 − VT1) = 1.837 kΩ CM2 = WM2 × LM2 × Cox = 4 × 10-6 × 4 × 10-6 × 24.7 × 10-4 = 39.52 × 10-15 RM1CM2 = 1.837 kΩ × 39.52 × 10-15 = 72.6 × 10-12 vout(s) vIN (s) == 1 S 13.77 × 109 + 1 Problem 3.3-2 Design a low-pass filter patterened after the circuit in Fig. P3.3-1 that achieves a -3dB frequency of 100 KHz. 1 2πRC = 100,000 There is more than one answer to this problem because there are two free parameters. Use the resistance from Problem 3.3-1.
  • 9. ¾¿ÀÁÂÃÄÅÆǾÈÉÊËÈÌÍÎÏÈÇÃÐÑnd Ed.) Homework Solutions: 9/21/2002 9 RM1 = 1.837 kΩ CM2 = 1 2π ×1.837× 103×1 × 105 = 866.4 pF Choose W = L CM2 = WM2 × LM2 × Cox = W 2 M2 × 24.7 × 10-4 = 866.4 × 10-12 W 2 M2 = 350.8 × 10-9 WM2 = 592 × 10-6 Problem 3.3-3 Repeat Examples 3.3-1 and 3.3-2 if the W/L ratio is 100 µm/10 µm. Problem correction: Assume λλλλ = 0.01. Repeat of Example 3.3-1 N-Channel Device gm = (2K'W/L)|ID| gm = 2×110 × 10-6 ×10 × 50 × 10-6 = 332 × 10-6 gmbs = gm γ 2(2|φF| + VSB)1/2 gmbs = 332 × 10-6 0.4 2(0.7+2.0)1/2 = 40.4 × 10-6 gds = ID λ gds = 50 × 10-6 × 0.01 = 500 × 10-9 P-Channel Device gm = (2K'W/L)|ID|
  • 10. PQRSTUVWXYP`abc`defh`YUipnd Ed.) Homework Solutions: 9/21/2002 3 Problem 3.1-5 Equation (3.1-12) and Eq. (3.1-18) describe the MOS model in nonsaturation and saturation region, respectively. These equations do not agree at the point of transition between saturation and nonsaturation regions. For hand calculations, this is not an issue, but for computer analysis, it is. How would you change Eq. (3.1-18) so that it would agree with Eq. (3.1-12) at vDS = vDS (sat)? iD = K' W L ' ( ) * + , (vGS − VT) − vDS 2 vDS (3.1-12) iD = K' W 2L (vGS − VT)2 (1 + λvDS), 0 (vGS − VT) ≤ vDS (3.1-18) What happens to Eq. 3.1-12 at the point where saturation occurs? iD = K' W L ' ( ) * + , (vGS − VT) − vDS (sat) 2 vDS(sat) vDS (sat)= vGS − VT then iD = K' W L ' ( ( ) * + + , (vGS − VT) vDS(sat) − v 2 DS (sat) 2 iD = K' W L ' ( ) * + , (vGS − VT) (vGS − VT) − (vGS − VT)2 2 iD = K' W L ' ( ) * + , ( vGS − VT) 2 − (vGS − VT)2 2 = K' W L ' ( ) * + ,(vGS − VT)2 2 iD = K' W L ' ( ) * + ,(vGS − VT)2 2 which is not equal to Eq.(3.1-18) because of the channel-length modulation term. Since Eq. (3.1-18) is valid only during saturation when vDS vDS(sat) we can subtract vDS(sat) from the vDS in the channel-length modulation term. Doing this results in the following modification of Eq. (3.1-18).
