SlideShare a Scribd company logo
1 of 12
Download to read offline
EE 105 Spring 1997
Lecture 12
MOSFET Small-Signal Model
s Concept: Þnd an equivalent circuit which interrelates the incremental changes in
iD, vGS, vDS, etc. Since the changes are small, the small-signal equivalent circuit
has linear elements only (e.g., capacitors, resistors, controlled sources)
s Derivation: consider for example the relationship of the increment in drain
current due to an increment in gate-source voltage when the MOSFET is
saturated-- with all other voltages held constant.
vGS = VGS + vgs , iD = ID + id -- we want to find id = (?) vgs
We have the functional dependence of the total drain current in saturation:
iD = µn Cox (W/2L) (vGS - VTn )2
(1 + λnvDS) = iD(vGS, vDS, vBS)
Do a Taylor expansion around the DC operating point (also called the quiescent
point or Q point) defined by the DC voltages Q(VGS, VDS, VBS):
If the small-signal voltage is really Òsmall,Ó then we can neglect all everything past
the linear term --
where the partial derivative is deÞned as the transconductance, gm.
iD ID vGS∂
∂iD
Q
vgs( )
1
2
---
vGS
2
2
∂
∂ iD
Q
vgs( )
2
…+ + +=
iD ID vGS∂
∂iD
Q
vgs( )+ ID gmvgs+= =
EE 105 Spring 1997
Lecture 12
Transconductance
The small-signal drain current due to vgs is therefore given by
id = gm vgs.
D
S
G
+
_
B VDS = 4 V
+
_
1 2 3 4 5
100
200
300
400
500
600
iD
(µA)
VDS (V)
6
vGS = VGS = 3 V
VGS = 3 V
+
_
vgs
iD = ID + id
vGS = VGS + vgs
Q
id
gm = id / vgs
EE 105 Spring 1997
Lecture 12
Another View of gm
* Plot the drain current as a function of the gate-source voltage, so that
the slope can be identiÞed with the transconductance:
D
S
G
+
_
B VDS = 4 V
+
_
1 2 3 4 5
100
200
300
400
500
600
iD
(µA)
vGS (V)6
vGS = VGS = 3 V
VGS = 3 V
+
_
vgs
iD = ID + id
vGS = VGS + vgs
Q
id
gm = id / vgs
iD(vGS, VDS = 4 V)
EE 105 Spring 1997
Lecture 12
Transconductance (cont.)
s Evaluating the partial derivative:
Note that the transconductance is a function of the operating point, through its
dependence on VGS and VDS -- and also the dependence of the threshold voltage on
the backgate bias VBS.
s In order to Þnd a simple expression that highlights the dependence of gm on the
DC drain current, we neglect the (usually) small error in writing:
For typical values (W/L) = 10, ID = 100 µA, and µnCox = 50 µAV-2
we Þnd that
gm = 320 µAV-1
= 0.32 mS
s How do we make a circuit which expresses id = gm vgs ? Since the current is not
across the controlling voltage, we need a voltage-controlled current source:
gm µnCox
W
L
-----
 
  VGS VTnÐ( ) 1 λnVDS+( )=
gm 2µnCox
W
L
-----
 
  ID
2ID
VGS VTnÐ
--------------------------= =
gmvgs
gate
source
drain+
_
vgs
_
id
EE 105 Spring 1997
Lecture 12
Output Conductance
s We can also Þnd the change in drain current due to an increment in the drain-
source voltage:
The output resistance is the inverse of the output conductance
The small-signal circuit model with ro added looks like:
go
iD∂
vDS∂
------------
Q
µnCox
W
2L
------
 
