SlideShare a Scribd company logo
1 of 14
Download to read offline
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-1 
LECTURE 260 – BUFFERED OP AMPS 
LECTURE ORGANIZATION 
Outline 
• Introduction 
• Open Loop Buffered Op Amps 
• Closed Loop Buffered Op Amps 
• Use of the BJT in Buffered Op Amps 
• Summary 
CMOS Analog Circuit Design, 2nd Edition Reference 
Pages 352-368 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-2 
INTRODUCTION 
Buffered Op Amps 
What is a buffered op amp? 
Buffered op amps are op amps with the ability to drive a low output resistance and/or 
a large output capacitance. This requires: 
- An output resistance typically in the range of 10  Ro  1000 
- Ability to sink and source sufficient current (CL·SR) 
Rout 
Large 
Rout 
Small 
+ 
− 
Op Amp Buffer 
vIN vOUT 
vOUT’ 
070430-01 
Types of buffered op amps: 
- Open loop using output amplifiers 
- Closed loop using negative shunt feedback to reduce the output resistance of the op 
amp 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-3 
OPEN LOOP BUFFERED OP AMPS 
The Class A Source Follower as a Buffer 
• Simple 
gm 
• Small signal gain  
gm+gmbs+GL  1 
• Low efficiency 
1 
• Rout = 
gm+gmbs  500 to 1000 
VDD 
M1 
vIN 
VNBias1 
M2 
vOUT 
• Level shift from input to output 
060118-10 
• Maximum upper output voltage is limited 
• Broadbanded as the pole and zero due to the source follower are close so compensation 
is typically not a problem 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-4 
The Push-Pull Follower as a Buffer 
• Voltage loss from 2 cascaded followers 
Av   
gm3+gmbs3  
 
gm3 
 
gm1 
gm1+gmbs1+GL  1 
• Higher efficiency 
0.5 
• Rout  
gm+gmbs  250 to 500 
• Current in M1 and M2 determined by: 
VGS4 + VSG3 = VGS1 + VSG2 
2I6 
Kn'(W4/L4) + 
2I5 
Kp'(W3/L3) 
= 
2I1 
Kn'(W1/L1) + 
2I2 
Kp'(W2/L2) 
VDD 
M5 
I5 
VDD 
VPBias1 
+ 
VSG3 
M3 
− 
+ 
− 
VGS1 
I1 
vIN vOUT 
Use the W/L ratios to define I1 and I2 from I5 and I6 
+ VSG2 
− 
VGS4 
VNBias1 
• Maximum positive and negative output voltages are limited 
VDD 
I2 
060706-02 
VDD 
M1 
+ 
M2 
M4 
VDD 
I6 
M6 
− 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-5 
Two-Stage Op Amp with Follower 
- 
vin 
+ 
M3 M4 
M1 M2 
M5 
M6 
VDD 
M7 
VNBias 
Cc 
vout 
CL 
I5 
I7 
M8 
I9 
060706-03 
M9 
Power dissipation now becomes (I5 + I7 + I9)VDD 
Gain becomes, 
Av =  
gm1 
gds2+gds4  
 
gm6 
gds6+gds7  
 
 
gm8 
gm8+gmbs8+gds8+gds9 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-6 
Source-Follower, Push-Pull Output Op Amp 
VSS 
vout 
VDD 
CL 
VDD 
Cc 
IBias 
+ 
vin 
- 
R1 
M6 
M5 
M8 
M7 
M1 M2 
M3 
M11 
M12 
R1 
M13 
M14 
VSS 
R1 
M17 
I17 
VDD 
VSS 
M22 
+ 
VGS22 
- 
VSG21 + 
- 
M21 
M9 
M10 
M4 
VSG18 + 
- 
M18 
M15 
M19 
+ 
VGS19 
M16 
I20 
M20 
Fig. 7.1-1 
Buffer 
- 
Rout  
1 
gm21+gm22  1000, Av(0)=65dB (IBias=50μA), and GB = 60MHz for CL = 1pF 
Note the bias currents through M18 and M19 vary with the signal. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-7 
Compensation of Op Amps with Output Amplifiers 
Compensation of a three-stage amplifier: 
This op amp introduces a third pole, p’3 (what 
about zeros?) 
With no compensation, 
Vout(s) 
Vin(s) = 
-Avo 
 
 
s 
p’1-1 
 
 
s 
p’2-1 
 
 
s 
p’3-1 
Illustration of compensation choices: 
p2 
p3' p2' p1' p1 
p3 
jω 
σ 
Poles 
p1' and p2' 
Pole p3' 
vin vout +- 
Unbuffered 
op amp 
+ 
- 
Compensated poles 
Uncompensated poles 
p2 
v2 
p3' p2' p1' p1 
p3= 
x1 
Output 
stage 
jω 
σ 
Miller compensation applied around 
both the second and the third stage. 
CL RL 
Miller compensation applied around 
the second stage only. Fig. 7.1-5 
Fig. 7.1-4 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-8 
Crossover-Inverter, Buffer Stage Op Amp 
Principle: If the buffer has high output resistance and voltage gain (common source), this 
is okay if when loaded by a small RL the gain of this stage is approximately unity. 
vout 
RL 
060706-04 
- 
+ 
vin 
VDD 
M3 M4 
M7 M6 
C2 
IBias 
C1 
M1 M2 
M5 
Cross over stage Output Stage 
VSS 
- 
+ 
Input 
stage 
vin' 
• This buffer trades gain for the ability to drive a low load resistance 
• The load resistance should be fixed in order to avoid changes in the buffer gain 
• The push-pull common source output will give good output voltage swing capability 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-9 
Crossover-Inverter, Buffer Stage Op Amp - Continued 
How does the output buffer work? 
The two inverters, M1-M3 and M2-M4 are designed to work over different regions of the 
buffer input voltage, vin’. 
Consider the idealized voltage transfer characteristic of the crossover inverters: 
VDD vout 
M6 Active 
M6 Satur-ated 
M2-M4 
Inverter 
0 vin' 
VA VDD 
060706-05 
M1-M3 
Inverter 
M5 Saturated 
M5 Active 
VB 
VDD 
M7 M3 M4 
C1 C2 
M1 M2 
vout 
VSS 
IBias 
vin' 
M6 
M5 RL 
VSS 
Crossover voltage  VC = VB-VA  0 
VC is designed to be small and positive for worst case variations in processing. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-10 
Large Output Current Buffer 
In the case where the load consists of a large capacitor, the ability to sink and source a 
large current is much more important than reducing the output resistance. Consequently, 
the common-source, push-pull is ideal if the quiescent current can be controlled. 
A possible implementation: 
If W4/L4 = W9/L9 and 
W3/L3 = W8/L8, then the 
quiescent currents in M1 
and M2 can be determined 
by the following 
relationship: 
I1 = I2 = Ib  
W1/L1 
W7/L7 
 