  • 11. æçèéêëìíîïæðñòóðôõö÷ðïëøùnd Ed.) Homework Solutions: 9/21/2002 11 gds = β(VGS − VT − VDS) = 10 ×50 × 10-6 (5 − 1.144− 1) = 1.428 × 10-3 Problem 3.3-4 Find the complete small-signal model for an n-channel transistor with the drain at 4 V, gate at 4 V, source at 2 V, and the bulk at 0 V. Assume the model parameters from Tables 3.1-1, 3.1-2, and 3.2-1, and W/L = 10 µm/1 µm. VT = VT0 + γ [ ]2|φF| + vSB − 2|φF| VT = 0.7 + 0.4 [ ]0.7 + 2.0 − 0.7 = 1.02 ID = K'W 2L ( )vGS − vT 2 (1 + λ vDS) = 110 × 10-6 ×10 2 ( )2 - 1.02 2(1 + 0.4×2) = 570 × 10-6 gm = (2K'W/L)|ID| gm = 2×110 × 10-6 ×10 × 570 × 10-6 = 1.12 × 10-3 gmbs = gm γ 2(2|φF| + VSB)1/2 gmbs = 1.12 × 10-3 0.4 2(0.7+2.0)1/2 = 136 × 10-6 gds = ID λ gds = 570 × 10-6 × 0.04 = 22.8 × 10-9 LD = 220 × 10-12 24.7 × 10-4 ≅ 89 × 10-9 Leff = L - 2 × LD = 1 × 10-6 − 2 × 89 × 10-9 = 822 × 10-9 CGB = CGBO x Leff = 700 × 10-12 × 822 × 10-9 = 0.575 fF CGS = CGSO(Weff) + 0.67Cox(Weff)(Leff)
  • 12. úûüýþÿg ¡¢ ú£¤¥¦£§ ¨©£¢ÿ nd Ed.) Homework Solutions: 9/21/2002 12 CGS = 220 × 10-12 × 10 × 10-6 + 0.67 × 24.7 × 10-4 × 822 × 10-9 × 10 × 10-6 CGS = 15.8 × 10-15 CGD = CGDO(Weff) CGD = CGDO(Weff) = 220 × 10-12 × 10 × 10-6 = 2.2 × 10-15 Problem 3.3-5 Consider the circuit in Fig P3.3-5. It is a parallel connection of n mosfet transistors. Each transistor has the same length, L, but each transistor can have a different width, W. Derive an expression for W and L for a single transistor that replaces, and is equivalent to, the multiple parallel transistors. The expression for drain current in saturation is: ID = K'W 2L ( )vGS − vT 2 (1 + λ vDS) For multiple transistors with the same drain, gate, and source voltage, the drain current can be expressed simply as ID(i) = - . / 0 1 2W L i ( )vGS − vT 2 (1 + λ vDS) The drain current in each transistor is additive to the total current, thus ID(TOTAL) = ( )vGS − vT 2 (1 + λ vDS) ' ( ) * + , 3- . / 0 1 2W L i Since the lengths are the same, we have ID(TOTAL) = 1 L( )vGS − vT 2 (1 + λ vDS) ' ( ) * + , 3Wi Problem 3.3-6 Consider the circuit in Fig P3.3-6. It is a series connection of n mosfet transistors. Each transistor has the same width, W, but each transistor can have a different length, L. Derive an expression for W and L for a single transistor that replaces, and is equivalent to, the multiple parallel transistors. When using the simple model, you must ignore body effect. Error in problem statement : replace “parallel” with “series”
  • 13. ! #$%#' ()0# 12 nd Ed.) Homework Solutions: 9/21/2002 13 Figure P3.3-6 M1 M2 Mn Assume that all devices are in the non-saturation region. Consider the case for two transistors in series as illustrated below. M1 M2 v1 v2 vG w3 v2 vG „45 6789@ AB775@C 9@ DE 9F i1 = K'W L ' ( ( ) * + + , (vGS − VT) vDS − v 2 DS 2 i1 = β1 ' ( ( ) * + + , (vGS − VT) v1 − v 2 1 2 = β1 ' ( ( ) * + + , (vG − VT) v1 − v 2 1 2 i1 = β1 ' ( ( ) * + + , Von v1 − v 2 1 2 where