  VGS VTnÐ( )
2
λn λnID≅= =
ro
1
go
-----
1
λnID
------------= =
gmvgs ro
gate
source
drain
+
_
vgs
id
+
_
vds
id = gm vgs + (1/ro)vds
EE 105 Spring 1997
Lecture 12
Backgate Transconductance
s We can Þnd the small-signal drain current due to a change in the backgate bias
by the same technique. The chain rule comes in handy to make use of our
previous result for gm:
.
The ratio of the Òfront-gateÓ transconductance gm to the backgate
transconductance gmb is:
where Cb(y=0) is the depletion capacitance at the source end of the channel --
gmb
iD∂
vBS∂
------------
Q
iD∂
VTn∂
------------
Q
VTn∂
vBS∂
------------
Q
= =
gmb gmÐ( )
VTn∂
vBS∂
------------
Q
gmÐ( )
γnÐ
2 2Ð φp VBSÐ
------------------------------------
 
 
  γngm
2 2Ð φp VBSÐ
------------------------------------= = =
gmb
gm
---------
2qεsN
a
2Cox 2Ð φp VBSÐ
----------------------------------------------
1
Cox
---------
qεsNa
2 2Ð φp VBSÐ( )
-------------------------------------
Cb y=0( )
Cox
--------------------= = =
gate
source
depletion
bulk
Cb(0)
region
channel
EE 105 Spring 1997
Lecture 12
MOSFET Capacitances in Saturation
In saturation, the gate-source capacitance contains two terms, one due to the
channel chargeÕs dependence on vGS [(2/3)WLCox] and one due to the overlap of
gate and source (WCov, where Cov is the overlap capacitance in fF per µm of gate
width)
In addition, there are depletion capacitances between the drain and bulk (Cdb) and
between source and bulk (Csb). Finally, the extension of the gate over the Þeld oxide
leads to a small gate-bulk capacitance Cgb.
,,
,,,,
,,,,, gate
drainsource
n+ n+
qN(vGS)
overlap LD
overlap LD
fringe electric
field lines
Csb
Cdb
depletion
region
Cgs
2
3
---WLCox WCov+=
EE 105 Spring 1997
Lecture 12
Complete Small-Signal Model
s The capacitances are ÒpatchedÓ onto the small-signal circuit schematic
containing gm, gmb, and ro
s p-channel MOSFET small-signal model
the source is the highest potential and is located at the top of the schematic
gmvgs gmbvbs ro
gate
source_
_
vgs Cgs Cgb
Cgd
Csb
Cdb
vbs
drain
id
+
+
bulk
gmvsg gmbvsb
ro
gate
drain
bulk
+
_
vsg
Cgs
Csb
Cdb
Cgd
Cgb
_
source
−id
vsb
EE 105 Spring 1997
Lecture 12
Circuit Simulation
s Objectives:
¥ fabricating an IC costs $1000 ... $100,000 per run
--- nice to get it ÒrightÓ the Þrst time
¥ check results from hand-analysis
(e.g. validity of assumptions)
¥ evaluate functionality, speed, accuracy, ... of large circuit blocks or entire chips
s Simulators:
¥ SPICE: invented at UC Berkeley circa 1970-1975
commercial versions: HSPICE, PSPICE, I-SPICE, ... (same core as Berkeley
SPICE, but add functionality, improved user interface, ...)
EE 105: student version of PSPICE on PC, limited to 10 transistors
¥ other simulators for higher speed, special needs (e.g. SPLICE, RSIM)
s Limitations:
¥ simulation results provide no insight (e.g. how to increase speed of circuit)
¥ results sometimes wrong (errors in input, effect not modeled in SPICE)
=== always do hand-analysis Þrst and COMPARE RESULTS
EE 105 Spring 1997
Lecture 12
MOSFET Geometry in SPICE
s Statement for MOSFET ... D,G,S,B are node numbers for drain, gate, source,
and bulk terminals
Mname D G S B MODname L= _ W=_ AD= _ AS=_ PD=_ PS=_
MODname speciÞes the model name for the MOSFET
,,
,