vin 
= Ib  
VDD 
vout 
VSS 
W2/L2 
W10/L10 
 
VDD 
I=2Ib 
M8 M9 
I=2Ib 
VSS 
Ib 
Ib 
M1 
vout 
M2 
M5 
M3 M4 
M6 
M7 
M10 
vin 
070430-07 
When vin is increased, M6 turns off M2 and turns on M1 to source current. Similarly, 
when vin is decreased, M5 turns off M1 and turns on M2 to sink current. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-11 
CLOSED LOOP BUFFERED OP AMPS 
Principle 
Use negative shunt feedback to reduce the output resistance of the buffer. 
Av 
+ 
− 
vIN 
Ro ROUT 
vOUT 
070430-02 
RL 
• Output resistance 
ROUT = 
Ro 
1+Av 
• Watch out for the case when RL causes Av to decrease. 
• The bandwidth will be limited by the feedback (i.e. at high frequencies, the gain of Av 
decreases causing the output resistance to increase. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-12 
Two Stage Op Amp with a Gain Boosted, Source Follower Buffer 
- 
vin 
+ 
M3 M4 
M1 M2 
M5 
M6 
VDD 
M7 
VNBias 
Cc 
I5 
I7 
M9 M10 
Rout 
vout 
I11 
070430-03 
1:K 
M8 
M11 
Rout  
1 
gm8K 
Power dissipation now becomes (I5 + I7 + I11)VDD 
Gain becomes, 
Av =  
gm1 
gds2+gds4  
 
gm6 
gds6+gds7  
 
 
gm8K 
gm8K+gmbs8K+GL 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-13 
Gain Boosted, Source-Follower, Push-Pull Output Op Amp 
VDD 
Cc 
M24 
+ 
vin 
- 
M5 
M8 
M1 M2 
+ 
VT+2VON 
- 
M23 I20 
M3 
M11 
M12 
R1 
M13 
M14 
VSS 
M6 
M7 
M17 
I17 
VDD 
VSS 
M23 M24 
M22 
+ 
VGS22 
- 
VSG21 + 
- 
M21 
IBias 
M9 
M10 
M4 
VSG18 + 
- 
M18 
M15 
M19 
+ 
VGS19 
M16 
1:K 
M25 M26 
M20 
Gain Enhanced Buffer 
- 
Rout 
vout 
1:K 
070430-04 
Rout  
1 
K(gm21+gm22)  
1000 
K  100 
Av(0)=65dB (IBias=50μA) 
Note the bias currents through M18 and M19 vary with the signal. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-14 
Common Source, Push Pull Buffer with Shunt Feedback 
To get low output resistance using MOSFETs, negative feedback must be used. 
Ideal implementation: 
VDD 
M2 
iout 
Error 
Amplifier 
- + 
- + 
Gain 
Amplifier 
viin vout 
CL RL 
M1 
Fig. 7.1-5A 
Error 
Amplifier 
VSS 
+ - 
Comments: 
• The output resistance will be equal to rds1||rds2 divided by the loop gain 
• If the error amplifiers are not perfectly matched, the bias current in M1 and M2 is not 
defined 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-15 
Low Output Resistance Op Amp - Continued 
Offset correction circuitry: 
+ 
vin 
- 
VDD 
M6 
M16 M9 
A1 
vout 
M8A 
VOS 
VSS 
Cc 
Unbuffered 
op amp 
+ 
- 
VBias 
+- 
- + 
Error Loop 
- + 
M8 
M17 
M13 
M6A 
M10 
M12 M11 
A2 
Fig. 7.1-6 
The feedback circuitry of the two error amplifiers tries to insure that the voltages in 
the loop sum to zero. Without the M9-M12 feedback circuit, there is no way to adjust the 
output for any error in the loop. The circuit works as follows: 
When VOS is positive, M6 tries to turn off and so does M6A. IM9 reduces thus reducing 
IM12. A reduction in IM12 reduces IM8A thus decreasing VGS8A. VGS8A ideally decreases 
by an amount equal to VOS. A similar result holds for negative offsets and offsets in EA2. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-16 
Low Output Resistance Op Amp - Continued 
Error amplifiers: 
vin 
M3 M4 
M1 M2 
M5 
VDD 
M6 
vout 
M6A 
VSS 
+ 
- 
VBias 
Cc1 
A1 amplifier 
MR1 
+ 
- 
VBias 
M5A 
M2A M1A 
M4A M3A 
A2 amplifier 
070430-05 
vin 
MR2 
Cc2 
Basically a two-stage op amp with the output push-pull transistors as the second-stage of 
the op amp. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-17 
Low Output Resistance Op Amp - Complete Schematic 
+ 
- 
v M3H M4H MP4 
M5A in 
M3 M4 
M2 
M1 
M17 MN3 MN4 
M5 
VDD 
M16 
Cc 
VSS 
+ 
- 
+- 
VBiasN 
Cc1 
MP3 
MP5 
MR1 
M8 
M6 
M6A 
MR2 
M8A 
Cc2 
M9 
M10 
M13 M12 M11 
Short circuit protection(max. output ±60mA): 
MP3-MN3-MN4-MP4-MP5 
MN3A-MP3A-MP4A-MN4A-MN5A 
Rout  
rds6||rds6A 
LoopGain  
50k 
5000 = 10 
M2A M1A 
M4A M3A 
vout 
+ 
- 
VBiasP 
MP4A 
MN5A 
MN4A 
MP3A 
MN3A 
M4HA 
M3HA 
Fig. 7.1-8 
RC 
CC 
gm1 gm6 
R1 C1 
RL CL 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-18 
Simpler Implementation of Negative Feedback to Achieve Low Output Resistance 
Output Resistance: 
Rout = 
Ro 
1+LG 
where 
Ro = 
1 
gds6+gds7 
and 
|LG| = 
gm2 
2gm4 
(gm6+gm7)Ro 
Therefore, the output resistance is: 
+ 
vin 
200μA 10/1 1/1 10/1 
1/1 
M10 
Rout = 
VDD 
M3 M4 
M1 M2 
10/1 10/1 
M5 
1/1 
1/1 
10/1 10/1 
VSS 
1 
M8 
M9 
(gds6+gds7)