  • 14. GHIP QRSTUV GWXY`Wa bcdWVR ef nd Ed.) Homework Solutions: 9/21/2002 14 Von = vG − VT v1 = Von − V 2 on − 2i1 β1 v 2 1 = 2Von − 2Von V 2 on − 2i1 β1 − 2i1 β1 The drain current in M2 is i2 = β2 ' ( ) * + , (vG − v1 − VT)( v2 − v1) − ( v2 − v1) 2 2 i2 = β2 ' ( ) * + , ( Von − v1)( v2 − v1) − ( v2 − v1) 2 2 i2 = β2 ' ( ( ) * + + , Von v2 − Vonv1 + v 2 1 2 − v 2 2 2 Substitue the earlier expression for v1 and equate the drain currents (drain currents must be equal) i2 = β1 β2 β1 + β2 ' ( ( ) * + + , Von v2 − v 2 2 2 The expression for the current in M3 is i3 = β3 ' ( ( ) * + + , (vGS − VT) v2 − v 2 2 2 = β3 ' ( ( ) * + + , Von v2 − v 2 2 2 The drain current in M3 must be equivalent to the drain current in M1 and M2, thus β3 = β1 β2 β1 + β2 = - . / 0 1 21 β1 + 1 β2 -1 = - . / 0 1 2L1 K'W1 + L2 K'W2 -1
  • 15. qrstuvwxyq‚ƒ„…‚†‡ˆ‰‚v‘nd Ed.) Homework Solutions: 9/21/2002 4 iD = K' W 2L (vGS − VT)2 ' ) * ,1 + λ (vDS − vDS(sat)) , 0 (vGS − VT) ≤ vDS When vDS = vDS(sat) , this expression agrees with the non-saturation equation at the point of transition into saturation. Beyond saturation, channel-length modulation is applied to the difference in vDS and vDS(sat) . Problem 3.2-1 Using the values of Tables 3.1-1 and 3.2-1, calculate the values of CGB, CGS, and CGD for a MOS device which has a W of 5 µm and an L of 1 µm for all three regions of operation. We will need LD in these calculations. LD can be approximated from the value given for CGSO in Table 3.2-1. LD = 220 × 10-12 24.7 × 10-4 ≅ 89 × 10-9 Off CGB = C2 + 2C5 = Cox(Weff)(Leff) + 2CGBO(Leff) Weff = 5 µm Leff = 1 µm - 2×89 nm = 822 × 10-9 CGB = 24.7 × 10-4 × (5× 10-6)( 822 × 10-9) + 2×700 × 10-12×822 × 10-9 CGB = 11.3 × 10-15 F CGS = C1 ≅ Cox(LD)(Weff) = CGSO(Weff) CGS = ( 220 × 10-12) ( 5 × 10-6) = 1.1 × 10-15 CGD = C2 ≅ Cox(LD)(Weff) = CGDO(Weff) CGD = ( 220 × 10-12) ( 5 × 10-6)= 1.1 × 10-15 Saturation CGB = 2C5 = CGBO (Leff)
  • 16. ‘’“ ”•–—˜™ defgdh ijkd™• lm nd Ed.) Homework Solutions: 9/21/2002 16 fast = 0.0259 (1 + .453 + 0.739) = 56.77 × 10-3 von = VT + fast =0.0259 + 56.77 × 10-3 = 82.67 × 10-3 Problem 3.5-2 Develop an expression for the small signal transconductance of a MOS device operating in weak inversion using the large signal expression of Eq. (3.5-5). iD ≅ W L IDO exp - . / 0 1 2vGS n(kT/q) gm = ∂ID ∂VGS = W L - . / 0 1 21 n(kT/q) IDO exp - . / 0 1 2vGS n(kT/q) = ID n(kT/q) Problem 3.5-3 Another way to approximate the transition from strong inversion to weak inversion is to find the current at which the weak-inversion transconductance and the strong-inversion transconductance are equal. Using this method and the approximation