AS = W × Ldiff (source)
Ldiff (source) Ldiff (drain)
AD = W × Ldiff (drain)
NRS = N (source)
PS = 2 × Ldiff (source) = W
NRD = N (drain)
PD = 2 × Ldiff (drain) = W
W
L
EE 105 Spring 1997
Lecture 12
MOSFET Model Statement
.MODEL MODname NMOS/PMOS VTO=_ KP=_ GAMMA=_ PHI=_
LAMBDA=_ RD=_ RS=_ RSH=_ CBD=_ CBS=_CJ=_ MJ=_ CJSW=_
MJSW=_ PB=_ IS= _ CGDO=_ CGSO=_ CGBO=_ TOX=_ LD=_
DC Drain Current Equations:
Parameter name (SPICE /
this text)
SPICE symbol
Eqs. (4.93), (4.94)
Analytical symbol
Eqs. (4.59), (4.60)
Units
channel length Leff L m
polysilicon gate length L Lgate m
lateral diffusion/
gate-source overlap
LD LD m
transconductance parameter KP µnCox A/V2
threshold voltage /
zero-bias threshold
VTO VTnO V
channel-length modulation
parameter
LAMBDA λn V-1
bulk threshold /
backgate effect parameter
GAMMA γn V1/2
surface potential /
depletion drop in inversion
PHI - φp V
IDS 0 V( GS VÐ TH )≤=
IDS
KP
2
-------- W Leff⁄( )VDS 2 VGS VTHÐ( ) VDSÐ[ ] 1 LAMBDA VDS⋅+( )= 0 VDS VGS VTHÐ≤ ≤( )
IDS
KP
2
-------- W Leff⁄( ) VGS VTHÐ( )
2
1 LAMBDA VDS⋅+( )= 0 VGS VTHÐ VDS≤≤( )
VTH VTO GAMMA 2 PHI⋅ VBSÐ 2 PHI⋅Ð( )+=
EE 105 Spring 1997
Lecture 12
Capacitances
SPICE includes the ÒsidewallÓ capacitance due to the perimeter of the source and
drain junctions --
Gate-source and gate-bulk overlap capacitance are speciÞed by CGDO and CGSO
(units: F/m).
Level 1 MOSFET model:
.MODEL MODN NMOS LEVEL=1 VTO=1 KP=50U LAMBDA=.033 GAMMA=.6
+ PHI=0.8 TOX=1.5E-10 CGDO=5E-10 CGSO= 5e-10 CJ=1E-4 CJSW=5E-10
+ MJ=0.5 PB=0.95
The Level 1 model is adequate for channel lengths longer than about 1.5 µm
For sub-µm MOSFETs, BSIM = ÒBerkeley Short-Channel IGFET ModelÓ is the
industry-standard SPICE model.
n+
drain
CBD VBD( )
CJ AD⋅
1 VBD PB⁄Ð( )
MJ
--------------------------------------------
CJSW PD⋅
1 VBD PB⁄Ð( )
MJSW
----------------------------------------------------+=
(area) (perimeter)

More Related Content

What's hot

Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor LogicDiwaker Pant
 
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOS
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOSLec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOS
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOSHsien-Hsin Sean Lee, Ph.D.
 
Mos transistor
Mos transistorMos transistor
Mos transistorMurali Rai
 
Trends in cmos digital design
Trends in cmos digital designTrends in cmos digital design
Trends in cmos digital designRajesh Roshan
 
Design of two stage OPAMP
Design of two stage OPAMPDesign of two stage OPAMP
Design of two stage OPAMPVishal Pathak
 
Lect2 up050 (100430)
Lect2 up050 (100430)Lect2 up050 (100430)
Lect2 up050 (100430)aicdesign
 
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIERDESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIERIlango Jeyasubramanian
 
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarDelay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarAkhil Masurkar
 
ACCURATE Q-PREDICTION FOR RFIC SPIRAL INDUCTORS USING THE 3DB BANDWIDTH
ACCURATE Q-PREDICTION FOR RFIC SPIRAL INDUCTORS  USING THE 3DB BANDWIDTHACCURATE Q-PREDICTION FOR RFIC SPIRAL INDUCTORS  USING THE 3DB BANDWIDTH
ACCURATE Q-PREDICTION FOR RFIC SPIRAL INDUCTORS USING THE 3DB BANDWIDTHIlango Jeyasubramanian
 
