SlideShare a Scribd company logo
1 of 8
Download to read offline
Shallow Water Depth Mapping Using Single Band and Band Ratio………….................................................................. (Prayogo & Basith)
651
SHALLOW WATER DEPTH MAPPING USING SINGLE BAND AND
BAND RATIO ON HIGH-RESOLUTION IMAGERY
(Pemetaan Kedalaman Perairan Dangkal Menggunakan Single Band dan Band Rasio Pada
Citra Resolusi Tinggi)
Luhur Moekti Prayogo, Abdul Basith
Department of Geodetic Engineering, Universitas Gadjah Mada, Yogyakarta, 55284, Indonesia
Jl. Grafika Bulaksumur No. 2, Senolowo, Sinduadi, Sleman, Daerah Istimewa Yogyakarta, 55281
E-mail: abd_basith@ugm.ac.id
ABSTRACT
One of the availabilities of remote sensing satellite imagery can be used as a provider of shallow sea
depth information using the Satellite-Derived Bathymetry (SDB) technique. This technique's main problem is
the variation in the bottom cover of waters such as coral reefs and seagrass, which distorts the spectral values.
The use of band ratios can normalize variations in bottom water cover. This study compares the single band
algorithm's accuracy with the band ratio depth data obtained by field survey around the port of Karimunjawa
Islands, Central Java. The image used in this study is high-resolution imagery, Worldview 3. Preprocessing
includes Sunglint correction to reduce the effect of sunglint in the waters and correction of depth data so that
the data are free from tides' influence. The bands used are red, green, blue, and Near-Infrared, which results
in 10 combinations. This study indicates that the band ratio method produces a smaller RMSE value than the
single band. The blue/green ratio makes the best depth values with an RMSE of 1.669 meters at a depth of
0-5 meters. In comparison, single-band use shows that the best estimation result is with an RMSE of 2.373
meters in the green band. This study shows that the band ratio method produces better depth estimates than
the single band method.
Keywords: satellite-derived bathymetry, single band, band ratio, Worldview 3, Karimunjawa
ABSTRAK
Ketersediaan citra satelit penginderaan jauh salah satunya dapat dimanfaatkan sebagai penyedia
informasi kedalaman laut dangkal menggunakan teknik Satellite-Derived Bathymetry (SDB). Permasalahan
utama dalam teknik ini adalah beragamnya tutupan dasar perairan seperti terumbu karang dan lamun
sehingga mendistorsi nilai spektral. Penggunaan band rasio memiliki kemampuan untuk menormalisasikan
variasi tutupan dasar perairan. Penelitian ini bertujuan untuk membandingkan akurasi yang dihasilkan
algoritma single band dengan band rasio. Data kedalaman diperoleh dengan survei lapangan di sekitar
pelabuhan Kepulauan Karimunjawa, Jawa Tengah. Citra yang digunakan dalam penelitian ini adalah citra
resolusi tinggi, Worldview 3. Preprocessing meliputi koreksi Sunglint untuk mengurangi efek kilap matahari
yang terjadi di perairan dan koreksi data kedalaman agar data terbebas dari pengaruh pasang surut air laut.
Band yang digunakan yaitu merah, hijau, biru, dan Near-Infrared yang menghasilkan 10 kombinasi. Hasil dari
penelitian ini menunjukkan bahwa metode band rasio menghasilkan nilai RMSE yang lebih kecil dibandingkan
dengan single band. Penggunaan band rasio biru/hijau menghasilkan nilai kedalaman terbaik dengan RMSE
sebesar 1,669 meter pada kedalaman 0-5 meter. Sedangkan penggunaan single band menunjukkan bahwa
hasil estimasi terbaik dengan RMSE sebesar 2,373 meter pada band hijau. Sehingga dari penelitian ini dapat
disimpulkan bahwa metode band rasio menghasilkan estimasi kedalaman lebih baik dibandingkan metode
single band.
Kata kunci: satellite-derived bathymetry, band tunggal, band rasio, Worldview 3, Karimunjawa
INTRODUCTION
Many industries are established in coastal areas because of easy sea transportation access,
which encourages economic growth (Hidayah et al., 2018). The existence of hydro-oceanographic
data, one of which is bathymetry, is an essential parameter in supporting transportation activities.
Conventional bathymetry measurement takes a relatively long time and is expensive, so it is
inefficient. New alternatives are needed in the provision of bathymetric data. The availability of
bathymetric data for all Indonesian coastal areas can be fulfilled, and indirectly, coastal areas'
Seminar Nasional Geomatika 2020: Informasi Geospasial untuk Inovasi Percepatan Pembangunan Berkelanjutan
652
economic development will increase. Technological advances are in line with advances in the remote
sensing, one of which is the SDB (Satellite-Derived Bathymetry) technique. The existence of images
of various resolutions and more complete image channels increase the SDB technique's accuracy.
This method is based on the principle of bands seen from satellites to estimate water depth. The
accuracy obtained by the SDB method ranges from 2-30 meters because it is influenced by the
spatial resolution ( Jégat et al., 2016). There are two popular methods in SDB studies, namely the
Analytical and Empirical methods. Based on Nuha (2019), the Analytical method is an SDB method
by extracting channels with high correlation by considering field parameters including brightness,
TSM (Total Suspended Matter). Simultaneously, the Empirical method is the extraction of the water
depth value by connecting the pixel value with the measured depth (Nuha, 2019).
Wicaksono (2015) research states that the Empirical method has a depth range influenced by
the depth data and the number of bands in the image used. However, the water conditions with
heterogeneous bottom cover and the single band will not be adequate, and the results will not be
optimal (Jupp, 1988; Wicaksono, 2015). Based on Hogrefe (2005); Stumpf (2003); Wicaksono
(2015) stated that the use of the band ratio could reduce the effect of reflection from aquatic objects
so that the resulting value is relatively constant even though the water object has a heterogeneous
base cover. SDB research using empirical methods has been carried out a lot but has not yet obtained
maximum results, as evidenced by the high RMSE value. Prayogo & Basith (2020) compare two
images in their research, namely Worldview 3 and Sentinel 2A to estimate shallow water depth in
the Karimunjawa Islands, Central Java. This study uses the Stumpf algorithm, where Worldview 3
imagery produces a better depth estimate than Sentinel 2A using the green/blue band ratio. The
RMSE value generated from the study was 1.53 meters.
Bergsma et al. (2019) produced an R2 value of 0.82 and RMSE 2.58 meters using Sentinel 2A
imagery. The methods used by Bergsma et al. (2019) are Radon Transform and Augmentation. The
research Manessa et al. (2018) using SOPT 6 high-resolution imagery produced the best accuracy
with an RMSE value of 1.09 meters and R2 of 0.45 in the Mejangan Islands. Furthermore, Bobsaid
et al. (2017) 's research resulted in an NMAE value of 25,777% using Landsat 8 imagery. While
using the Sentinel 2A imagery, the resulting NMAE value was 26,887%. Syaiful et al. (2019) research
resulted in an RMSE of 4.00 and a correlation of 0.6976 using the blue/green band ratio. Another
research was also conducted by Muzirafuti et al. (2020) with the Empirical method. This study uses
the Log-Band method on Quick Bird imagery. Meanwhile, the Object Base Image Analysis (OBIA)
method on the same image produces an RMSE value of 0.35 meters and a correlation of 0.91 meters.
The Empirical method was also carried out by Traganos et al. (2018), producing an RMSE value of
1.39 meters and R2 of 0.79 with Sentinel 2A imagery. In the same study, Traganos et al. (2018)
also used Google Earth imagery, which resulted in an RMSE of 1.67 meters and R2 of 0.9. Ledera et
al. (2019) has also conducted research using the HR400512 Electronic Nautical Chart (ENC) method
by adding vertical accuracy and position to Sentinel 2A, and Landsat 8 imageries carried out in
Hramina Bay.
Hence, this research aims to compare the performance of the single band and band ratio
methods on Worldview 3 imagery to provide depth data, especially in shallow waters using the
Empirical Method. This research is essential to do in order to determine the extent to which the use
of the single band and band ratio can produce a depth value that is close to the measured depth
value. The following is a map of the research location in Karimunjawa waters, Central Java:
Shallow Water Depth Mapping Using Single Band and Band Ratio………….................................................................. (Prayogo & Basith)
653
Figure 1. Research locations around Karimunjawa Port with Google Earth imagery.
This research was conducted in the Karimunjawa Islands with a geographical position of 5°
52'56.01" S and 110°25'52.62" E, precisely around the port in March 2019. The location selection
was based on the consideration of shallow water conditions due to the limitations of satellite image
sensors in penetrating water objects. This study uses Worldview 3 imagery level ORStandard2A that
has been geometrically corrected and radiometric AComp. In-situ depth data measurements used
the Bathy-2010 SyQwest Single Beam Echosounder (SBES), and the Geodetic GPS mounted on the
survey ship to obtain real-time position information. Meanwhile, a tide master is used to obtain tide
data. Data collection was carried out on March 20, 2019, s.d. March 23, 2019. Furthermore, data
processing in this study uses various kinds of software. First, ArcGIS was used to create and display
maps. The second is ENVI, which functions for image processing, and the third is Microsoft Excel
2013 for statistical analysis.
METHOD
This chapter describes the research methodology, including image preprocessing, statistical
analysis to determine the depth extraction model, and accuracy testing.
Sunglint Correction
Sunglint is a sun flash effect that occurs when sunlight hits a surface such as water or a smooth
surface like a mirror. This correction aims to eliminate the effect of sunshine due to the angle of the
rays' angle, which is the same as its reflection, causing white spots on water objects. Syaiful et al.
(2019) stated that this correction aims to eliminate water waves' effects. Hochberg et al. (2003);
Hedley et al. (2005) have refined the Sunglint correction algorithm as Equation 1.
R'
i=Ri-bi (RNIR-Min NIR)……………………………………………………………………………………….……(1)
where:
R'i = the i channel value after being reduced
Ri = the initial i channel value
bi = the amount of regression slope
Seminar Nasional Geomatika 2020: Informasi Geospasial untuk Inovasi Percepatan Pembangunan Berkelanjutan
654
RNIR i :the channel value, and Min NIR is the minimum NIR channel value
Tide Correction
Tide correction aims to free the measured depth data from SBES recording from the influence
of tides. According to Setyawan et al. (2014), the algorithm for tide correction is as Equation 2.
D=dT-rt………………………………………………………………………………………………………..…………….(2)
where:
D = the measured depth
dT = the transducer corrected depth
rt = the tides' reduction value
Satellite Derived Bathymetry
The single band method uses the principle that the electromagnetic waves hitting the water
column will be attenuated. Bands with longer wavelengths are weakened more strongly than shorter
wavelengths (Bukata et al., 1995; Goodman et al., 2013; Wicaksono, 2015). Several parameters
that affect the single band method include selecting the band, the characteristics of the water column
attenuation and the variation in depth used (Wicaksono, 2015). The single band method produces
exponential modelling, so it is necessary to do linearization by modelling the log-transformed results
(Wicaksono, 2015).
The band ratio method in this study uses the Stumpf algorithm (Stumpf et al., 2003). The
principle of this method is to use a two-band ratio where if the ratio increases, the estimated depth
will also increase. If the depth continues to increase, the bands with a high absorption rate will
decrease (Irwanto, 2018). The equation of the Stumpf method is as Equation 3.
Z=m1 (
ln(nRw(λi))
ln(nRw(λj))
) -m0 ………………………………………………………………………………………………….(3)
where:
Z = the depth sought
m1 = the calibration coefficient
Rw (λij) = the reflectance of the extension of the wave
ln = the constant, and m0 is the depth correction (0)
The empirical method in the SDB technique utilizes the relationship between the measured
depth value and the spectral value from satellite images. Depth data were measured using SBES in
2019 along with tidal data for data correction. The amount of depth data used in this study was 218