 
M6 
M7 
CL 
Fig. 7.1-9 
gm2 
2gm4 (gm6+gm7)Ro
1+		 
 
- 
vout 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-19 
Example 260-1 - Low Output Resistance Using Shunt Negative Feedback Buffer 
Find the output resistance of above op amp using the model parameters of KN’ = 
120μA/V2, KP’ = 25μA/V2, N = 0.06V-1 and P = 0.08V-1. 
Solution 
The current flowing in the output transistors, M6 and M7, is 1mA which gives Ro of 
Ro = 
1 
(N+P)1mA = 
1000 
0.14 = 7.143k 
To calculate the loop gain, we find that 
gm2 = 2KN’·10·100μA = 490μS 
gm4 = 2KP’·1·100μA = 70.7μS 
and 
gm6 = 2KP’·10·1000μA = 707μS 
Therefore, the loop gain is 
|LG| = 
490 
2·70.7 (0.707+0.071)7.143 = 19.26 
Solving for the output resistance, Rout, gives 
Rout = 
7.143k 
1+19.26 = 353 (Assumes that RL is large) 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-20 
USE OF THE BJT IN BUFFERED OP AMPS 
Substrate BJTs 
Illustration of an NPN substrate BJT available in a p-well CMOS technology: 
Emitter Base Collector 
 
 
n+ (Emitter) p+ 
 
 
p- well (Base) 
n- substrate (Collector) 
(VDD) 
 n 
+ 
Collector (VDD) 
Emitter 
Base 
Fig. 7.1-10 
Comments: 
• gm of the BJT is larger than the FET so that the output resistance w/o feedback is lower 
• Collector current will be flowing in the substrate 
• Current is required to drive the BJT 
• Only an NPN or a PNP bipolar transistor is available 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-21 
A Lateral Bipolar Transistor 
n-well CMOS technology: 
• It is desirable to have the lateral 
collector current much larger than the 
vertical collector current. 
• Triple well technology allows the 
current of the vertical collector to avoid 
flowing in the substrate. 
• Lateral BJT generally has good 
matching. 
VC B E LC 
060221-01 
p+ 
LC 
p+ p+ 
STI STI 
n-well 
n+ 
Substrate 
STI Lateral Collector 
Emitter 
Base 
Vertical 
Collector 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-22 
A Field-Aided Lateral BJT 
Use minimum channel length to 
enhance beta: 
ßF  50 to 100 depending on the 
process 
VC B 
060221-02 
E LC 
p+ 
LC 
p+ p+ p+ 
Keeps carriers from 
flowing at the surface 
and reduces 1/f noise 
STI STI 
n-well 
n+ 
Substrate 
STI Lateral Collector Emitter 
Base 
Vertical 
Collector 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-23 
Two-Stage Op Amp with a Class-A BJT Output Buffer Stage 
Purpose of the M8-M9 source 
follower: 
1.) Reduce the output resistance 
(includes whatever is seen from 
the base to ground divided by 
1+F) 
2.) Reduces the output load at the 
drains of M6 and M7 
Small-signal output resistance : 
r10+(1/gm9) 
Rout  
1+ßF 
= 
1 
gm10 
+ 
M12 
M13 
1 
+ 
vin 
- 
IBias 
gm9(1+ßF) 
M5 
M1 M2 
VDD 
M3 M4 
M7 
Q10 
M8 
M9 
Cc CL 
M6 
vout 
VSS 
M11 
RL 
Fig. 7.1-11 
Output Buffer 
= 51.6+6.7 = 58.3 where I10=500μA, I8=100μA, W9/L9=100 and ßF is 100 
vOUT(max) = VDD - VSD8(sat) - vBE10 = VDD - 
2KP’ 
I8(W8/L8) - Vt ln 
Ic10 
Is10 
		 
Voltage gain: 
vout 
vin 
  
gm1 
gds2+gds4  
		 
gm6 
gds6+gds7  
		 
gm9+gmbs9+gds8+g10  
		 
gm9 
		 
gm10RL 
1+gm10RL 
Compensation will be more complex because of the additional stages. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 260 – Buffered Op Amps (3/28/10) Page 260-24 
Example 260-2 - Designing the Class-A, Buffered Op Amp 
Use an n-well, 0.25μm CMOS technology to design an op amp using a class-A, BJT 
output stage to give the following specifications. Assume the channel length is to be 
0.5μm. The FETs have the model parameters of KN’ = 120μA/V2, KP’ = 25μA/V2, VTN = 
|VTP| = 0.5V, N = 0.06V-1 and P = 0.08V-1 along with the BJT parameters of Is = 
10-14A and ßF = 50. 
VDD = 2.5V VSS = 0V GB = 5MHz Avd(0)  2500V/V Slew rate  10V/μs 
RL = 500 Rout  50 CL = 100pF ICMR = +1V to 2V 
Solution 
A quick comparison shows that the 
specifications of this problem are similar 
to the folded cascode op amp that was 
designed in Ex. 240-3. Borrowing that 
design for this example results in the 
following op amp. 
Therefore, the goal of this example 
will be the design of M12 through Q15 to 
satisfy the slew rate and output resistance 
requirements. 
M14 
I15 
Rout 
vO 
C 
Q15 
070430 
VDD 
VPB1 
I4 I5 
M4 M5 
I6 
VPB2 
I7 
M6 M7 
VNB2 
M8 M9 
M10 
M11 
+ 
− 
vIN 
I1 I2 
VNB1 
M1 M2 
M3 
I3 
VNB1 
VPB1 
I12 
M12 
M13 
CMOS Analog Circuit Design © P.E. Allen - 2010