A novel voltage reference without the operational amplifier and resistors
A novel voltage reference without the operational amplifier and resistorsA novel voltage reference without the operational amplifier and resistors
A novel voltage reference without the operational amplifier and resistorsIJRES Journal
 
EE452_Flyback Convert
EE452_Flyback ConvertEE452_Flyback Convert
EE452_Flyback Convertki hei chan
 

What's hot (19)

Project mac
Project macProject mac
Project mac
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
 
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOS
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOSLec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOS
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOS
 
Mos transistor
Mos transistorMos transistor
Mos transistor
 
Trends in cmos digital design
Trends in cmos digital designTrends in cmos digital design
Trends in cmos digital design
 
2016 ch4 delay
2016 ch4 delay2016 ch4 delay
2016 ch4 delay
 
Design of two stage OPAMP
Design of two stage OPAMPDesign of two stage OPAMP
Design of two stage OPAMP
 
Lect2 up050 (100430)
Lect2 up050 (100430)Lect2 up050 (100430)
Lect2 up050 (100430)
 
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIERDESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
 
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarDelay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
 
ACCURATE Q-PREDICTION FOR RFIC SPIRAL INDUCTORS USING THE 3DB BANDWIDTH
ACCURATE Q-PREDICTION FOR RFIC SPIRAL INDUCTORS  USING THE 3DB BANDWIDTHACCURATE Q-PREDICTION FOR RFIC SPIRAL INDUCTORS  USING THE 3DB BANDWIDTH
ACCURATE Q-PREDICTION FOR RFIC SPIRAL INDUCTORS USING THE 3DB BANDWIDTH
 
Ece523 folded cascode design
Ece523 folded cascode designEce523 folded cascode design
Ece523 folded cascode design
 
VLSI- Unit II
VLSI- Unit IIVLSI- Unit II
VLSI- Unit II
 
MOSFET as an Amplifier
MOSFET as an AmplifierMOSFET as an Amplifier
MOSFET as an Amplifier
 
MOSFET Operation
MOSFET OperationMOSFET Operation
MOSFET Operation
 
VLSI- Unit I
VLSI- Unit IVLSI- Unit I
VLSI- Unit I
 
A novel voltage reference without the operational amplifier and resistors
A novel voltage reference without the operational amplifier and resistorsA novel voltage reference without the operational amplifier and resistors
A novel voltage reference without the operational amplifier and resistors
 
EE452_Flyback Convert
EE452_Flyback ConvertEE452_Flyback Convert
EE452_Flyback Convert
 
Folded cascode1
Folded cascode1Folded cascode1
Folded cascode1
 

Similar to Lecture12.fm5

Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)aicdesign
 
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 NewOriginal MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 NewAUTHELECTRONIC
 
Fet full explanations
Fet full explanationsFet full explanations
Fet full explanationsSridhar Done
 
Original Mosfet IRL3713PBF 3713 30V 180A TO-220 New IR
Original Mosfet IRL3713PBF 3713 30V 180A TO-220 New IROriginal Mosfet IRL3713PBF 3713 30V 180A TO-220 New IR
Original Mosfet IRL3713PBF 3713 30V 180A TO-220 New IRAUTHELECTRONIC
 
Original Mosfet 33N25 FDP33N25 250V 33A TO-220 New Fairchild
Original Mosfet 33N25 FDP33N25 250V 33A TO-220 New FairchildOriginal Mosfet 33N25 FDP33N25 250V 33A TO-220 New Fairchild
Original Mosfet 33N25 FDP33N25 250V 33A TO-220 New FairchildAUTHELECTRONIC
 
Introduction to COMS VLSI Design
Introduction to COMS VLSI DesignIntroduction to COMS VLSI Design
Introduction to COMS VLSI DesignEutectics
 
Original N-Channel Power MOSFET IRF1010EPBF IRF1010 1010 60V 84A TO-220 New I...
Original N-Channel Power MOSFET IRF1010EPBF IRF1010 1010 60V 84A TO-220 New I...Original N-Channel Power MOSFET IRF1010EPBF IRF1010 1010 60V 84A TO-220 New I...
Original N-Channel Power MOSFET IRF1010EPBF IRF1010 1010 60V 84A TO-220 New I...AUTHELECTRONIC
 