data, with the following details:
Table 1. Number of depth samples.
Depth (meters) Number of Samples
0 – 5 25
5 – 10 31
10 – 15 82
15 – 20 50
20 - 25 30
The modelling stage begins with the Pearson product-moment correlation analysis to find the
value (r). The limit of significance value (r) on the number of samples (n) is used as a condition that
the correlation results can be continued for modelling using Regression analysis (Wicaksono, 2015).
This study uses a significance level of 95% so that a band with weak energy absorption will produce
Shallow Water Depth Mapping Using Single Band and Band Ratio………….................................................................. (Prayogo & Basith)
655
the best estimation model. The Resultant Regression function's value is used to convert the image
pixel value to the depth value (Wicaksono, 2015).
Accuracy Test
The SDB Empirical Model is formed from the relationship between the image pixel value and the
measured depth. The equation used in the Root Mean Square Error (RMSE) accuracy test is as
Equation 4 (Walpole, 1968; Manessa et al., 2017):
RMSE= √∑ (At-Ft)
2
n
t=1
n
………………………………………………………………………………………………..…….(4)
where:
Ft = the measured depth of the survey results with SBES
At = the estimated depth value from the extraction of the image pixel value
n = the number of measured depth points
RESULT AND DISCUSSION
This chapter describes the results and discussion, divided into two groups: Preprocessing and
Processing data.
Preprocessing Data
Depth data consist of position data and tide data. Depth data were measured using the Bathy-
2010 SyQwest Single-Beam Echosounder (SBES). The research location is located around the port
of Karimunjawa, Central Java. Real-time positioning using the Global Navigation Satellite System
(GNSS) with the Trimble NET R9 geodetic type placed on the ship. The following is the result of the
bathymetric route around the Karimunjawa Port, which is shown in the Worldview 3 imagery as
Figure 1.
This study uses depth data from 0 to 25 meters. The depth is grouped into five groups with
ranges of 0-5 meters, 5-10 meters, 10-15 meters, 15-20 meters, and 20-25 meters. Details of depth
data are 25 data (0-5 meters), 31 data (5-10 meters), 82 data (10-15 meters), 50 data (15-20
meters) and 30 data (20-25 meters). Then, the acquisition of field tide data in the Karimunjawa port
area uses the Tide Master tool installed at the port. Tide measurements were carried out for 2 x 24
hours. This instrument's principle is to automatically measure sea-level changes with sensors
connected to a computer device. The tide data are used to correct the SBES depth value resulting
from the results so that the depth value is free from tides' influence.
Figure 2. Ship trajectory for data acquisition using SBES.
Seminar Nasional Geomatika 2020: Informasi Geospasial untuk Inovasi Percepatan Pembangunan Berkelanjutan
656
Finally, the correction made on image data are Sunglint correction. This correction is carried out
on Worldview 3 imagery to minimize sun flash in the water. The sunglint correction uses the RGB
ratios band with the Near-Infrared band. This correction begins with the creation of ROIs in the
areas affected by the sunglint effect. Then extract pixel values with ROIs and save in ASCII format.
Furthermore, the equation's value is applied to the image using ENVI software so that the sunglint
effect can be reduced.
Processing Data
Single Band
The first thing to do in the extraction of depth values is to make depth sampling in various
groups. Secondly, the depth sampling results are inputted in the ENVI software as vectors to be
converted as ROIs. Then the ROIs formed are converted into ASCII format. In principle, all bands
in the image can be used for depth estimation. However, only a few bands produce the best
correlation and small RMSE values. The single band method in this study uses four bands so that
there are four equations for the relationship between the depth and spectral values in the image.
The best correlation is the green band with an RMSE of 2.373 meters.
Band Ratio
Depth estimation using the band ratio method, the first is to make a depth sampling of each
group that functions as training data. The training data that have been inputted are then analyzed
to find a relationship between the partial value. This process is carried out on all band ratios formed
from the red, green, blue and Near-Infrared bands. This study's combination band ratio is
blue/green, blue/red, blue/Near-Infrared, green/red, green/Near-Infrared, and red/Near-Infrared.
Furthermore, the accuracy test is carried out by looking for the RMSE value generated from the
image extraction with measured depth. From the band ratio method used, the smallest RMSE is
obtained in the blue/green band ratio of 1.669 meters at a depth of 0-5 meters. The band ratio in
the Worldview 3 imagery results in a relatively small RMSE value compared to the single band. The
band ratio can reduce the bottom cover value of the waters to correlate the pixel value and the
measured depth. This study uses four bands, namely red, green, blue, and Near-Infrared. The four
bands produce six band ratios with different RMSE values.
Previous researchers have done SDB analysis using the Empirical method using the Stumpf
algorithm by comparing the Worldview 3 with Sentinel 2A. This study indicates that the green/blue
band ratio produces the best depth estimate with an RMSE of 1.526 meters (Prayogo & Basith,
2020). The RMSE value and the resulting band ratio differed between previous and present studies.
The formed model is influenced by the depth sample used (Prayogo & Basith, 2020).
CONCLUSION
From this research, the best equation for the single-band method is the green band with y: -
0.2633x + 2.3691. From this model, the green band produces the best estimation results with an
RMSE value of 2.373 meters at a depth of 0-5 meters. The best equation for the resulting band ratio
method is the blue/green band ratio with an RMSE of 1.669 meters at a depth of 0-5 meters. So it
can be concluded that the band ratio method produces a better depth estimate than the single-band
method.
ACKNOWLEDGEMENTS
The author would like to thank the Department of Geodesy Engineering and Universitas Gadjah
Mada for assisting in the form of funding for this research.
Shallow Water Depth Mapping Using Single Band and Band Ratio………….................................................................. (Prayogo & Basith)
657
REFERENCE
Bergsma, E.W.J., Almar, R., & Maisongrande, P. (2019). Radon-augmented Sentinel-2 satellite imagery to
derive wave-patterns and regional bathymetry. Remote Sensing, 11(16), 1918, 1-16.
https://doi.org/10.3390/rs11161918.
Bobsaid, M.W., & Jaelani, L.M. (2017). Studi pemetaan batimetri perairan dangkal menggunakan citra satelit
landsat 8 dan sentinel-2A (Studi kasus: perairan Pulau Poteran dan Gili Iyang, Madura). Jurnal Teknik
ITS, 6(2), A641-A644. http://dx.doi.org/10.12962/j23373539.v6i2.24182.
Bukata, R.P., Jerome, J.H., Kondratyev, K.Y., & Pozdnyakov, D.V. (1995). Optical Properties and Remote
Sensing of Inland and Coastal Waters. 1st
Edition. CRC Press. New York. 384pp.
Goodman, J.A., Purkis, S.J., & Phinn, S.R. (2013). Corel Reef Remote Sensing: A Guide for Mapping, Monitoring
and Management. Springer. 461pp.
Hedley, J.D., Harborne, A.R., & Mumby, P.J. (2005). Simple and robust removal of sunglint for mapping
shallow-water benthos. International Journal of Remote Sensing, 26(10), 2107-2112.
https://doi.org/10.1080/01431160500034086.
Hidayah, Z., Prayogo, L.M., & Wardhani, M.K. (2018). Sea level rise impact modelling on small islands: case
study Gili Raja Island of East Java. MATEC Web of Conferences, 177 (010117), 1-8. The 5th
International
Seminar on Ocean and Coastal Engineering, Environmental and Natural Disaster Management (ISOCEEN
2017). https://doi.org/10.1051/matecconf/201817701017.
Hochberg, E.J. Andréfouët, S. & Tyler, M.R. (2003). Sea surface correction of high spatial resolution ikonos
images to improve bottom mapping in near-shore environments. IEEE Transactions on Geoscience and
Remote Sensing, 41(7), 1724–1729. https://doi.org/10.1109/TGRS.2003.815408.
Hogrefe, K.R. (2005). Deriving Shallow Water Bathymetric Data from Ratios of Blue and Green λ Radiance
Values. Oregon: Department of Geosciences, Oregon State University.
Irwanto, D. (2018). Perkiraan batimetri perairan dangkal menggunakan Citra Landsat 8. Prosiding Seminar
Nasional Kelautan dan Perikanan IV, 1-12. Swiss-Belinn, Tunjungan-Surabaya, 05 September 2018.
Jégat, V., Pe’eri, S., Freire, R., Klemm, A., Castillo, J., & Nyberg, J. (2016). Satellite-Derived Bathymetry:
Performance and Production. Canadian Hydrographic Conference, 1–8. Halifax, NS, Canada. May 16-19,
2016.
Jupp, D.L.B. (1988). Background and extensions to depth of penetration (DOP) mapping in shallow coastal
waters. Proceeding of Remote Sensing of the Coastal Zone International Symposium, Gold Coast,
Australia. pp.IV.2.1-19, 12 refs, illus.. http://hdl.handle.net/102.100.100/265466?index=1.
Ledera, T.D., & Lederb, N.J.P. (2019). Satellite derived bathymetry survey method – example of Hramina Bay.
Transactions on Maritime Science, 8(1), 99-108. https://doi.org/doi: 10.7225/toms.v08.n01.010.
Manessa, M.D.M., Haidar, M., Hartuti, M., & Kresnawati, D.K. (2017). Determination of the best methodology
for bathymetry mapping using Spot 6 Imagery: a study of 12 empirical algorithms. International Journal
of Remote Sensing and Earth Sciences (IJReSES), 14(2), 127-136.
https://doi.org/10.30536/j.ijreses.2017.v14.a2827.
Manessa, M.D.M., Kanno, A., Sagawa, T., Sekine, M., & Nurdin, N. (2018). Simulation-based investigation of
the generality of Lyzenga’s multispectral bathymetry formula in Case-1 coral reef water. Estuarine, Coastal
and Shelf Science, 200(5), 81-90. https://doi.org/10.1016/j.ecss.2017.10.014.
Muzirafuti, A., Barreca, G., Crupi, A., Faina, G., Paltrinieri, D., Lanza, S., & Randazzo, G. (2020). The
contribution of multispectral satellite image to shallowwater bathymetry mapping on the Coast of Misano
Adriatico, Italy. Journal of Marine Science and Engineering, 8(128), 1-21.
https://doi.org/10.3390/jmse8020126.
Nuha, M.U. (2019). Optimalisasi Parameter Analitis Ekstraksi Kedalaman Laut dengan Citra Satelit Resolusi
Tinggi Pada Zona Laut Dangkal (Studi Kasus : Perairan Pelabuhan Karimunjawa). Tesis Magister Teknik
Geomatika. Universitas Gadjah Mada. 156 hlm.
Prayogo, L.M., Basith, A., & Engineering. (2020). Uji performa Citra Worldview 3 dan Sentinel 2A untuk
pemetaan kedalaman laut dangkal (studi kasus di Kepulauan Karimunjawa, Jawa Tengah). Journal of
Geospatial Information Science, 3(2), 161-167. https://doi.org/10.22146/jgise.59572.
Setyawan, I.E. Siregar, V.P. Pramono, G.H. & Yuwono, D.M. (2014). Pemetaan profil habitat dasar perairan
dangkal berdasarkan bentuk topografi : studi kasus Pulau Panggang, Kepulauan Seribu Jakarta. Majalah
Ilmiah Globe, 16(2) :125-132.
Stumpf, R.P. Holderied, K. Robinson, A.J. Feldman, G. & Kuring, N. (2003). Mapping water depths in clear
water from space. Proceedings of the 13th Biennial Coastal Zone Conference, Baltimore Maryland. July
13-17, 2003.
Stumpf, R.P., Holderied, K., & Sinclair, M. (2003). Determination of water depth with high‐resolution satellite
imagery over variable bottom types. Limnology and Oceanography, 48(1part2), 547-556.
https://doi.org/10.4319/lo.2003.48.1_part_2.0547.
Seminar Nasional Geomatika 2020: Informasi Geospasial untuk Inovasi Percepatan Pembangunan Berkelanjutan
658
Syaiful, S.N. Helmi, M. Widada, S. Widiaratih, P.S. & Suryoputro, A.A.D. (2019). Analisis Digital Citra Satelit
Worldview-2 untuk Ekstraksi Kedalaman Perairan Laut di Sebagian Perairan Pulau Parang, Kepulauan
Karimunjawa, Provinsi Jawa Tengah. Indonesian Journal of Oceanography, Vol 01 No:, 1-8.
Traganos, D., Poursanidis, D., Aggarwal, B., Chrysoulakis, N., & Reinartz, P. (2018). Estimating satellite-
derived bathymetry (SDB) with the Google Earth Engine and sentinel-2. Remote Sensing, 10(859), 1-18.
https://doi.org/10.3390/rs10060859.
Walpole, R.E. (1968). Introduction to Statistics. 3rd
Edition. Mc Millan. New York. 365pp.
Wicaksono, P. (2015). Perbandingan Akurasi Metode Band Tunggal Dan Band Rasio Untuk Pemetaan Batimetri
Pada Laut Dangkal Optis. Simposium Nasional Sains Geoinformasi IV 2015, 802-810. Fakultas Geografi
Universitas Gadjah Mada. https://doi.org/10.13140/RG.2.1.1340.3286.