for drain current in weak inversion (Eq. (3.5-5)), derive an expression for drain current at the transition between strong and weak inversion. gm = W L - . / 0 1 21 n(kT/q) IDO exp - . / 0 1 2vGS n(kT/q) = (2K'W/L)ID - . / 0 1 2W L 2 - . / 0 1 21 n(kT/q) 2 I 2 DO exp - . / 0 1 22vGS n(kT/q) = (2K'W/L)ID ID = - . / 0 1 21 2K' - . / 0 1 2W L - . / 0 1 2IDO n(kT/q) 2 exp - . / 0 1 22vGS n(kT/q) ID = - . / 0 1 21 2K' IDO - . / 0 1 21 n(kT/q) 2 exp - . / 0 1 2vGS n(kT/q) × - . / 0 1 2W L IDO exp - . / 0 1 2vGS n(kT/q) ID = - . / 0 1 21 2K' IDO - . / 0 1 21 n(kT/q) 2 exp - . / 0 1 2vGS n(kT/q) × ID 2K' [n(kT/q)] 2 = IDO exp - . / 0 1 2vGS n(kT/q) = ID W/L
  • 17. nopq rstuvw nxyz{x| }~xws € nd Ed.) Homework Solutions: 9/21/2002 17 ID = 2K' W L [n(kT/q)] 2 Problem 3.6-1 Consider the circuit illustrated in Fig. P3.6-1. (a) Write a SPICE netlist that describes this circuit. (b) Repeat part (a) with M2 being 2µm/1µm and it is intended that M3 and M2 are ratio matched, 1:2. Part (a) Problem 3.6-1 (a) M1 2 1 0 0 nch W=1u L=1u M2 2 3 4 4 pch w=1u L=1u M3 3 3 4 4 pch w=1u L=1u R1 3 0 50k Vin 1 0 dc 1 Vdd 4 0 dc 5 .MODEL nch NMOS VTO=0.7 KP=110U GAMMA=0.4 LAMBDA=0.04 PHI=0.7 .MODEL pch PMOS VTO=-0.7 KP=50U GAMMA=0.57 LAMBDA=0.05 PHI=0.8 .op .end Part (b) Problem 3.6-1 (b) M1 2 1 0 0 nch W=1u L=1u M2 2 3 4 4 pch w=1u L=1u M=2 M3 3 3 4 4 pch w=1u L=1u R1 3 0 50k Vin 1 0 dc 1 Vdd 4 0 dc 5 .MODEL nch NMOS VTO=0.7 KP=110U GAMMA=0.4 LAMBDA=0.04 PHI=0.7 .MODEL pch PMOS VTO=-0.7 KP=50U GAMMA=0.57 LAMBDA=0.05 PHI=0.8 .op .end Problem 3.6-2 Use SPICE to perform the following analyses on the circuit shown in Fig. P3.6-1: (a) Plot vOUT versus vIN for the nominal parameter set shown. (b) Separately, vary K' and VT by +10% and repeat part (a)—four simulations. Parameter N-Channel P-Channel Units VT 0.7 -0.7 V K' 110 50 µA/V2 l 0.04 0.05 V-1
  • 18. ‚ƒ„… †‡ˆ‰Š‹ ‚ŒŽŒ ‘’“Œ‹‡ ”• nd Ed.) Homework Solutions: 9/21/2002 18 – IN vOUT R =50kΩ 1 2 3 4 Figure P3.6-1 VDD = 5 V M1 M2 M3 W/L = 1µ/1µ W/L = 1µ/1µ W/L = 1µ/1µ Problem 3.6-2 M1 2 1 0 0 nch W=1u L=1u M2 2 3 4 4 pch w=1u L=1u M3 3 3 4 4 pch w=1u L=1u R1 3 0 50k Vin 1 0 dc 1 Vdd 4 0 dc 5 *.MODEL nch NMOS VTO=0.7 KP=110U LAMBDA=0.04 *.MODEL pch PMOS VTO=-0.7 KP=50U LAMBDA=0.05 * *.MODEL nch NMOS VTO=0.77 KP=110U LAMBDA=0.04 *.MODEL pch PMOS VTO=-0.7 KP=50U LAMBDA=0.05 * *.MODEL nch NMOS VTO=0.7 KP=110U LAMBDA=0.04 *.MODEL pch PMOS VTO=-0.77 KP=50U LAMBDA=0.05 * *.MODEL nch NMOS VTO=0.7 KP=121U LAMBDA=0.04 *.MODEL pch PMOS VTO=-0.7 KP=50U LAMBDA=0.05 * .MODEL nch NMOS VTO=0.7 KP=110U LAMBDA=0.04 .MODEL pch PMOS VTO=-0.7 KP=55U LAMBDA=0.05 .dc vin 0 5 .1 .probe .end