Original MOSFET N-CHANNEL FQPF9N50C 9N50C 9N50 TO-220 9A 500V New
Original MOSFET N-CHANNEL FQPF9N50C 9N50C 9N50 TO-220 9A 500V NewOriginal MOSFET N-CHANNEL FQPF9N50C 9N50C 9N50 TO-220 9A 500V New
Original MOSFET N-CHANNEL FQPF9N50C 9N50C 9N50 TO-220 9A 500V NewAUTHELECTRONIC
 
Original N Channel Mosfet IRF3710PBF IRF3710 3710 37A 100V New
Original N Channel Mosfet IRF3710PBF IRF3710 3710 37A 100V NewOriginal N Channel Mosfet IRF3710PBF IRF3710 3710 37A 100V New
Original N Channel Mosfet IRF3710PBF IRF3710 3710 37A 100V NewAUTHELECTRONIC
 
Original P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IR
Original P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IROriginal P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IR
Original P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IRAUTHELECTRONIC
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewAUTHELECTRONIC
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewAUTHELECTRONIC
 
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewOriginal P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewAUTHELECTRONIC
 
Correction subcircuits.pdf
Correction subcircuits.pdfCorrection subcircuits.pdf
Correction subcircuits.pdftajechop
 
Original N-CHANNEL Mosfet FQPF7N60 7N60 7A 600V TO-220F New Fairchild
Original N-CHANNEL Mosfet FQPF7N60 7N60 7A 600V TO-220F New FairchildOriginal N-CHANNEL Mosfet FQPF7N60 7N60 7A 600V TO-220F New Fairchild
Original N-CHANNEL Mosfet FQPF7N60 7N60 7A 600V TO-220F New FairchildAUTHELECTRONIC
 
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IROriginal P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IRAUTHELECTRONIC
 
Original N Channel Mosfet IRF630N IRF630 TO-220 9.3A 200V New IR
Original N Channel Mosfet IRF630N IRF630 TO-220 9.3A 200V New IROriginal N Channel Mosfet IRF630N IRF630 TO-220 9.3A 200V New IR
Original N Channel Mosfet IRF630N IRF630 TO-220 9.3A 200V New IRAUTHELECTRONIC
 

Similar to Lecture12.fm5 (20)

Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)
 
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 NewOriginal MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
 
Fet full explanations
Fet full explanationsFet full explanations
Fet full explanations
 
Fet basics-1
Fet basics-1Fet basics-1
Fet basics-1
 
Original Mosfet IRL3713PBF 3713 30V 180A TO-220 New IR
Original Mosfet IRL3713PBF 3713 30V 180A TO-220 New IROriginal Mosfet IRL3713PBF 3713 30V 180A TO-220 New IR
Original Mosfet IRL3713PBF 3713 30V 180A TO-220 New IR
 
Original Mosfet 33N25 FDP33N25 250V 33A TO-220 New Fairchild
Original Mosfet 33N25 FDP33N25 250V 33A TO-220 New FairchildOriginal Mosfet 33N25 FDP33N25 250V 33A TO-220 New Fairchild
Original Mosfet 33N25 FDP33N25 250V 33A TO-220 New Fairchild
 
Introduction to COMS VLSI Design
Introduction to COMS VLSI DesignIntroduction to COMS VLSI Design
Introduction to COMS VLSI Design
 
Original N-Channel Power MOSFET IRF1010EPBF IRF1010 1010 60V 84A TO-220 New I...
Original N-Channel Power MOSFET IRF1010EPBF IRF1010 1010 60V 84A TO-220 New I...Original N-Channel Power MOSFET IRF1010EPBF IRF1010 1010 60V 84A TO-220 New I...
Original N-Channel Power MOSFET IRF1010EPBF IRF1010 1010 60V 84A TO-220 New I...
 