More Related Content

What's hot

Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)aicdesign
 
Operational Amplifiers I
Operational Amplifiers IOperational Amplifiers I
Operational Amplifiers Iali_craigslist
 
Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)aicdesign
 
Lect2 up320 (100328)
Lect2 up320 (100328)Lect2 up320 (100328)
Lect2 up320 (100328)aicdesign
 
Lect2 up090 (100324)
Lect2 up090 (100324)Lect2 up090 (100324)
Lect2 up090 (100324)aicdesign
 
Design of oscillators using cmos ota
Design of oscillators using cmos otaDesign of oscillators using cmos ota
Design of oscillators using cmos otaRamesh Patriotic
 
Design of two stage OPAMP
Design of two stage OPAMPDesign of two stage OPAMP
Design of two stage OPAMPVishal Pathak
 
Lect2 up200 (100327)
Lect2 up200 (100327)Lect2 up200 (100327)
Lect2 up200 (100327)aicdesign
 
Design of a Two-Stage Single Ended CMOS Op-Amp
Design of a Two-Stage Single Ended CMOS Op-AmpDesign of a Two-Stage Single Ended CMOS Op-Amp
Design of a Two-Stage Single Ended CMOS Op-AmpSteven Ernst, PE
 
17b transformer class exercise solution_r13
17b transformer class exercise solution_r1317b transformer class exercise solution_r13
17b transformer class exercise solution_r13MecmedMomod
 

What's hot (19)

Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)
 
Operational Amplifiers I
Operational Amplifiers IOperational Amplifiers I
Operational Amplifiers I
 
Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)
 
Lect2 up320 (100328)
Lect2 up320 (100328)Lect2 up320 (100328)
Lect2 up320 (100328)
 
Cycle-by-Cycle Simulation
Cycle-by-Cycle SimulationCycle-by-Cycle Simulation
Cycle-by-Cycle Simulation
 
linesense
linesenselinesense
linesense
 
Final Project
Final ProjectFinal Project
Final Project
 
Lect2 up090 (100324)
Lect2 up090 (100324)Lect2 up090 (100324)
Lect2 up090 (100324)
 
Design of oscillators using cmos ota
Design of oscillators using cmos otaDesign of oscillators using cmos ota
Design of oscillators using cmos ota
 
LIGHT ACTIVATED ALARM
LIGHT ACTIVATED ALARMLIGHT ACTIVATED ALARM
LIGHT ACTIVATED ALARM
 
Design of two stage OPAMP
Design of two stage OPAMPDesign of two stage OPAMP
Design of two stage OPAMP
 
Lect2 up200 (100327)
Lect2 up200 (100327)Lect2 up200 (100327)
Lect2 up200 (100327)
 
analog pro.pptx
analog pro.pptxanalog pro.pptx
analog pro.pptx
 
Project 2 Cascode
Project 2 CascodeProject 2 Cascode
Project 2 Cascode
 
Ece523 folded cascode design
Ece523 folded cascode designEce523 folded cascode design
Ece523 folded cascode design
 
Folded cascode1
Folded cascode1Folded cascode1
Folded cascode1
 
3000 w inverter
3000 w inverter 3000 w inverter
3000 w inverter
 
Design of a Two-Stage Single Ended CMOS Op-Amp
Design of a Two-Stage Single Ended CMOS Op-AmpDesign of a Two-Stage Single Ended CMOS Op-Amp
Design of a Two-Stage Single Ended CMOS Op-Amp
 
17b transformer class exercise solution_r13
17b transformer class exercise solution_r1317b transformer class exercise solution_r13
17b transformer class exercise solution_r13
 

Similar to Lect2 up260 (100328)

Lect2 up230 (100327)
Lect2 up230 (100327)Lect2 up230 (100327)
Lect2 up230 (100327)aicdesign
 
DESIGN OF TWO-STAGE OP AMPS.pdf
DESIGN OF TWO-STAGE OP AMPS.pdfDESIGN OF TWO-STAGE OP AMPS.pdf
DESIGN OF TWO-STAGE OP AMPS.pdftempor3
 
Basic CMOS differential pair (qualitative analysis)
Basic CMOS differential pair (qualitative analysis)Basic CMOS differential pair (qualitative analysis)
Basic CMOS differential pair (qualitative analysis)shantanu Chutiya begger
 
Lect2 up180 (100327)
Lect2 up180 (100327)Lect2 up180 (100327)
Lect2 up180 (100327)aicdesign
 
Avnet Electronics Marketing and STMicro Power Devices for Solar Inverters
Avnet Electronics Marketing and STMicro Power Devices for Solar InvertersAvnet Electronics Marketing and STMicro Power Devices for Solar Inverters
Avnet Electronics Marketing and STMicro Power Devices for Solar InvertersAvnet Electronics Marketing
 
Lect2 up250 (100328)
Lect2 up250 (100328)Lect2 up250 (100328)
Lect2 up250 (100328)aicdesign
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)aicdesign
 
Parallel si cigbt-cambridge
Parallel si cigbt-cambridgeParallel si cigbt-cambridge
Parallel si cigbt-cambridgeYunleiJiang
 
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...VLSICS Design
 
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...VLSICS Design
 
IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)Claudia Sin
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)aicdesign
 
Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)aicdesign
 
Origimal Transistor PNP 2SB649AC B649AC B649 TO-126 120V 1.5A New UNISONIC TE...
Origimal Transistor PNP 2SB649AC B649AC B649 TO-126 120V 1.5A New UNISONIC TE...Origimal Transistor PNP 2SB649AC B649AC B649 TO-126 120V 1.5A New UNISONIC TE...
Origimal Transistor PNP 2SB649AC B649AC B649 TO-126 120V 1.5A New UNISONIC TE...AUTHELECTRONIC
 