More Related Content

What's hot

IkeGPS Geological Case Study
IkeGPS Geological Case StudyIkeGPS Geological Case Study
IkeGPS Geological Case StudyGlobalgeoGNSS
 
The Nippon foundation -GEBCO seabed 2030
The Nippon foundation -GEBCO seabed 2030The Nippon foundation -GEBCO seabed 2030
The Nippon foundation -GEBCO seabed 2030Abdul Saleem K
 
WETLAND MAPPING USING RS AND GIS
WETLAND MAPPING USING RS AND GISWETLAND MAPPING USING RS AND GIS
WETLAND MAPPING USING RS AND GISAbhiram Kanigolla
 
Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece
Seagrass Mapping and Monitoring Along the Coasts of Crete, GreeceSeagrass Mapping and Monitoring Along the Coasts of Crete, Greece
Seagrass Mapping and Monitoring Along the Coasts of Crete, GreeceUniversität Salzburg
 
IRJET - Study on Generation of Urban Heat Island with Increasing Urban Sprawl...
IRJET - Study on Generation of Urban Heat Island with Increasing Urban Sprawl...IRJET - Study on Generation of Urban Heat Island with Increasing Urban Sprawl...
IRJET - Study on Generation of Urban Heat Island with Increasing Urban Sprawl...IRJET Journal
 
Isprsarchives xl-7-w3-897-2015
Isprsarchives xl-7-w3-897-2015Isprsarchives xl-7-w3-897-2015
Isprsarchives xl-7-w3-897-2015bayrmgl
 
UAV Mangroves Rev 0 colour
UAV Mangroves Rev 0 colourUAV Mangroves Rev 0 colour
UAV Mangroves Rev 0 colourPeter Mellor
 
Geospatial services
Geospatial servicesGeospatial services
Geospatial servicesSBL corp
 
Heritage hetherington lidar_pdf[1]
Heritage hetherington lidar_pdf[1]Heritage hetherington lidar_pdf[1]
Heritage hetherington lidar_pdf[1]llica
 
DEVELOPING THE OPTIMIZED OCEAN CURRENT STRENGTHENING DESALINATION SEMI-PERMEA...
DEVELOPING THE OPTIMIZED OCEAN CURRENT STRENGTHENING DESALINATION SEMI-PERMEA...DEVELOPING THE OPTIMIZED OCEAN CURRENT STRENGTHENING DESALINATION SEMI-PERMEA...
DEVELOPING THE OPTIMIZED OCEAN CURRENT STRENGTHENING DESALINATION SEMI-PERMEA...ijbesjournal
 
LandsatOLI_Lake_Assessment _BakerJ
LandsatOLI_Lake_Assessment _BakerJLandsatOLI_Lake_Assessment _BakerJ
LandsatOLI_Lake_Assessment _BakerJJeffrey Baker
 
Image classification and land cover mapping
Image classification and land cover mappingImage classification and land cover mapping
Image classification and land cover mappingKabir Uddin
 
D41037045
D41037045D41037045
D41037045inventy
 
Accuracy enhancement of srtm and aster dems using weight estimation regressio...
Accuracy enhancement of srtm and aster dems using weight estimation regressio...Accuracy enhancement of srtm and aster dems using weight estimation regressio...
Accuracy enhancement of srtm and aster dems using weight estimation regressio...eSAT Publishing House
 

What's hot (19)

IkeGPS Geological Case Study
IkeGPS Geological Case StudyIkeGPS Geological Case Study
IkeGPS Geological Case Study
 
The Nippon foundation -GEBCO seabed 2030
The Nippon foundation -GEBCO seabed 2030The Nippon foundation -GEBCO seabed 2030
The Nippon foundation -GEBCO seabed 2030
 
WETLAND MAPPING USING RS AND GIS
WETLAND MAPPING USING RS AND GISWETLAND MAPPING USING RS AND GIS
WETLAND MAPPING USING RS AND GIS
 
247 - 252_Malam1
247 - 252_Malam1247 - 252_Malam1
247 - 252_Malam1
 
Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece
Seagrass Mapping and Monitoring Along the Coasts of Crete, GreeceSeagrass Mapping and Monitoring Along the Coasts of Crete, Greece
Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece
 
IRJET - Study on Generation of Urban Heat Island with Increasing Urban Sprawl...
IRJET - Study on Generation of Urban Heat Island with Increasing Urban Sprawl...IRJET - Study on Generation of Urban Heat Island with Increasing Urban Sprawl...
IRJET - Study on Generation of Urban Heat Island with Increasing Urban Sprawl...
 