Original MOSFET N-CHANNEL FQPF9N50C 9N50C 9N50 TO-220 9A 500V New
Original MOSFET N-CHANNEL FQPF9N50C 9N50C 9N50 TO-220 9A 500V NewOriginal MOSFET N-CHANNEL FQPF9N50C 9N50C 9N50 TO-220 9A 500V New
Original MOSFET N-CHANNEL FQPF9N50C 9N50C 9N50 TO-220 9A 500V New
 
Original N Channel Mosfet IRF3710PBF IRF3710 3710 37A 100V New
Original N Channel Mosfet IRF3710PBF IRF3710 3710 37A 100V NewOriginal N Channel Mosfet IRF3710PBF IRF3710 3710 37A 100V New
Original N Channel Mosfet IRF3710PBF IRF3710 3710 37A 100V New
 
Original P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IR
Original P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IROriginal P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IR
Original P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IR
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
 
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewOriginal P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
 
Correction subcircuits.pdf
Correction subcircuits.pdfCorrection subcircuits.pdf
Correction subcircuits.pdf
 
91086
9108691086
91086
 
Original N-CHANNEL Mosfet FQPF7N60 7N60 7A 600V TO-220F New Fairchild
Original N-CHANNEL Mosfet FQPF7N60 7N60 7A 600V TO-220F New FairchildOriginal N-CHANNEL Mosfet FQPF7N60 7N60 7A 600V TO-220F New Fairchild
Original N-CHANNEL Mosfet FQPF7N60 7N60 7A 600V TO-220F New Fairchild
 
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IROriginal P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
 
Original N Channel Mosfet IRF630N IRF630 TO-220 9.3A 200V New IR
Original N Channel Mosfet IRF630N IRF630 TO-220 9.3A 200V New IROriginal N Channel Mosfet IRF630N IRF630 TO-220 9.3A 200V New IR
Original N Channel Mosfet IRF630N IRF630 TO-220 9.3A 200V New IR
 