Advanced motion controls se30a8
Advanced motion controls se30a8Advanced motion controls se30a8
Advanced motion controls se30a8Electromate
 
Advanced motion controls se10a20
Advanced motion controls se10a20Advanced motion controls se10a20
Advanced motion controls se10a20Electromate
 

Similar to Lect2 up260 (100328) (20)

Lect2 up230 (100327)
Lect2 up230 (100327)Lect2 up230 (100327)
Lect2 up230 (100327)
 
DESIGN OF TWO-STAGE OP AMPS.pdf
DESIGN OF TWO-STAGE OP AMPS.pdfDESIGN OF TWO-STAGE OP AMPS.pdf
DESIGN OF TWO-STAGE OP AMPS.pdf
 
Basic CMOS differential pair (qualitative analysis)
Basic CMOS differential pair (qualitative analysis)Basic CMOS differential pair (qualitative analysis)
Basic CMOS differential pair (qualitative analysis)
 
Lect2 up180 (100327)
Lect2 up180 (100327)Lect2 up180 (100327)
Lect2 up180 (100327)
 
44
4444
44
 
Avnet Electronics Marketing and STMicro Power Devices for Solar Inverters
Avnet Electronics Marketing and STMicro Power Devices for Solar InvertersAvnet Electronics Marketing and STMicro Power Devices for Solar Inverters
Avnet Electronics Marketing and STMicro Power Devices for Solar Inverters
 
Lect2 up250 (100328)
Lect2 up250 (100328)Lect2 up250 (100328)
Lect2 up250 (100328)
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
Parallel si cigbt-cambridge
Parallel si cigbt-cambridgeParallel si cigbt-cambridge
Parallel si cigbt-cambridge
 
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
 
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
 
Ad598
Ad598Ad598
Ad598
 
Catalogue mitsubishi thiet bi dien acb
Catalogue mitsubishi thiet bi dien acbCatalogue mitsubishi thiet bi dien acb
Catalogue mitsubishi thiet bi dien acb
 
Thông số kĩ thuật mitsubishi thiet bi dien acb
Thông số kĩ thuật mitsubishi thiet bi dien acbThông số kĩ thuật mitsubishi thiet bi dien acb
Thông số kĩ thuật mitsubishi thiet bi dien acb
 
IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)
 
Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)
 
Origimal Transistor PNP 2SB649AC B649AC B649 TO-126 120V 1.5A New UNISONIC TE...
Origimal Transistor PNP 2SB649AC B649AC B649 TO-126 120V 1.5A New UNISONIC TE...Origimal Transistor PNP 2SB649AC B649AC B649 TO-126 120V 1.5A New UNISONIC TE...
Origimal Transistor PNP 2SB649AC B649AC B649 TO-126 120V 1.5A New UNISONIC TE...
 
Advanced motion controls se30a8
Advanced motion controls se30a8Advanced motion controls se30a8
Advanced motion controls se30a8
 
Advanced motion controls se10a20
Advanced motion controls se10a20Advanced motion controls se10a20
Advanced motion controls se10a20
 

More from aicdesign

Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)aicdesign
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)aicdesign
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)aicdesign
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)aicdesign
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)aicdesign
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)aicdesign
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)aicdesign
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)aicdesign
 
Lect2 up150 (100325)
Lect2 up150 (100325)Lect2 up150 (100325)
Lect2 up150 (100325)aicdesign
 
Lect2 up130 (100325)
Lect2 up130 (100325)Lect2 up130 (100325)
Lect2 up130 (100325)aicdesign
 
Lect2 up120 (100325)
Lect2 up120 (100325)Lect2 up120 (100325)
Lect2 up120 (100325)aicdesign
 
Lect2 up100 (100324)
Lect2 up100 (100324)Lect2 up100 (100324)
Lect2 up100 (100324)aicdesign
 

More from aicdesign (12)

Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)
 
Lect2 up150 (100325)
Lect2 up150 (100325)Lect2 up150 (100325)
Lect2 up150 (100325)
 
Lect2 up130 (100325)
Lect2 up130 (100325)Lect2 up130 (100325)
Lect2 up130 (100325)
 
Lect2 up120 (100325)
Lect2 up120 (100325)Lect2 up120 (100325)
Lect2 up120 (100325)
 
Lect2 up100 (100324)
Lect2 up100 (100324)Lect2 up100 (100324)
Lect2 up100 (100324)
 

Lect2 up260 (100328)