Isprsarchives xl-7-w3-897-2015
Isprsarchives xl-7-w3-897-2015Isprsarchives xl-7-w3-897-2015
Isprsarchives xl-7-w3-897-2015
 
UAV Mangroves Rev 0 colour
UAV Mangroves Rev 0 colourUAV Mangroves Rev 0 colour
UAV Mangroves Rev 0 colour
 
Dr Yogi_CV
Dr Yogi_CVDr Yogi_CV
Dr Yogi_CV
 
GIS
GISGIS
GIS
 
Geospatial services
Geospatial servicesGeospatial services
Geospatial services
 
Heritage hetherington lidar_pdf[1]
Heritage hetherington lidar_pdf[1]Heritage hetherington lidar_pdf[1]
Heritage hetherington lidar_pdf[1]
 
DEVELOPING THE OPTIMIZED OCEAN CURRENT STRENGTHENING DESALINATION SEMI-PERMEA...
DEVELOPING THE OPTIMIZED OCEAN CURRENT STRENGTHENING DESALINATION SEMI-PERMEA...DEVELOPING THE OPTIMIZED OCEAN CURRENT STRENGTHENING DESALINATION SEMI-PERMEA...
DEVELOPING THE OPTIMIZED OCEAN CURRENT STRENGTHENING DESALINATION SEMI-PERMEA...
 
LandsatOLI_Lake_Assessment _BakerJ
LandsatOLI_Lake_Assessment _BakerJLandsatOLI_Lake_Assessment _BakerJ
LandsatOLI_Lake_Assessment _BakerJ
 
Image classification and land cover mapping
Image classification and land cover mappingImage classification and land cover mapping
Image classification and land cover mapping
 
D41037045
D41037045D41037045
D41037045
 
Accuracy enhancement of srtm and aster dems using weight estimation regressio...
Accuracy enhancement of srtm and aster dems using weight estimation regressio...Accuracy enhancement of srtm and aster dems using weight estimation regressio...
Accuracy enhancement of srtm and aster dems using weight estimation regressio...
 
Land use cover pptx.
Land use cover pptx.Land use cover pptx.
Land use cover pptx.
 
Poster_jayson_v3
Poster_jayson_v3Poster_jayson_v3
Poster_jayson_v3
 

Similar to Shallow Water Depth Mapping Using Band Ratio

DUAL-CHANNEL MODEL FOR SHALLOW WATER DEPTH RETRIEVAL FROM WORLDVIEW-3 IMAGERY...
DUAL-CHANNEL MODEL FOR SHALLOW WATER DEPTH RETRIEVAL FROM WORLDVIEW-3 IMAGERY...DUAL-CHANNEL MODEL FOR SHALLOW WATER DEPTH RETRIEVAL FROM WORLDVIEW-3 IMAGERY...
DUAL-CHANNEL MODEL FOR SHALLOW WATER DEPTH RETRIEVAL FROM WORLDVIEW-3 IMAGERY...Luhur Moekti Prayogo
 
Using Remote Sensing Techniques For Monitoring Ecological Changes In Lakes: C...
Using Remote Sensing Techniques For Monitoring Ecological Changes In Lakes: C...Using Remote Sensing Techniques For Monitoring Ecological Changes In Lakes: C...
Using Remote Sensing Techniques For Monitoring Ecological Changes In Lakes: C...IJERA Editor
 
Remote sensing data driven bathing water quality assessment using sentinel-3
Remote sensing data driven bathing water quality assessment using sentinel-3Remote sensing data driven bathing water quality assessment using sentinel-3
Remote sensing data driven bathing water quality assessment using sentinel-3nooriasukmaningtyas
 
APPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPER
APPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPERAPPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPER
APPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPERDereck Downing
 
Monitoring NDTI-River Temperature relationship along the river ganga in the s...
Monitoring NDTI-River Temperature relationship along the river ganga in the s...Monitoring NDTI-River Temperature relationship along the river ganga in the s...
Monitoring NDTI-River Temperature relationship along the river ganga in the s...IRJET Journal
 
ESTIMATION OF DEPTH OF RIVER BY BATHYMETRY OF SATELLITE IMAGES
ESTIMATION OF DEPTH OF RIVER BY BATHYMETRY OF SATELLITE IMAGESESTIMATION OF DEPTH OF RIVER BY BATHYMETRY OF SATELLITE IMAGES
ESTIMATION OF DEPTH OF RIVER BY BATHYMETRY OF SATELLITE IMAGESIRJET Journal
 
Mangrove Vegetation Mapping Using Sentinel-2A Imagery Based on Google Earth E...
Mangrove Vegetation Mapping Using Sentinel-2A Imagery Based on Google Earth E...Mangrove Vegetation Mapping Using Sentinel-2A Imagery Based on Google Earth E...
Mangrove Vegetation Mapping Using Sentinel-2A Imagery Based on Google Earth E...Luhur Moekti Prayogo
 
Comparing canopy density measurement from UAV and hemispherical photography: ...
Comparing canopy density measurement from UAV and hemispherical photography: ...Comparing canopy density measurement from UAV and hemispherical photography: ...
Comparing canopy density measurement from UAV and hemispherical photography: ...IJECEIAES
 
Residual Analysis and Tidal Harmonic Components in Bangkalan Regency, East Java
Residual Analysis and Tidal Harmonic Components in Bangkalan Regency, East JavaResidual Analysis and Tidal Harmonic Components in Bangkalan Regency, East Java
Residual Analysis and Tidal Harmonic Components in Bangkalan Regency, East JavaLuhur Moekti Prayogo
 
Automated Extraction of Shoreline in Tuban Regency, East Java from Google Ear...
Automated Extraction of Shoreline in Tuban Regency, East Java from Google Ear...Automated Extraction of Shoreline in Tuban Regency, East Java from Google Ear...
Automated Extraction of Shoreline in Tuban Regency, East Java from Google Ear...Luhur Moekti Prayogo
 
IRJET - Underwater Object Identification using Matlab and Machine
IRJET - Underwater Object Identification using Matlab and MachineIRJET - Underwater Object Identification using Matlab and Machine
IRJET - Underwater Object Identification using Matlab and MachineIRJET Journal
 
Identification of Groundwater Potential Survey Using QGIS of DBATU campus, Ma...
Identification of Groundwater Potential Survey Using QGIS of DBATU campus, Ma...Identification of Groundwater Potential Survey Using QGIS of DBATU campus, Ma...
Identification of Groundwater Potential Survey Using QGIS of DBATU campus, Ma...IRJET Journal
 
BENTHIC DIVERSITY MAPPING AND ANALYSIS BASE ON REMOTE SENSING AND SEASCAPE EC...
BENTHIC DIVERSITY MAPPING AND ANALYSIS BASE ON REMOTE SENSING AND SEASCAPE EC...BENTHIC DIVERSITY MAPPING AND ANALYSIS BASE ON REMOTE SENSING AND SEASCAPE EC...
BENTHIC DIVERSITY MAPPING AND ANALYSIS BASE ON REMOTE SENSING AND SEASCAPE EC...IAEME Publication
 
2. virat arora, s. s. rao, e. amminedu and p. jagadeeswara rao
2. virat arora, s. s. rao, e. amminedu and p. jagadeeswara rao2. virat arora, s. s. rao, e. amminedu and p. jagadeeswara rao
2. virat arora, s. s. rao, e. amminedu and p. jagadeeswara raoJournal of Global Resources
 
Extraction of Water-body Area from High-resolution Landsat Imagery
Extraction of Water-body Area from High-resolution  Landsat Imagery Extraction of Water-body Area from High-resolution  Landsat Imagery
Extraction of Water-body Area from High-resolution Landsat Imagery IJECEIAES
 
Flood risk mapping using GIS and remote sensing and SAR
Flood risk mapping using GIS and remote sensing and SARFlood risk mapping using GIS and remote sensing and SAR
Flood risk mapping using GIS and remote sensing and SARRohan Tuteja
 
2021_Article_.pdf
2021_Article_.pdf2021_Article_.pdf
2021_Article_.pdfgautam3392
 
Snow Cover Estimation from Resourcesat-1 AWiFS – Image Processing with an Aut...
Snow Cover Estimation from Resourcesat-1 AWiFS – Image Processing with an Aut...Snow Cover Estimation from Resourcesat-1 AWiFS – Image Processing with an Aut...
Snow Cover Estimation from Resourcesat-1 AWiFS – Image Processing with an Aut...CSCJournals
 
MARS3012Report2_42853288_GregForster
MARS3012Report2_42853288_GregForsterMARS3012Report2_42853288_GregForster
MARS3012Report2_42853288_GregForsterGreg Forster
 
Automatic traffic light controller for emergency vehicle using peripheral int...
Automatic traffic light controller for emergency vehicle using peripheral int...Automatic traffic light controller for emergency vehicle using peripheral int...
Automatic traffic light controller for emergency vehicle using peripheral int...IJECEIAES
 

Similar to Shallow Water Depth Mapping Using Band Ratio (20)

DUAL-CHANNEL MODEL FOR SHALLOW WATER DEPTH RETRIEVAL FROM WORLDVIEW-3 IMAGERY...
DUAL-CHANNEL MODEL FOR SHALLOW WATER DEPTH RETRIEVAL FROM WORLDVIEW-3 IMAGERY...DUAL-CHANNEL MODEL FOR SHALLOW WATER DEPTH RETRIEVAL FROM WORLDVIEW-3 IMAGERY...
DUAL-CHANNEL MODEL FOR SHALLOW WATER DEPTH RETRIEVAL FROM WORLDVIEW-3 IMAGERY...
 
Using Remote Sensing Techniques For Monitoring Ecological Changes In Lakes: C...
Using Remote Sensing Techniques For Monitoring Ecological Changes In Lakes: C...Using Remote Sensing Techniques For Monitoring Ecological Changes In Lakes: C...
Using Remote Sensing Techniques For Monitoring Ecological Changes In Lakes: C...
 
Remote sensing data driven bathing water quality assessment using sentinel-3
Remote sensing data driven bathing water quality assessment using sentinel-3Remote sensing data driven bathing water quality assessment using sentinel-3
Remote sensing data driven bathing water quality assessment using sentinel-3
 
APPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPER
APPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPERAPPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPER
APPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPER
 
Monitoring NDTI-River Temperature relationship along the river ganga in the s...
Monitoring NDTI-River Temperature relationship along the river ganga in the s...Monitoring NDTI-River Temperature relationship along the river ganga in the s...
Monitoring NDTI-River Temperature relationship along the river ganga in the s...
 