Lec17 mosfet iv
Lec17 mosfet ivLec17 mosfet iv
Lec17 mosfet iv
 

Lecture12.fm5

  • 1. EE 105 Spring 1997 Lecture 12 MOSFET Small-Signal Model s Concept: Þnd an equivalent circuit which interrelates the incremental changes in iD, vGS, vDS, etc. Since the changes are small, the small-signal equivalent circuit has linear elements only (e.g., capacitors, resistors, controlled sources) s Derivation: consider for example the relationship of the increment in drain current due to an increment in gate-source voltage when the MOSFET is saturated-- with all other voltages held constant. vGS = VGS + vgs , iD = ID + id -- we want to find id = (?) vgs We have the functional dependence of the total drain current in saturation: iD = µn Cox (W/2L) (vGS - VTn )2 (1 + λnvDS) = iD(vGS, vDS, vBS) Do a Taylor expansion around the DC operating point (also called the quiescent point or Q point) defined by the DC voltages Q(VGS, VDS, VBS): If the small-signal voltage is really Òsmall,Ó then we can neglect all everything past the linear term -- where the partial derivative is deÞned as the transconductance, gm. iD ID vGS∂ ∂iD Q vgs( ) 1 2 --- vGS 2 2 ∂ ∂ iD Q vgs( ) 2 …+ + += iD ID vGS∂ ∂iD Q vgs( )+ ID gmvgs+= =
  • 2. EE 105 Spring 1997 Lecture 12 Transconductance The small-signal drain current due to vgs is therefore given by id = gm vgs. D S G + _ B VDS = 4 V + _ 1 2 3 4 5 100 200 300 400 500 600 iD (µA) VDS (V) 6 vGS = VGS = 3 V VGS = 3 V + _ vgs iD = ID + id vGS = VGS + vgs Q id gm = id / vgs
  • 3. EE 105 Spring 1997 Lecture 12 Another View of gm * Plot the drain current as a function of the gate-source voltage, so that the slope can be identiÞed with the transconductance: D S G + _ B VDS = 4 V + _ 1 2 3 4 5 100 200 300 400 500 600 iD (µA) vGS (V)6 vGS = VGS = 3 V VGS = 3 V + _ vgs iD = ID + id vGS = VGS + vgs Q id gm = id / vgs iD(vGS, VDS = 4 V)
  • 4. EE 105 Spring 1997 Lecture 12 Transconductance (cont.) s Evaluating the partial derivative: Note that the transconductance is a function of the operating point, through its dependence on VGS and VDS -- and also the dependence of the threshold voltage on the backgate bias VBS. s In order to Þnd a simple expression that highlights the dependence of gm on the DC drain current, we neglect the (usually) small error in writing: For typical values (W/L) = 10, ID = 100 µA, and µnCox = 50 µAV-2 we Þnd that gm = 320 µAV-1 = 0.32 mS s How do we make a circuit which expresses id = gm vgs ? Since the current is not across the controlling voltage, we need a voltage-controlled current source: gm µnCox W L -----     VGS VTnÐ( ) 1 λnVDS+( )= gm 2µnCox W L -----     ID 2ID VGS VTnÐ --------------------------= = gmvgs gate source drain+ _ vgs _ id
  • 5. EE 105 Spring 1997 Lecture 12 Output Conductance s We can also Þnd the change in drain current due to an increment in the drain- source voltage: The output resistance is the inverse of the output conductance The small-signal circuit model with ro added looks like: go iD∂ vDS∂ ------------ Q µnCox W 2L ------     VGS VTnÐ( ) 2 λn λnID≅= = ro 1 go ----- 1 λnID ------------= = gmvgs ro gate source drain + _ vgs id + _ vds id = gm vgs + (1/ro)vds
  • 6. EE 105 Spring 1997 Lecture 12 Backgate Transconductance s We can Þnd the small-signal drain current due to a change in the backgate bias by the same technique. The chain rule comes in handy to make use of our previous result for gm: . The ratio of the Òfront-gateÓ transconductance gm to the backgate transconductance gmb is: where Cb(y=0) is the depletion capacitance at the source end of the channel -- gmb iD∂ vBS∂ ------------ Q iD∂ VTn∂ ------------ Q VTn∂ vBS∂ ------------ Q = = gmb gmÐ( ) VTn∂ vBS∂ ------------ Q gmÐ( ) γnÐ 2 2Ð φp VBSÐ ------------------------------------       γngm 2 2Ð φp VBSÐ ------------------------------------= = = gmb gm --------- 2qεsN a 2Cox 2Ð φp VBSÐ ---------------------------------------------- 1 Cox --------- qεsNa 2 2Ð φp VBSÐ( ) ------------------------------------- Cb y=0( ) Cox --------------------= = = gate source depletion bulk Cb(0) region channel