  • 19. —˜™š ›œžŸ  —¡¢£¤¡¥ ¦§¨¡ œ ©ª nd Ed.) Homework Solutions: 9/21/2002 19 «¬ ­¬ 4V «¬ 2V 4V K'N =121u VTN = 0.77 K' P = 55u V TP = -0.77 VOUT V IN ®¯°±²³´ µ¶·¸µ Use SPICE to plot i2 as a function of v2 when i1 has values of 10, 20, 30, 40, 50, 60, and 70 µA for Fig. P3.6-3. The maximum value of v2 is 5 V. Use the model parameters of VT = 0.7 V and K' = 110 µA/V2 and λ = 0.01 V-1. Repeat with λ = 0.04 V-1. ¹ 2 Figure P3.6-3 M1 M2 W/L = 10µm/2µm i1 i2 W/L = 10µm/2µm + − º»¼½¾» M1 1 1 0 0 nch l = 2u w = 10u M2 2 1 0 0 nch l = 2u w = 10u I1 0 1 DC 0 V1 3 0 DC 0 V_I2 3 2 DC 0 .MODEL nch NMOS VTO=0.7 KP=110U LAMBDA=0.01 GAMMA = 0.4 PHI = 0.7 *.MODEL nch NMOS VTO=0.7 KP=110U LAMBDA=0.04 GAMMA = 0.4 PHI = 0.7 .dc V1 0 5 .1 I1 10u 80u 10u .END
  • 20. ’“”•–—˜™de’fghifjklmfe—nond Ed.) Homework Solutions: 9/21/2002 5 CGB = 700 × 10-12 (822 × 10-9) = 575 × 10-18 CGS = CGSO(Weff) + 0.67Cox(Weff)(Leff) CGS = 220 × 10-12 × 5 × 10-6 + 0.67 × 24.7 × 10-4 × 822 × 10-9 × 5 × 10-6 CGS = 7.868 × 10-15 CGD = C3 ≅ Cox(LD)(Weff) = CGDO(Weff) CGD = CGDO(Weff) = 220 × 10-12 × 5 × 10-6 = 1.1 × 10-15 Nonsaturated CGB = 2C5 = CGBO (Leff) CGB = CGBO (Leff) = 700 × 10-12 × 822 × 10-9 = 574 × 10-18 CGS = (CGSO + 0.5CoxLeff)Weff CGS = (220 × 10-12 + 0.5 × 24.7 × 10-4 × 822 × 10-9) × 5 × 10-6 = 6.18 × 10-15 CGD = (CGDO + 0.5CoxLeff)Weff CGD = (220 × 10-12 + 0.5 × 24.7 × 10-4 × 822 × 10-9) × 5 × 10-6 = 6.18 × 10-15 Problem 3.2-2 Find CBX at VBX = 0 V and 0.75 V of Fig. P3.7 assuming the values of Table 3.2-1 apply to the MOS device where FC = 0.5 and PB = 1 V. Assume the device is n-channel and repeat for a p-channel device. Change problem to read: “|VBX |==== 0 V and 0.75 V (with the junction always reverse biased)…” pqrµm Figure P3.2-2 2.0µm Polysilicon Metal Active Area sqtµm
  • 21. ÕÖ×Ø ÙÚÛÜÝÞ Õßàáâßã äåæßÞÚ çè nd Ed.) Homework Solutions: 9/21/2002 21 VGS 3 0 DC 0 VDS 4 0 DC 0 V_IDS 4 2 DC 0 .MODEL nch NMOS VTO=1 KP=110U LAMBDA=0.01 GAMMA = 0.4 PHI = 0.7 .dc VDS 0 5 .1 VGS 0 5 1 .END é DS IDS 2mA 4mA 1 2 3 4 50 0 VGS= 5 VGS= 4 VGS= 3 VGS= 2 Problem 3.6-5 Repeat Example 3.6-1 if the transistor of Fig. 3.6-5 is a PMOS having the model parameters given in Table 3.1-2. p3.6-5 V_IDS 5 2 DC 0 VGS 3 0 DC 0 VDS 5 0 DC 0 M1 2 3 0 0 pch l = 1u w = 5u .MODEL pch PMOS VTO=-0.7 KP=50U LAMBDA=0.051 GAMMA = 0.57 PHI = 0.8 .dc VDS 0 -5 -.1 VGS 0 -5 -1 .END
  • 22. êëìí îïðñòó êôõö÷ôø ùúûôóï üý nd Ed.) Homework Solutions: 9/21/2002 22 þ DS IDS -1mA -4 -3 -2 -1 0-5 -2mA -3mA 0mA VGS= -5 VGS= -4 VGS= -3 VGS= -2 Problem 3.6-6 Repeat Examples 3.6-2 through 3.6-4 for the circuit of Fig. 3.6-2 if R1 = 200 KΩ. 0V 2V 4V 0V 2V 4V VIN VOUT
  • 23. ÿg ¡ ¢£¤¥¦§ ÿ¨©¨ ¨§£ nd Ed.) Homework Solutions: 9/21/2002 23 AC Analysis -20 20 40 e2 e4 e6 e8 0 Frequency vdb(2) e e e e! 0 -90 Frequency vp(2) E Transient Analysis
  • 24. #$% '()012 #345637 89@32( ABnd Ed.) Homework Solutions: 9/21/2002 24 2us 6us 0V 2V 4V 4us 0V 2V 4V 0 V(2)