ESTIMATION OF DEPTH OF RIVER BY BATHYMETRY OF SATELLITE IMAGES
ESTIMATION OF DEPTH OF RIVER BY BATHYMETRY OF SATELLITE IMAGESESTIMATION OF DEPTH OF RIVER BY BATHYMETRY OF SATELLITE IMAGES
ESTIMATION OF DEPTH OF RIVER BY BATHYMETRY OF SATELLITE IMAGES
 
Mangrove Vegetation Mapping Using Sentinel-2A Imagery Based on Google Earth E...
Mangrove Vegetation Mapping Using Sentinel-2A Imagery Based on Google Earth E...Mangrove Vegetation Mapping Using Sentinel-2A Imagery Based on Google Earth E...
Mangrove Vegetation Mapping Using Sentinel-2A Imagery Based on Google Earth E...
 
Comparing canopy density measurement from UAV and hemispherical photography: ...
Comparing canopy density measurement from UAV and hemispherical photography: ...Comparing canopy density measurement from UAV and hemispherical photography: ...
Comparing canopy density measurement from UAV and hemispherical photography: ...
 
Residual Analysis and Tidal Harmonic Components in Bangkalan Regency, East Java
Residual Analysis and Tidal Harmonic Components in Bangkalan Regency, East JavaResidual Analysis and Tidal Harmonic Components in Bangkalan Regency, East Java
Residual Analysis and Tidal Harmonic Components in Bangkalan Regency, East Java
 
Automated Extraction of Shoreline in Tuban Regency, East Java from Google Ear...
Automated Extraction of Shoreline in Tuban Regency, East Java from Google Ear...Automated Extraction of Shoreline in Tuban Regency, East Java from Google Ear...
Automated Extraction of Shoreline in Tuban Regency, East Java from Google Ear...
 
IRJET - Underwater Object Identification using Matlab and Machine
IRJET - Underwater Object Identification using Matlab and MachineIRJET - Underwater Object Identification using Matlab and Machine
IRJET - Underwater Object Identification using Matlab and Machine
 
Identification of Groundwater Potential Survey Using QGIS of DBATU campus, Ma...
Identification of Groundwater Potential Survey Using QGIS of DBATU campus, Ma...Identification of Groundwater Potential Survey Using QGIS of DBATU campus, Ma...
Identification of Groundwater Potential Survey Using QGIS of DBATU campus, Ma...
 
BENTHIC DIVERSITY MAPPING AND ANALYSIS BASE ON REMOTE SENSING AND SEASCAPE EC...
BENTHIC DIVERSITY MAPPING AND ANALYSIS BASE ON REMOTE SENSING AND SEASCAPE EC...BENTHIC DIVERSITY MAPPING AND ANALYSIS BASE ON REMOTE SENSING AND SEASCAPE EC...
BENTHIC DIVERSITY MAPPING AND ANALYSIS BASE ON REMOTE SENSING AND SEASCAPE EC...
 
2. virat arora, s. s. rao, e. amminedu and p. jagadeeswara rao
2. virat arora, s. s. rao, e. amminedu and p. jagadeeswara rao2. virat arora, s. s. rao, e. amminedu and p. jagadeeswara rao
2. virat arora, s. s. rao, e. amminedu and p. jagadeeswara rao
 
Extraction of Water-body Area from High-resolution Landsat Imagery
Extraction of Water-body Area from High-resolution  Landsat Imagery Extraction of Water-body Area from High-resolution  Landsat Imagery
Extraction of Water-body Area from High-resolution Landsat Imagery
 
Flood risk mapping using GIS and remote sensing and SAR
Flood risk mapping using GIS and remote sensing and SARFlood risk mapping using GIS and remote sensing and SAR
Flood risk mapping using GIS and remote sensing and SAR
 
2021_Article_.pdf
2021_Article_.pdf2021_Article_.pdf
2021_Article_.pdf
 
Snow Cover Estimation from Resourcesat-1 AWiFS – Image Processing with an Aut...
Snow Cover Estimation from Resourcesat-1 AWiFS – Image Processing with an Aut...Snow Cover Estimation from Resourcesat-1 AWiFS – Image Processing with an Aut...
Snow Cover Estimation from Resourcesat-1 AWiFS – Image Processing with an Aut...
 
MARS3012Report2_42853288_GregForster
MARS3012Report2_42853288_GregForsterMARS3012Report2_42853288_GregForster
MARS3012Report2_42853288_GregForster
 
Automatic traffic light controller for emergency vehicle using peripheral int...
Automatic traffic light controller for emergency vehicle using peripheral int...Automatic traffic light controller for emergency vehicle using peripheral int...
Automatic traffic light controller for emergency vehicle using peripheral int...
 

More from Luhur Moekti Prayogo

Pelatihan Pemanfaatan Teknologi AI dalam Pembuatan PTK bagi Guru SDN Karangas...
Pelatihan Pemanfaatan Teknologi AI dalam Pembuatan PTK bagi Guru SDN Karangas...Pelatihan Pemanfaatan Teknologi AI dalam Pembuatan PTK bagi Guru SDN Karangas...
Pelatihan Pemanfaatan Teknologi AI dalam Pembuatan PTK bagi Guru SDN Karangas...Luhur Moekti Prayogo
 
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Pratiwi)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Pratiwi)Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Pratiwi)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Pratiwi)Luhur Moekti Prayogo
 
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Udis Sunardi)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Udis Sunardi)Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Udis Sunardi)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Udis Sunardi)Luhur Moekti Prayogo
 
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Saiful Mukminin)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Saiful Mukminin)Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Saiful Mukminin)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Saiful Mukminin)Luhur Moekti Prayogo
 
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Maryoko)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Maryoko)Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Maryoko)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Maryoko)Luhur Moekti Prayogo
 
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Fajar Kurniawan)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Fajar Kurniawan)Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Fajar Kurniawan)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Fajar Kurniawan)Luhur Moekti Prayogo
 
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Agus Vandiharjo)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Agus Vandiharjo)Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Agus Vandiharjo)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Agus Vandiharjo)Luhur Moekti Prayogo
 
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...Luhur Moekti Prayogo
 
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...Luhur Moekti Prayogo
 
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...Luhur Moekti Prayogo
 
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...Luhur Moekti Prayogo
 
Analisis Komponen Harmonik dan Elevasi Pasang Surut pada Alur Pelayaran Perai...
Analisis Komponen Harmonik dan Elevasi Pasang Surut pada Alur Pelayaran Perai...Analisis Komponen Harmonik dan Elevasi Pasang Surut pada Alur Pelayaran Perai...
Analisis Komponen Harmonik dan Elevasi Pasang Surut pada Alur Pelayaran Perai...Luhur Moekti Prayogo
 
Land Cover Classification Assessment Using Decision Trees and Maximum Likelih...
Land Cover Classification Assessment Using Decision Trees and Maximum Likelih...Land Cover Classification Assessment Using Decision Trees and Maximum Likelih...
Land Cover Classification Assessment Using Decision Trees and Maximum Likelih...Luhur Moekti Prayogo
 
Mitigasi Bencana Pesisir - Penghijaun Hutan (By. Imam Asghoni Mahali)
Mitigasi Bencana Pesisir - Penghijaun Hutan (By. Imam Asghoni Mahali)Mitigasi Bencana Pesisir - Penghijaun Hutan (By. Imam Asghoni Mahali)
Mitigasi Bencana Pesisir - Penghijaun Hutan (By. Imam Asghoni Mahali)Luhur Moekti Prayogo
 
Mitigasi Bencana Pesisir - Pembuatan Bangunan Tahan Gempa (By. Nur Uswatun Ch...
Mitigasi Bencana Pesisir - Pembuatan Bangunan Tahan Gempa (By. Nur Uswatun Ch...Mitigasi Bencana Pesisir - Pembuatan Bangunan Tahan Gempa (By. Nur Uswatun Ch...
Mitigasi Bencana Pesisir - Pembuatan Bangunan Tahan Gempa (By. Nur Uswatun Ch...Luhur Moekti Prayogo
 
Mitigasi Bencana Pesisir - Memberikan Penyuluhan dan Meningkatkan Kesadaran M...
Mitigasi Bencana Pesisir - Memberikan Penyuluhan dan Meningkatkan Kesadaran M...Mitigasi Bencana Pesisir - Memberikan Penyuluhan dan Meningkatkan Kesadaran M...
Mitigasi Bencana Pesisir - Memberikan Penyuluhan dan Meningkatkan Kesadaran M...Luhur Moekti Prayogo
 
Mitigasi Bencana Pesisir - Bangunan Pelindung Pantai Sebagai Penanggulangan A...
Mitigasi Bencana Pesisir - Bangunan Pelindung Pantai Sebagai Penanggulangan A...Mitigasi Bencana Pesisir - Bangunan Pelindung Pantai Sebagai Penanggulangan A...
Mitigasi Bencana Pesisir - Bangunan Pelindung Pantai Sebagai Penanggulangan A...Luhur Moekti Prayogo
 
Mitigasi Bencana Pesisir - Penanggulangan Abrasi Pantai Melalu Reboisasi Huta...
Mitigasi Bencana Pesisir - Penanggulangan Abrasi Pantai Melalu Reboisasi Huta...Mitigasi Bencana Pesisir - Penanggulangan Abrasi Pantai Melalu Reboisasi Huta...
Mitigasi Bencana Pesisir - Penanggulangan Abrasi Pantai Melalu Reboisasi Huta...Luhur Moekti Prayogo
 
Mitigasi Bencana Pesisir - Penghijauan Hutan Mangrove (By. Putri Widyawati Nu...
Mitigasi Bencana Pesisir - Penghijauan Hutan Mangrove (By. Putri Widyawati Nu...Mitigasi Bencana Pesisir - Penghijauan Hutan Mangrove (By. Putri Widyawati Nu...
Mitigasi Bencana Pesisir - Penghijauan Hutan Mangrove (By. Putri Widyawati Nu...Luhur Moekti Prayogo
 
Alat Tangkap Pukat Cincin/ Purse Seine (By. Udis Sunardi)
Alat Tangkap Pukat Cincin/ Purse Seine (By. Udis Sunardi)Alat Tangkap Pukat Cincin/ Purse Seine (By. Udis Sunardi)
Alat Tangkap Pukat Cincin/ Purse Seine (By. Udis Sunardi)Luhur Moekti Prayogo
 

More from Luhur Moekti Prayogo (20)

Pelatihan Pemanfaatan Teknologi AI dalam Pembuatan PTK bagi Guru SDN Karangas...
Pelatihan Pemanfaatan Teknologi AI dalam Pembuatan PTK bagi Guru SDN Karangas...Pelatihan Pemanfaatan Teknologi AI dalam Pembuatan PTK bagi Guru SDN Karangas...
Pelatihan Pemanfaatan Teknologi AI dalam Pembuatan PTK bagi Guru SDN Karangas...
 