  • 7. EE 105 Spring 1997 Lecture 12 MOSFET Capacitances in Saturation In saturation, the gate-source capacitance contains two terms, one due to the channel chargeÕs dependence on vGS [(2/3)WLCox] and one due to the overlap of gate and source (WCov, where Cov is the overlap capacitance in fF per µm of gate width) In addition, there are depletion capacitances between the drain and bulk (Cdb) and between source and bulk (Csb). Finally, the extension of the gate over the Þeld oxide leads to a small gate-bulk capacitance Cgb. ,, ,,,, ,,,,, gate drainsource n+ n+ qN(vGS) overlap LD overlap LD fringe electric field lines Csb Cdb depletion region Cgs 2 3 ---WLCox WCov+=
  • 8. EE 105 Spring 1997 Lecture 12 Complete Small-Signal Model s The capacitances are ÒpatchedÓ onto the small-signal circuit schematic containing gm, gmb, and ro s p-channel MOSFET small-signal model the source is the highest potential and is located at the top of the schematic gmvgs gmbvbs ro gate source_ _ vgs Cgs Cgb Cgd Csb Cdb vbs drain id + + bulk gmvsg gmbvsb ro gate drain bulk + _ vsg Cgs Csb Cdb Cgd Cgb _ source −id vsb
  • 9. EE 105 Spring 1997 Lecture 12 Circuit Simulation s Objectives: ¥ fabricating an IC costs $1000 ... $100,000 per run --- nice to get it ÒrightÓ the Þrst time ¥ check results from hand-analysis (e.g. validity of assumptions) ¥ evaluate functionality, speed, accuracy, ... of large circuit blocks or entire chips s Simulators: ¥ SPICE: invented at UC Berkeley circa 1970-1975 commercial versions: HSPICE, PSPICE, I-SPICE, ... (same core as Berkeley SPICE, but add functionality, improved user interface, ...) EE 105: student version of PSPICE on PC, limited to 10 transistors ¥ other simulators for higher speed, special needs (e.g. SPLICE, RSIM) s Limitations: ¥ simulation results provide no insight (e.g. how to increase speed of circuit) ¥ results sometimes wrong (errors in input, effect not modeled in SPICE) === always do hand-analysis Þrst and COMPARE RESULTS
  • 10. EE 105 Spring 1997 Lecture 12 MOSFET Geometry in SPICE s Statement for MOSFET ... D,G,S,B are node numbers for drain, gate, source, and bulk terminals Mname D G S B MODname L= _ W=_ AD= _ AS=_ PD=_ PS=_ MODname speciÞes the model name for the MOSFET ,, , AS = W × Ldiff (source) Ldiff (source) Ldiff (drain) AD = W × Ldiff (drain) NRS = N (source) PS = 2 × Ldiff (source) = W NRD = N (drain) PD = 2 × Ldiff (drain) = W W L
  • 11. EE 105 Spring 1997 Lecture 12 MOSFET Model Statement .MODEL MODname NMOS/PMOS VTO=_ KP=_ GAMMA=_ PHI=_ LAMBDA=_ RD=_ RS=_ RSH=_ CBD=_ CBS=_CJ=_ MJ=_ CJSW=_ MJSW=_ PB=_ IS= _ CGDO=_ CGSO=_ CGBO=_ TOX=_ LD=_ DC Drain Current Equations: Parameter name (SPICE / this text) SPICE symbol Eqs. (4.93), (4.94) Analytical symbol Eqs. (4.59), (4.60) Units channel length Leff L m polysilicon gate length L Lgate m lateral diffusion/ gate-source overlap LD LD m transconductance parameter KP µnCox A/V2 threshold voltage / zero-bias threshold VTO VTnO V channel-length modulation parameter LAMBDA λn V-1 bulk threshold / backgate effect parameter GAMMA γn V1/2 surface potential / depletion drop in inversion PHI - φp V IDS 0 V( GS VÐ TH )≤= IDS KP 2 -------- W Leff⁄( )VDS 2 VGS VTHÐ( ) VDSÐ[ ] 1 LAMBDA VDS⋅+( )= 0 VDS VGS VTHÐ≤ ≤( ) IDS KP 2 -------- W Leff⁄( ) VGS VTHÐ( ) 2 1 LAMBDA VDS⋅+( )= 0 VGS VTHÐ VDS≤≤( ) VTH VTO GAMMA 2 PHI⋅ VBSÐ 2 PHI⋅Ð( )+=
  • 12. EE 105 Spring 1997 Lecture 12 Capacitances SPICE includes the ÒsidewallÓ capacitance due to the perimeter of the source and drain junctions -- Gate-source and gate-bulk overlap capacitance are speciÞed by CGDO and CGSO (units: F/m). Level 1 MOSFET model: .MODEL MODN NMOS LEVEL=1 VTO=1 KP=50U LAMBDA=.033 GAMMA=.6 + PHI=0.8 TOX=1.5E-10 CGDO=5E-10 CGSO= 5e-10 CJ=1E-4 CJSW=5E-10 + MJ=0.5 PB=0.95 The Level 1 model is adequate for channel lengths longer than about 1.5 µm For sub-µm MOSFETs, BSIM = ÒBerkeley Short-Channel IGFET ModelÓ is the industry-standard SPICE model. n+ drain CBD VBD( ) CJ AD⋅ 1 VBD PB⁄Ð( ) MJ -------------------------------------------- CJSW PD⋅ 1 VBD PB⁄Ð( ) MJSW ----------------------------------------------------+= (area) (perimeter)