  • 1. Lecture 260 – Buffered Op Amps (3/28/10) Page 260-1 LECTURE 260 – BUFFERED OP AMPS LECTURE ORGANIZATION Outline • Introduction • Open Loop Buffered Op Amps • Closed Loop Buffered Op Amps • Use of the BJT in Buffered Op Amps • Summary CMOS Analog Circuit Design, 2nd Edition Reference Pages 352-368 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 260 – Buffered Op Amps (3/28/10) Page 260-2 INTRODUCTION Buffered Op Amps What is a buffered op amp? Buffered op amps are op amps with the ability to drive a low output resistance and/or a large output capacitance. This requires: - An output resistance typically in the range of 10 Ro 1000 - Ability to sink and source sufficient current (CL·SR) Rout Large Rout Small + − Op Amp Buffer vIN vOUT vOUT’ 070430-01 Types of buffered op amps: - Open loop using output amplifiers - Closed loop using negative shunt feedback to reduce the output resistance of the op amp CMOS Analog Circuit Design © P.E. Allen - 2010
  • 2. Lecture 260 – Buffered Op Amps (3/28/10) Page 260-3 OPEN LOOP BUFFERED OP AMPS The Class A Source Follower as a Buffer • Simple gm • Small signal gain gm+gmbs+GL 1 • Low efficiency 1 • Rout = gm+gmbs 500 to 1000 VDD M1 vIN VNBias1 M2 vOUT • Level shift from input to output 060118-10 • Maximum upper output voltage is limited • Broadbanded as the pole and zero due to the source follower are close so compensation is typically not a problem CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 260 – Buffered Op Amps (3/28/10) Page 260-4 The Push-Pull Follower as a Buffer • Voltage loss from 2 cascaded followers Av gm3+gmbs3 gm3 gm1 gm1+gmbs1+GL 1 • Higher efficiency 0.5 • Rout gm+gmbs 250 to 500 • Current in M1 and M2 determined by: VGS4 + VSG3 = VGS1 + VSG2 2I6 Kn'(W4/L4) + 2I5 Kp'(W3/L3) = 2I1 Kn'(W1/L1) + 2I2 Kp'(W2/L2) VDD M5 I5 VDD VPBias1 + VSG3 M3 − + − VGS1 I1 vIN vOUT Use the W/L ratios to define I1 and I2 from I5 and I6 + VSG2 − VGS4 VNBias1 • Maximum positive and negative output voltages are limited VDD I2 060706-02 VDD M1 + M2 M4 VDD I6 M6 − CMOS Analog Circuit Design © P.E. Allen - 2010
  • 3. Lecture 260 – Buffered Op Amps (3/28/10) Page 260-5 Two-Stage Op Amp with Follower - vin + M3 M4 M1 M2 M5 M6 VDD M7 VNBias Cc vout CL I5 I7 M8 I9 060706-03 M9 Power dissipation now becomes (I5 + I7 + I9)VDD Gain becomes, Av = gm1 gds2+gds4 gm6 gds6+gds7 gm8 gm8+gmbs8+gds8+gds9 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 260 – Buffered Op Amps (3/28/10) Page 260-6 Source-Follower, Push-Pull Output Op Amp VSS vout VDD CL VDD Cc IBias + vin - R1 M6 M5 M8 M7 M1 M2 M3 M11 M12 R1 M13 M14 VSS R1 M17 I17 VDD VSS M22 + VGS22 - VSG21 + - M21 M9 M10 M4 VSG18 + - M18 M15 M19 + VGS19 M16 I20 M20 Fig. 7.1-1 Buffer - Rout 1 gm21+gm22 1000, Av(0)=65dB (IBias=50μA), and GB = 60MHz for CL = 1pF Note the bias currents through M18 and M19 vary with the signal. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 4. Lecture 260 – Buffered Op Amps (3/28/10) Page 260-7 Compensation of Op Amps with Output Amplifiers Compensation of a three-stage amplifier: This op amp introduces a third pole, p’3 (what about zeros?) With no compensation, Vout(s) Vin(s) = -Avo s p’1-1 s p’2-1 s p’3-1 Illustration of compensation choices: p2 p3' p2' p1' p1 p3 jω σ Poles p1' and p2' Pole p3' vin vout +- Unbuffered op amp + - Compensated poles Uncompensated poles p2 v2 p3' p2' p1' p1 p3= x1 Output stage jω σ Miller compensation applied around both the second and the third stage. CL RL Miller compensation applied around the second stage only. Fig. 7.1-5 Fig. 7.1-4 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 260 – Buffered Op Amps (3/28/10) Page 260-8 Crossover-Inverter, Buffer Stage Op Amp Principle: If the buffer has high output resistance and voltage gain (common source), this is okay if when loaded by a small RL the gain of this stage is approximately unity. vout RL 060706-04 - + vin VDD M3 M4 M7 M6 C2 IBias C1 M1 M2 M5 Cross over stage Output Stage VSS - + Input stage vin' • This buffer trades gain for the ability to drive a low load resistance • The load resistance should be fixed in order to avoid changes in the buffer gain • The push-pull common source output will give good output voltage swing capability CMOS Analog Circuit Design © P.E. Allen - 2010
  • 5. Lecture 260 – Buffered Op Amps (3/28/10) Page 260-9 Crossover-Inverter, Buffer Stage Op Amp - Continued How does the output buffer work? The two inverters, M1-M3 and M2-M4 are designed to work over different regions of the buffer input voltage, vin’. Consider the idealized voltage transfer characteristic of the crossover inverters: VDD vout M6 Active M6 Satur-ated M2-M4 Inverter 0 vin' VA VDD 060706-05 M1-M3 Inverter M5 Saturated M5 Active VB VDD M7 M3 M4 C1 C2 M1 M2 vout VSS IBias vin' M6 M5 RL VSS Crossover voltage VC = VB-VA 0 VC is designed to be small and positive for worst case variations in processing. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 260 – Buffered Op Amps (3/28/10) Page 260-10 Large Output Current Buffer In the case where the load consists of a large capacitor, the ability to sink and source a large current is much more important than reducing the output resistance. Consequently, the common-source, push-pull is ideal if the quiescent current can be controlled. A possible implementation: If W4/L4 = W9/L9 and W3/L3 = W8/L8, then the quiescent currents in M1 and M2 can be determined by the following relationship: I1 = I2 = Ib W1/L1 W7/L7 vin = Ib VDD vout VSS W2/L2 W10/L10 VDD I=2Ib M8 M9 I=2Ib VSS Ib Ib M1 vout M2 M5 M3 M4 M6 M7 M10 vin 070430-07 When vin is increased, M6 turns off M2 and turns on M1 to source current. Similarly, when vin is decreased, M5 turns off M1 and turns on M2 to sink current. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 6. Lecture 260 – Buffered Op Amps (3/28/10) Page 260-11 CLOSED LOOP BUFFERED OP AMPS Principle Use negative shunt feedback to reduce the output resistance of the buffer. Av + − vIN Ro ROUT vOUT 070430-02 RL • Output resistance ROUT = Ro 1+Av • Watch out for the case when RL causes Av to decrease. • The bandwidth will be limited by the feedback (i.e. at high frequencies, the gain of Av decreases causing the output resistance to increase. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 260 – Buffered Op Amps (3/28/10) Page 260-12 Two Stage Op Amp with a Gain Boosted, Source Follower Buffer - vin + M3 M4 M1 M2 M5 M6 VDD M7 VNBias Cc I5 I7 M9 M10 Rout vout I11 070430-03 1:K M8 M11 Rout 1 gm8K Power dissipation now becomes (I5 + I7 + I11)VDD Gain becomes, Av = gm1 gds2+gds4 gm6 gds6+gds7 gm8K gm8K+gmbs8K+GL CMOS Analog Circuit Design © P.E. Allen - 2010
  • 7. Lecture 260 – Buffered Op Amps (3/28/10) Page 260-13 Gain Boosted, Source-Follower, Push-Pull Output Op Amp VDD Cc M24 + vin - M5 M8 M1 M2 + VT+2VON - M23 I20 M3 M11 M12 R1 M13 M14 VSS M6 M7 M17 I17 VDD VSS M23 M24 M22 + VGS22 - VSG21 + - M21 IBias M9 M10 M4 VSG18 + - M18 M15 M19 + VGS19 M16 1:K M25 M26 M20 Gain Enhanced Buffer - Rout vout 1:K 070430-04 Rout 1 K(gm21+gm22) 1000 K 100 Av(0)=65dB (IBias=50μA) Note the bias currents through M18 and M19 vary with the signal. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 260 – Buffered Op Amps (3/28/10) Page 260-14 Common Source, Push Pull Buffer with Shunt Feedback To get low output resistance using MOSFETs, negative feedback must be used. Ideal implementation: VDD M2 iout Error Amplifier - + - + Gain Amplifier viin vout CL RL M1 Fig. 7.1-5A Error Amplifier VSS + - Comments: • The output resistance will be equal to rds1||rds2 divided by the loop gain • If the error amplifiers are not perfectly matched, the bias current in M1 and M2 is not defined CMOS Analog Circuit Design © P.E. Allen - 2010
  • 8. Lecture 260 – Buffered Op Amps (3/28/10) Page 260-15 Low Output Resistance Op Amp - Continued Offset correction circuitry: + vin - VDD M6 M16 M9 A1 vout M8A VOS VSS Cc Unbuffered op amp + - VBias +- - + Error Loop - + M8 M17 M13 M6A M10 M12 M11 A2 Fig. 7.1-6 The feedback circuitry of the two error amplifiers tries to insure that the voltages in the loop sum to zero. Without the M9-M12 feedback circuit, there is no way to adjust the output for any error in the loop. The circuit works as follows: When VOS is positive, M6 tries to turn off and so does M6A. IM9 reduces thus reducing IM12. A reduction in IM12 reduces IM8A thus decreasing VGS8A. VGS8A ideally decreases by an amount equal to VOS. A similar result holds for negative offsets and offsets in EA2. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 260 – Buffered Op Amps (3/28/10) Page 260-16 Low Output Resistance Op Amp - Continued Error amplifiers: vin M3 M4 M1 M2 M5 VDD M6 vout M6A VSS + - VBias Cc1 A1 amplifier MR1 + - VBias M5A M2A M1A M4A M3A A2 amplifier 070430-05 vin MR2 Cc2 Basically a two-stage op amp with the output push-pull transistors as the second-stage of the op amp. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 9. Lecture 260 – Buffered Op Amps (3/28/10) Page 260-17 Low Output Resistance Op Amp - Complete Schematic + - v M3H M4H MP4 M5A in M3 M4 M2 M1 M17 MN3 MN4 M5 VDD M16 Cc VSS + - +- VBiasN Cc1 MP3 MP5 MR1 M8 M6 M6A MR2 M8A Cc2 M9 M10 M13 M12 M11 Short circuit protection(max. output ±60mA): MP3-MN3-MN4-MP4-MP5 MN3A-MP3A-MP4A-MN4A-MN5A Rout rds6||rds6A LoopGain 50k 5000 = 10 M2A M1A M4A M3A vout + - VBiasP MP4A MN5A MN4A MP3A MN3A M4HA M3HA Fig. 7.1-8 RC CC gm1 gm6 R1 C1 RL CL CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 260 – Buffered Op Amps (3/28/10) Page 260-18 Simpler Implementation of Negative Feedback to Achieve Low Output Resistance Output Resistance: Rout = Ro 1+LG where Ro = 1 gds6+gds7 and |LG| = gm2 2gm4 (gm6+gm7)Ro Therefore, the output resistance is: + vin 200μA 10/1 1/1 10/1 1/1 M10 Rout = VDD M3 M4 M1 M2 10/1 10/1 M5 1/1 1/1 10/1 10/1 VSS 1 M8 M9 (gds6+gds7) M6 M7 CL Fig. 7.1-9 gm2 2gm4 (gm6+gm7)Ro
  • 10.
  • 11. 1+ - vout CMOS Analog Circuit Design © P.E. Allen - 2010
  • 12. Lecture 260 – Buffered Op Amps (3/28/10) Page 260-19 Example 260-1 - Low Output Resistance Using Shunt Negative Feedback Buffer Find the output resistance of above op amp using the model parameters of KN’ = 120μA/V2, KP’ = 25μA/V2, N = 0.06V-1 and P = 0.08V-1. Solution The current flowing in the output transistors, M6 and M7, is 1mA which gives Ro of Ro = 1 (N+P)1mA = 1000 0.14 = 7.143k To calculate the loop gain, we find that gm2 = 2KN’·10·100μA = 490μS gm4 = 2KP’·1·100μA = 70.7μS and gm6 = 2KP’·10·1000μA = 707μS Therefore, the loop gain is |LG| = 490 2·70.7 (0.707+0.071)7.143 = 19.26 Solving for the output resistance, Rout, gives Rout = 7.143k 1+19.26 = 353 (Assumes that RL is large) CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 260 – Buffered Op Amps (3/28/10) Page 260-20 USE OF THE BJT IN BUFFERED OP AMPS Substrate BJTs Illustration of an NPN substrate BJT available in a p-well CMOS technology: Emitter Base Collector n+ (Emitter) p+ p- well (Base) n- substrate (Collector) (VDD) n + Collector (VDD) Emitter Base Fig. 7.1-10 Comments: • gm of the BJT is larger than the FET so that the output resistance w/o feedback is lower • Collector current will be flowing in the substrate • Current is required to drive the BJT • Only an NPN or a PNP bipolar transistor is available CMOS Analog Circuit Design © P.E. Allen - 2010