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Pratiwi)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Pratiwi)Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Pratiwi)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Pratiwi)
 
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Udis Sunardi)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Udis Sunardi)Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Udis Sunardi)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Udis Sunardi)
 
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Saiful Mukminin)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Saiful Mukminin)Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Saiful Mukminin)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Saiful Mukminin)
 
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Maryoko)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Maryoko)Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Maryoko)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Maryoko)
 
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Fajar Kurniawan)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Fajar Kurniawan)Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Fajar Kurniawan)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Fajar Kurniawan)
 
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Agus Vandiharjo)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Agus Vandiharjo)Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Agus Vandiharjo)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Agus Vandiharjo)
 
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
 
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
 
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
 
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
 
Analisis Komponen Harmonik dan Elevasi Pasang Surut pada Alur Pelayaran Perai...
Analisis Komponen Harmonik dan Elevasi Pasang Surut pada Alur Pelayaran Perai...Analisis Komponen Harmonik dan Elevasi Pasang Surut pada Alur Pelayaran Perai...
Analisis Komponen Harmonik dan Elevasi Pasang Surut pada Alur Pelayaran Perai...
 
Land Cover Classification Assessment Using Decision Trees and Maximum Likelih...
Land Cover Classification Assessment Using Decision Trees and Maximum Likelih...Land Cover Classification Assessment Using Decision Trees and Maximum Likelih...
Land Cover Classification Assessment Using Decision Trees and Maximum Likelih...
 
Mitigasi Bencana Pesisir - Penghijaun Hutan (By. Imam Asghoni Mahali)
Mitigasi Bencana Pesisir - Penghijaun Hutan (By. Imam Asghoni Mahali)Mitigasi Bencana Pesisir - Penghijaun Hutan (By. Imam Asghoni Mahali)
Mitigasi Bencana Pesisir - Penghijaun Hutan (By. Imam Asghoni Mahali)
 
Mitigasi Bencana Pesisir - Pembuatan Bangunan Tahan Gempa (By. Nur Uswatun Ch...
Mitigasi Bencana Pesisir - Pembuatan Bangunan Tahan Gempa (By. Nur Uswatun Ch...Mitigasi Bencana Pesisir - Pembuatan Bangunan Tahan Gempa (By. Nur Uswatun Ch...
Mitigasi Bencana Pesisir - Pembuatan Bangunan Tahan Gempa (By. Nur Uswatun Ch...
 
Mitigasi Bencana Pesisir - Memberikan Penyuluhan dan Meningkatkan Kesadaran M...
Mitigasi Bencana Pesisir - Memberikan Penyuluhan dan Meningkatkan Kesadaran M...Mitigasi Bencana Pesisir - Memberikan Penyuluhan dan Meningkatkan Kesadaran M...
Mitigasi Bencana Pesisir - Memberikan Penyuluhan dan Meningkatkan Kesadaran M...
 
Mitigasi Bencana Pesisir - Bangunan Pelindung Pantai Sebagai Penanggulangan A...
Mitigasi Bencana Pesisir - Bangunan Pelindung Pantai Sebagai Penanggulangan A...Mitigasi Bencana Pesisir - Bangunan Pelindung Pantai Sebagai Penanggulangan A...
Mitigasi Bencana Pesisir - Bangunan Pelindung Pantai Sebagai Penanggulangan A...
 
Mitigasi Bencana Pesisir - Penanggulangan Abrasi Pantai Melalu Reboisasi Huta...
Mitigasi Bencana Pesisir - Penanggulangan Abrasi Pantai Melalu Reboisasi Huta...Mitigasi Bencana Pesisir - Penanggulangan Abrasi Pantai Melalu Reboisasi Huta...
Mitigasi Bencana Pesisir - Penanggulangan Abrasi Pantai Melalu Reboisasi Huta...
 
Mitigasi Bencana Pesisir - Penghijauan Hutan Mangrove (By. Putri Widyawati Nu...
Mitigasi Bencana Pesisir - Penghijauan Hutan Mangrove (By. Putri Widyawati Nu...Mitigasi Bencana Pesisir - Penghijauan Hutan Mangrove (By. Putri Widyawati Nu...
Mitigasi Bencana Pesisir - Penghijauan Hutan Mangrove (By. Putri Widyawati Nu...
 
Alat Tangkap Pukat Cincin/ Purse Seine (By. Udis Sunardi)
Alat Tangkap Pukat Cincin/ Purse Seine (By. Udis Sunardi)Alat Tangkap Pukat Cincin/ Purse Seine (By. Udis Sunardi)
Alat Tangkap Pukat Cincin/ Purse Seine (By. Udis Sunardi)
 

Recently uploaded

Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
 

Recently uploaded (20)

Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
 

Shallow Water Depth Mapping Using Band Ratio

  • 1. Shallow Water Depth Mapping Using Single Band and Band Ratio………….................................................................. (Prayogo & Basith) 651 SHALLOW WATER DEPTH MAPPING USING SINGLE BAND AND BAND RATIO ON HIGH-RESOLUTION IMAGERY (Pemetaan Kedalaman Perairan Dangkal Menggunakan Single Band dan Band Rasio Pada Citra Resolusi Tinggi) Luhur Moekti Prayogo, Abdul Basith Department of Geodetic Engineering, Universitas Gadjah Mada, Yogyakarta, 55284, Indonesia Jl. Grafika Bulaksumur No. 2, Senolowo, Sinduadi, Sleman, Daerah Istimewa Yogyakarta, 55281 E-mail: abd_basith@ugm.ac.id ABSTRACT One of the availabilities of remote sensing satellite imagery can be used as a provider of shallow sea depth information using the Satellite-Derived Bathymetry (SDB) technique. This technique's main problem is the variation in the bottom cover of waters such as coral reefs and seagrass, which distorts the spectral values. The use of band ratios can normalize variations in bottom water cover. This study compares the single band algorithm's accuracy with the band ratio depth data obtained by field survey around the port of Karimunjawa Islands, Central Java. The image used in this study is high-resolution imagery, Worldview 3. Preprocessing includes Sunglint correction to reduce the effect of sunglint in the waters and correction of depth data so that the data are free from tides' influence. The bands used are red, green, blue, and Near-Infrared, which results in 10 combinations. This study indicates that the band ratio method produces a smaller RMSE value than the single band. The blue/green ratio makes the best depth values with an RMSE of 1.669 meters at a depth of 0-5 meters. In comparison, single-band use shows that the best estimation result is with an RMSE of 2.373 meters in the green band. This study shows that the band ratio method produces better depth estimates than the single band method. Keywords: satellite-derived bathymetry, single band, band ratio, Worldview 3, Karimunjawa ABSTRAK Ketersediaan citra satelit penginderaan jauh salah satunya dapat dimanfaatkan sebagai penyedia informasi kedalaman laut dangkal menggunakan teknik Satellite-Derived Bathymetry (SDB). Permasalahan utama dalam teknik ini adalah beragamnya tutupan dasar perairan seperti terumbu karang dan lamun sehingga mendistorsi nilai spektral. Penggunaan band rasio memiliki kemampuan untuk menormalisasikan variasi tutupan dasar perairan. Penelitian ini bertujuan untuk membandingkan akurasi yang dihasilkan algoritma single band dengan band rasio. Data kedalaman diperoleh dengan survei lapangan di sekitar pelabuhan Kepulauan Karimunjawa, Jawa Tengah. Citra yang digunakan dalam penelitian ini adalah citra resolusi tinggi, Worldview 3. Preprocessing meliputi koreksi Sunglint untuk mengurangi efek kilap matahari yang terjadi di perairan dan koreksi data kedalaman agar data terbebas dari pengaruh pasang surut air laut. Band yang digunakan yaitu merah, hijau, biru, dan Near-Infrared yang menghasilkan 10 kombinasi. Hasil dari penelitian ini menunjukkan bahwa metode band rasio menghasilkan nilai RMSE yang lebih kecil dibandingkan dengan single band. Penggunaan band rasio biru/hijau menghasilkan nilai kedalaman terbaik dengan RMSE sebesar 1,669 meter pada kedalaman 0-5 meter. Sedangkan penggunaan single band menunjukkan bahwa hasil estimasi terbaik dengan RMSE sebesar 2,373 meter pada band hijau. Sehingga dari penelitian ini dapat disimpulkan bahwa metode band rasio menghasilkan estimasi kedalaman lebih baik dibandingkan metode single band. Kata kunci: satellite-derived bathymetry, band tunggal, band rasio, Worldview 3, Karimunjawa INTRODUCTION Many industries are established in coastal areas because of easy sea transportation access, which encourages economic growth (Hidayah et al., 2018). The existence of hydro-oceanographic data, one of which is bathymetry, is an essential parameter in supporting transportation activities. Conventional bathymetry measurement takes a relatively long time and is expensive, so it is inefficient. New alternatives are needed in the provision of bathymetric data. The availability of bathymetric data for all Indonesian coastal areas can be fulfilled, and indirectly, coastal areas'
  • 2. Seminar Nasional Geomatika 2020: Informasi Geospasial untuk Inovasi Percepatan Pembangunan Berkelanjutan 652 economic development will increase. Technological advances are in line with advances in the remote sensing, one of which is the SDB (Satellite-Derived Bathymetry) technique. The existence of images of various resolutions and more complete image channels increase the SDB technique's accuracy. This method is based on the principle of bands seen from satellites to estimate water depth. The accuracy obtained by the SDB method ranges from 2-30 meters because it is influenced by the spatial resolution ( Jégat et al., 2016). There are two popular methods in SDB studies, namely the Analytical and Empirical methods. Based on Nuha (2019), the Analytical method is an SDB method by extracting channels with high correlation by considering field parameters including brightness, TSM (Total Suspended Matter). Simultaneously, the Empirical method is the extraction of the water depth value by connecting the pixel value with the measured depth (Nuha, 2019). Wicaksono (2015) research states that the Empirical method has a depth range influenced by the depth data and the number of bands in the image used. However, the water conditions with heterogeneous bottom cover and the single band will not be adequate, and the results will not be optimal (Jupp, 1988; Wicaksono, 2015). Based on Hogrefe (2005); Stumpf (2003); Wicaksono (2015) stated that the use of the band ratio could reduce the effect of reflection from aquatic objects so that the resulting value is relatively constant even though the water object has a heterogeneous base cover. SDB research using empirical methods has been carried out a lot but has not yet obtained maximum results, as evidenced by the high RMSE value. Prayogo & Basith (2020) compare two images in their research, namely Worldview 3 and Sentinel 2A to estimate shallow water depth in the Karimunjawa Islands, Central Java. This study uses the Stumpf algorithm, where Worldview 3 imagery produces a better depth estimate than Sentinel 2A using the green/blue band ratio. The RMSE value generated from the study was 1.53 meters. Bergsma et al. (2019) produced an R2 value of 0.82 and RMSE 2.58 meters using Sentinel 2A imagery. The methods used by Bergsma et al. (2019) are Radon Transform and Augmentation. The research Manessa et al. (2018) using SOPT 6 high-resolution imagery produced the best accuracy with an RMSE value of 1.09 meters and R2 of 0.45 in the Mejangan Islands. Furthermore, Bobsaid et al. (2017) 's research resulted in an NMAE value of 25,777% using Landsat 8 imagery. While using the Sentinel 2A imagery, the resulting NMAE value was 26,887%. Syaiful et al. (2019) research resulted in an RMSE of 4.00 and a correlation of 0.6976 using the blue/green band ratio. Another research was also conducted by Muzirafuti et al. (2020) with the Empirical method. This study uses the Log-Band method on Quick Bird imagery. Meanwhile, the Object Base Image Analysis (OBIA) method on the same image produces an RMSE value of 0.35 meters and a correlation of 0.91 meters. The Empirical method was also carried out by Traganos et al. (2018), producing an RMSE value of 1.39 meters and R2 of 0.79 with Sentinel 2A imagery. In the same study, Traganos et al. (2018) also used Google Earth imagery, which resulted in an RMSE of 1.67 meters and R2 of 0.9. Ledera et al. (2019) has also conducted research using the HR400512 Electronic Nautical Chart (ENC) method by adding vertical accuracy and position to Sentinel 2A, and Landsat 8 imageries carried out in Hramina Bay. Hence, this research aims to compare the performance of the single band and band ratio methods on Worldview 3 imagery to provide depth data, especially in shallow waters using the Empirical Method. This research is essential to do in order to determine the extent to which the use of the single band and band ratio can produce a depth value that is close to the measured depth value. The following is a map of the research location in Karimunjawa waters, Central Java:
  • 3. Shallow Water Depth Mapping Using Single Band and Band Ratio………….................................................................. (Prayogo & Basith) 653 Figure 1. Research locations around Karimunjawa Port with Google Earth imagery. This research was conducted in the Karimunjawa Islands with a geographical position of 5° 52'56.01" S and 110°25'52.62" E, precisely around the port in March 2019. The location selection was based on the consideration of shallow water conditions due to the limitations of satellite image sensors in penetrating water objects. This study uses Worldview 3 imagery level ORStandard2A that has been geometrically corrected and radiometric AComp. In-situ depth data measurements used the Bathy-2010 SyQwest Single Beam Echosounder (SBES), and the Geodetic GPS mounted on the survey ship to obtain real-time position information. Meanwhile, a tide master is used to obtain tide data. Data collection was carried out on March 20, 2019, s.d. March 23, 2019. Furthermore, data processing in this study uses various kinds of software. First, ArcGIS was used to create and display maps. The second is ENVI, which functions for image processing, and the third is Microsoft Excel 2013 for statistical analysis. METHOD This chapter describes the research methodology, including image preprocessing, statistical analysis to determine the depth extraction model, and accuracy testing. Sunglint Correction Sunglint is a sun flash effect that occurs when sunlight hits a surface such as water or a smooth surface like a mirror. This correction aims to eliminate the effect of sunshine due to the angle of the rays' angle, which is the same as its reflection, causing white spots on water objects. Syaiful et al. (2019) stated that this correction aims to eliminate water waves' effects. Hochberg et al. (2003); Hedley et al. (2005) have refined the Sunglint correction algorithm as Equation 1. R' i=Ri-bi (RNIR-Min NIR)……………………………………………………………………………………….……(1) where: R'i = the i channel value after being reduced Ri = the initial i channel value bi = the amount of regression slope
  • 4. Seminar Nasional Geomatika 2020: Informasi Geospasial untuk Inovasi Percepatan Pembangunan Berkelanjutan 654 RNIR i :the channel value, and Min NIR is the minimum NIR channel value Tide Correction Tide correction aims to free the measured depth data from SBES recording from the influence of tides. According to Setyawan et al. (2014), the algorithm for tide correction is as Equation 2. D=dT-rt………………………………………………………………………………………………………..…………….(2) where: D = the measured depth dT = the transducer corrected depth rt = the tides' reduction value Satellite Derived Bathymetry The single band method uses the principle that the electromagnetic waves hitting the water column will be attenuated. Bands with longer wavelengths are weakened more strongly than shorter wavelengths (Bukata et al., 1995; Goodman et al., 2013; Wicaksono, 2015). Several parameters that affect the single band method include selecting the band, the characteristics of the water column attenuation and the variation in depth used (Wicaksono, 2015). The single band method produces exponential modelling, so it is necessary to do linearization by modelling the log-transformed results (Wicaksono, 2015). The band ratio method in this study uses the Stumpf algorithm (Stumpf et al., 2003). The principle of this method is to use a two-band ratio where if the ratio increases, the estimated depth will also increase. If the depth continues to increase, the bands with a high absorption rate will decrease (Irwanto, 2018). The equation of the Stumpf method is as Equation 3. Z=m1 ( ln(nRw(λi)) ln(nRw(λj)) ) -m0 ………………………………………………………………………………………………….(3) where: Z = the depth sought m1 = the calibration coefficient Rw (λij) = the reflectance of the extension of the wave ln = the constant, and m0 is the depth correction (0) The empirical method in the SDB technique utilizes the relationship between the measured depth value and the spectral value from satellite images. Depth data were measured using SBES in 2019 along with tidal data for data correction. The amount of depth data used in this study was 218 data, with the following details: Table 1. Number of depth samples. Depth (meters) Number of Samples 0 – 5 25 5 – 10 31 10 – 15 82 15 – 20 50 20 - 25 30 The modelling stage begins with the Pearson product-moment correlation analysis to find the value (r). The limit of significance value (r) on the number of samples (n) is used as a condition that the correlation results can be continued for modelling using Regression analysis (Wicaksono, 2015). This study uses a significance level of 95% so that a band with weak energy absorption will produce