  • 13. Lecture 260 – Buffered Op Amps (3/28/10) Page 260-21 A Lateral Bipolar Transistor n-well CMOS technology: • It is desirable to have the lateral collector current much larger than the vertical collector current. • Triple well technology allows the current of the vertical collector to avoid flowing in the substrate. • Lateral BJT generally has good matching. VC B E LC 060221-01 p+ LC p+ p+ STI STI n-well n+ Substrate STI Lateral Collector Emitter Base Vertical Collector CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 260 – Buffered Op Amps (3/28/10) Page 260-22 A Field-Aided Lateral BJT Use minimum channel length to enhance beta: ßF 50 to 100 depending on the process VC B 060221-02 E LC p+ LC p+ p+ p+ Keeps carriers from flowing at the surface and reduces 1/f noise STI STI n-well n+ Substrate STI Lateral Collector Emitter Base Vertical Collector CMOS Analog Circuit Design © P.E. Allen - 2010
  • 14. Lecture 260 – Buffered Op Amps (3/28/10) Page 260-23 Two-Stage Op Amp with a Class-A BJT Output Buffer Stage Purpose of the M8-M9 source follower: 1.) Reduce the output resistance (includes whatever is seen from the base to ground divided by 1+F) 2.) Reduces the output load at the drains of M6 and M7 Small-signal output resistance : r10+(1/gm9) Rout 1+ßF = 1 gm10 + M12 M13 1 + vin - IBias gm9(1+ßF) M5 M1 M2 VDD M3 M4 M7 Q10 M8 M9 Cc CL M6 vout VSS M11 RL Fig. 7.1-11 Output Buffer = 51.6+6.7 = 58.3 where I10=500μA, I8=100μA, W9/L9=100 and ßF is 100 vOUT(max) = VDD - VSD8(sat) - vBE10 = VDD - 2KP’ I8(W8/L8) - Vt ln Ic10 Is10 Voltage gain: vout vin gm1 gds2+gds4 gm6 gds6+gds7 gm9+gmbs9+gds8+g10 gm9 gm10RL 1+gm10RL Compensation will be more complex because of the additional stages. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 260 – Buffered Op Amps (3/28/10) Page 260-24 Example 260-2 - Designing the Class-A, Buffered Op Amp Use an n-well, 0.25μm CMOS technology to design an op amp using a class-A, BJT output stage to give the following specifications. Assume the channel length is to be 0.5μm. The FETs have the model parameters of KN’ = 120μA/V2, KP’ = 25μA/V2, VTN = |VTP| = 0.5V, N = 0.06V-1 and P = 0.08V-1 along with the BJT parameters of Is = 10-14A and ßF = 50. VDD = 2.5V VSS = 0V GB = 5MHz Avd(0) 2500V/V Slew rate 10V/μs RL = 500 Rout 50 CL = 100pF ICMR = +1V to 2V Solution A quick comparison shows that the specifications of this problem are similar to the folded cascode op amp that was designed in Ex. 240-3. Borrowing that design for this example results in the following op amp. Therefore, the goal of this example will be the design of M12 through Q15 to satisfy the slew rate and output resistance requirements. M14 I15 Rout vO C Q15 070430 VDD VPB1 I4 I5 M4 M5 I6 VPB2 I7 M6 M7 VNB2 M8 M9 M10 M11 + − vIN I1 I2 VNB1 M1 M2 M3 I3 VNB1 VPB1 I12 M12 M13 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 15. Lecture 260 – Buffered Op Amps (3/28/10) Page 260-25 Example 260-2 – Continued BJT follower (Q15): SR = 10V/μs and 100pF capacitor give I15 = 1mA. Assuming the gate of M14 is connected to the gate of M5, the W/L ratio of M14 becomes W14/L14 = (1000μA/125μA)160 = 1280 W14 = 640μm I15 = 1mA 1/gm15 = 0.0258V/1mA = 25.8 MOS follower: To source 1mA, the BJT requires 20μA (ß =50) from the MOS follower (M12-M13). Therefore, select a bias current of 100μA for M13. If the gates of M3 and M13 are connected together, then W13/L13 = (100μA/100μA)15 = 15 W13 = 7.5μm To get Rout = 50, if 1/gm15 is 25.8, then design gm12 as 1 gm15 = 1 gm12(1+ßF) = 24.2 gm12 = 1 (24.2)(1+ßF) = 1 24.2·51 = 810μS gm12 and I12 W/L = 27.3 30 W12 = 15μm CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 260 – Buffered Op Amps (3/28/10) Page 260-26 Example 260-2 - Continued To calculate the voltage gain of the MOS follower we need to find gmbs9 (N = 0.4 V). gmbs12 = gm12N 2 2F+VBS12 = 810·0.4 2 0.5+0.55 = 158μS where we have assumed that the value of VSB12 is approximately 1.25V – 0.7V = 0.55V. AMOS = 810μS 810μS+158μS+6μS+8μS = 0.825 The voltage gain of the BJT follower is ABJT = 500 25.8+500 = 0.951 V/V Thus, the gain of the op amp is Avd(0) = (3,678)(0.825)(0.951) = 2,885 V/V The power dissipation of this amplifier is, Pdiss. = 2.5V(125μA+125μA+100μA+1000μA) = 3.375mW The signal swing across the 500 load resistor will be restricted to ±0.5V due to the 1000μA output current limit. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 16. Lecture 260 – Buffered Op Amps (3/28/10) Page 260-27 SUMMARY • A buffered op amp requires an output resistance between 10 Ro 1000 • Output resistance using MOSFETs only can be reduced by, - Source follower output (1/gm) - Negative shunt feedback (frequency is a problem in this approach) • Use of substrate (or lateral) BJT’s can reduce the output resistance because gm is larger than the gm of a MOSFET • Adding a buffer stage to lower the output resistance will most likely complicate the compensation of the op amp CMOS Analog Circuit Design © P.E. Allen - 2010