  • 5. Shallow Water Depth Mapping Using Single Band and Band Ratio………….................................................................. (Prayogo & Basith) 655 the best estimation model. The Resultant Regression function's value is used to convert the image pixel value to the depth value (Wicaksono, 2015). Accuracy Test The SDB Empirical Model is formed from the relationship between the image pixel value and the measured depth. The equation used in the Root Mean Square Error (RMSE) accuracy test is as Equation 4 (Walpole, 1968; Manessa et al., 2017): RMSE= √∑ (At-Ft) 2 n t=1 n ………………………………………………………………………………………………..…….(4) where: Ft = the measured depth of the survey results with SBES At = the estimated depth value from the extraction of the image pixel value n = the number of measured depth points RESULT AND DISCUSSION This chapter describes the results and discussion, divided into two groups: Preprocessing and Processing data. Preprocessing Data Depth data consist of position data and tide data. Depth data were measured using the Bathy- 2010 SyQwest Single-Beam Echosounder (SBES). The research location is located around the port of Karimunjawa, Central Java. Real-time positioning using the Global Navigation Satellite System (GNSS) with the Trimble NET R9 geodetic type placed on the ship. The following is the result of the bathymetric route around the Karimunjawa Port, which is shown in the Worldview 3 imagery as Figure 1. This study uses depth data from 0 to 25 meters. The depth is grouped into five groups with ranges of 0-5 meters, 5-10 meters, 10-15 meters, 15-20 meters, and 20-25 meters. Details of depth data are 25 data (0-5 meters), 31 data (5-10 meters), 82 data (10-15 meters), 50 data (15-20 meters) and 30 data (20-25 meters). Then, the acquisition of field tide data in the Karimunjawa port area uses the Tide Master tool installed at the port. Tide measurements were carried out for 2 x 24 hours. This instrument's principle is to automatically measure sea-level changes with sensors connected to a computer device. The tide data are used to correct the SBES depth value resulting from the results so that the depth value is free from tides' influence. Figure 2. Ship trajectory for data acquisition using SBES.
  • 6. Seminar Nasional Geomatika 2020: Informasi Geospasial untuk Inovasi Percepatan Pembangunan Berkelanjutan 656 Finally, the correction made on image data are Sunglint correction. This correction is carried out on Worldview 3 imagery to minimize sun flash in the water. The sunglint correction uses the RGB ratios band with the Near-Infrared band. This correction begins with the creation of ROIs in the areas affected by the sunglint effect. Then extract pixel values with ROIs and save in ASCII format. Furthermore, the equation's value is applied to the image using ENVI software so that the sunglint effect can be reduced. Processing Data Single Band The first thing to do in the extraction of depth values is to make depth sampling in various groups. Secondly, the depth sampling results are inputted in the ENVI software as vectors to be converted as ROIs. Then the ROIs formed are converted into ASCII format. In principle, all bands in the image can be used for depth estimation. However, only a few bands produce the best correlation and small RMSE values. The single band method in this study uses four bands so that there are four equations for the relationship between the depth and spectral values in the image. The best correlation is the green band with an RMSE of 2.373 meters. Band Ratio Depth estimation using the band ratio method, the first is to make a depth sampling of each group that functions as training data. The training data that have been inputted are then analyzed to find a relationship between the partial value. This process is carried out on all band ratios formed from the red, green, blue and Near-Infrared bands. This study's combination band ratio is blue/green, blue/red, blue/Near-Infrared, green/red, green/Near-Infrared, and red/Near-Infrared. Furthermore, the accuracy test is carried out by looking for the RMSE value generated from the image extraction with measured depth. From the band ratio method used, the smallest RMSE is obtained in the blue/green band ratio of 1.669 meters at a depth of 0-5 meters. The band ratio in the Worldview 3 imagery results in a relatively small RMSE value compared to the single band. The band ratio can reduce the bottom cover value of the waters to correlate the pixel value and the measured depth. This study uses four bands, namely red, green, blue, and Near-Infrared. The four bands produce six band ratios with different RMSE values. Previous researchers have done SDB analysis using the Empirical method using the Stumpf algorithm by comparing the Worldview 3 with Sentinel 2A. This study indicates that the green/blue band ratio produces the best depth estimate with an RMSE of 1.526 meters (Prayogo & Basith, 2020). The RMSE value and the resulting band ratio differed between previous and present studies. The formed model is influenced by the depth sample used (Prayogo & Basith, 2020). CONCLUSION From this research, the best equation for the single-band method is the green band with y: - 0.2633x + 2.3691. From this model, the green band produces the best estimation results with an RMSE value of 2.373 meters at a depth of 0-5 meters. The best equation for the resulting band ratio method is the blue/green band ratio with an RMSE of 1.669 meters at a depth of 0-5 meters. So it can be concluded that the band ratio method produces a better depth estimate than the single-band method. ACKNOWLEDGEMENTS The author would like to thank the Department of Geodesy Engineering and Universitas Gadjah Mada for assisting in the form of funding for this research.
  • 7. Shallow Water Depth Mapping Using Single Band and Band Ratio………….................................................................. (Prayogo & Basith) 657 REFERENCE Bergsma, E.W.J., Almar, R., & Maisongrande, P. (2019). Radon-augmented Sentinel-2 satellite imagery to derive wave-patterns and regional bathymetry. Remote Sensing, 11(16), 1918, 1-16. https://doi.org/10.3390/rs11161918. Bobsaid, M.W., & Jaelani, L.M. (2017). Studi pemetaan batimetri perairan dangkal menggunakan citra satelit landsat 8 dan sentinel-2A (Studi kasus: perairan Pulau Poteran dan Gili Iyang, Madura). Jurnal Teknik ITS, 6(2), A641-A644. http://dx.doi.org/10.12962/j23373539.v6i2.24182. Bukata, R.P., Jerome, J.H., Kondratyev, K.Y., & Pozdnyakov, D.V. (1995). Optical Properties and Remote Sensing of Inland and Coastal Waters. 1st Edition. CRC Press. New York. 384pp. Goodman, J.A., Purkis, S.J., & Phinn, S.R. (2013). Corel Reef Remote Sensing: A Guide for Mapping, Monitoring and Management. Springer. 461pp. Hedley, J.D., Harborne, A.R., & Mumby, P.J. (2005). Simple and robust removal of sunglint for mapping shallow-water benthos. International Journal of Remote Sensing, 26(10), 2107-2112. https://doi.org/10.1080/01431160500034086. Hidayah, Z., Prayogo, L.M., & Wardhani, M.K. (2018). Sea level rise impact modelling on small islands: case study Gili Raja Island of East Java. MATEC Web of Conferences, 177 (010117), 1-8. The 5th International Seminar on Ocean and Coastal Engineering, Environmental and Natural Disaster Management (ISOCEEN 2017). https://doi.org/10.1051/matecconf/201817701017. Hochberg, E.J. Andréfouët, S. & Tyler, M.R. (2003). Sea surface correction of high spatial resolution ikonos images to improve bottom mapping in near-shore environments. IEEE Transactions on Geoscience and Remote Sensing, 41(7), 1724–1729. https://doi.org/10.1109/TGRS.2003.815408. Hogrefe, K.R. (2005). Deriving Shallow Water Bathymetric Data from Ratios of Blue and Green λ Radiance Values. Oregon: Department of Geosciences, Oregon State University. Irwanto, D. (2018). Perkiraan batimetri perairan dangkal menggunakan Citra Landsat 8. Prosiding Seminar Nasional Kelautan dan Perikanan IV, 1-12. Swiss-Belinn, Tunjungan-Surabaya, 05 September 2018. Jégat, V., Pe’eri, S., Freire, R., Klemm, A., Castillo, J., & Nyberg, J. (2016). Satellite-Derived Bathymetry: Performance and Production. Canadian Hydrographic Conference, 1–8. Halifax, NS, Canada. May 16-19, 2016. Jupp, D.L.B. (1988). Background and extensions to depth of penetration (DOP) mapping in shallow coastal waters. Proceeding of Remote Sensing of the Coastal Zone International Symposium, Gold Coast, Australia. pp.IV.2.1-19, 12 refs, illus.. http://hdl.handle.net/102.100.100/265466?index=1. Ledera, T.D., & Lederb, N.J.P. (2019). Satellite derived bathymetry survey method – example of Hramina Bay. Transactions on Maritime Science, 8(1), 99-108. https://doi.org/doi: 10.7225/toms.v08.n01.010. Manessa, M.D.M., Haidar, M., Hartuti, M., & Kresnawati, D.K. (2017). Determination of the best methodology for bathymetry mapping using Spot 6 Imagery: a study of 12 empirical algorithms. International Journal of Remote Sensing and Earth Sciences (IJReSES), 14(2), 127-136. https://doi.org/10.30536/j.ijreses.2017.v14.a2827. Manessa, M.D.M., Kanno, A., Sagawa, T., Sekine, M., & Nurdin, N. (2018). Simulation-based investigation of the generality of Lyzenga’s multispectral bathymetry formula in Case-1 coral reef water. Estuarine, Coastal and Shelf Science, 200(5), 81-90. https://doi.org/10.1016/j.ecss.2017.10.014. Muzirafuti, A., Barreca, G., Crupi, A., Faina, G., Paltrinieri, D., Lanza, S., & Randazzo, G. (2020). The contribution of multispectral satellite image to shallowwater bathymetry mapping on the Coast of Misano Adriatico, Italy. Journal of Marine Science and Engineering, 8(128), 1-21. https://doi.org/10.3390/jmse8020126. Nuha, M.U. (2019). Optimalisasi Parameter Analitis Ekstraksi Kedalaman Laut dengan Citra Satelit Resolusi Tinggi Pada Zona Laut Dangkal (Studi Kasus : Perairan Pelabuhan Karimunjawa). Tesis Magister Teknik Geomatika. Universitas Gadjah Mada. 156 hlm. Prayogo, L.M., Basith, A., & Engineering. (2020). Uji performa Citra Worldview 3 dan Sentinel 2A untuk pemetaan kedalaman laut dangkal (studi kasus di Kepulauan Karimunjawa, Jawa Tengah). Journal of Geospatial Information Science, 3(2), 161-167. https://doi.org/10.22146/jgise.59572. Setyawan, I.E. Siregar, V.P. Pramono, G.H. & Yuwono, D.M. (2014). Pemetaan profil habitat dasar perairan dangkal berdasarkan bentuk topografi : studi kasus Pulau Panggang, Kepulauan Seribu Jakarta. Majalah Ilmiah Globe, 16(2) :125-132. Stumpf, R.P. Holderied, K. Robinson, A.J. Feldman, G. & Kuring, N. (2003). Mapping water depths in clear water from space. Proceedings of the 13th Biennial Coastal Zone Conference, Baltimore Maryland. July 13-17, 2003. Stumpf, R.P., Holderied, K., & Sinclair, M. (2003). Determination of water depth with high‐resolution satellite imagery over variable bottom types. Limnology and Oceanography, 48(1part2), 547-556. https://doi.org/10.4319/lo.2003.48.1_part_2.0547.
  • 8. Seminar Nasional Geomatika 2020: Informasi Geospasial untuk Inovasi Percepatan Pembangunan Berkelanjutan 658 Syaiful, S.N. Helmi, M. Widada, S. Widiaratih, P.S. & Suryoputro, A.A.D. (2019). Analisis Digital Citra Satelit Worldview-2 untuk Ekstraksi Kedalaman Perairan Laut di Sebagian Perairan Pulau Parang, Kepulauan Karimunjawa, Provinsi Jawa Tengah. Indonesian Journal of Oceanography, Vol 01 No:, 1-8. Traganos, D., Poursanidis, D., Aggarwal, B., Chrysoulakis, N., & Reinartz, P. (2018). Estimating satellite- derived bathymetry (SDB) with the Google Earth Engine and sentinel-2. Remote Sensing, 10(859), 1-18. https://doi.org/10.3390/rs10060859. Walpole, R.E. (1968). Introduction to Statistics. 3rd Edition. Mc Millan. New York. 365pp. Wicaksono, P. (2015). Perbandingan Akurasi Metode Band Tunggal Dan Band Rasio Untuk Pemetaan Batimetri Pada Laut Dangkal Optis. Simposium Nasional Sains Geoinformasi IV 2015, 802-810. Fakultas Geografi Universitas Gadjah Mada. https://doi.org/10.13140/RG.2.1.1340.3286.