SlideShare a Scribd company logo

Tensor flow usergroup 2016 (公開版)

Hiroki Nakahara
Hiroki Nakahara
Hiroki NakaharaTokyo Institute of Technology ー Associate Professor

日本Googleオフィスで開催されたTensorFlow User Groupでしゃべったときのスライドです。TensorFlowからFPGAに落とす方法と2値化ディープニューラルネットワークについて。

Tensor flow usergroup 2016 (公開版)

1 of 47
Download to read offline
2値化CNNなDQNを
FPGAで動かしてみた
中原 啓貴
東京⼯業⼤学
1
⾃⼰紹介
• Hiroki Nakahara (中原 啓貴)
• 36歳 (若⼿…︖)
• JK@⽇本⼀モテない⼤学の教員
• FPGA/ディープラーニングは⽣活の糧
• FPGAは専⾨ではありません
(HDLを書くようになったのは学位を
取ってから, ⾼位合成を始めたのは去年)
• 多値論理と論理関数の複雑度が専⾨
2
Custom Computing Machine
3
Multi‐valued logic
Pattern matching circuit
• Regular expression
matching circuit
• Packet classifier
• IP address look‐up
40m
Radio telescope
Deep neural network
今⽇のお話
4Source: TensorFlow Tutorial, Strata NYC, 2016
FPGAも仲間に⼊れて︕
今回の前提
• 学習済みニューラルネットワークをFPGAに組込む話
5
FPGA?
• Field(現場で)
• Programmable
(書き換えができる)
• Gate(論理ゲートの)
• Array(集合体)
6
PCIに刺してGPUの代わりに
アクセラレータ (Altera社)
指先よりも小さいよ!
(Lattice社)
ラズパイにのっけて高速化
(Xilinx社)
iPhone7にも!!
Ad

Recommended

高位合成ツールVivado hlsのopen cv対応
高位合成ツールVivado hlsのopen cv対応高位合成ツールVivado hlsのopen cv対応
高位合成ツールVivado hlsのopen cv対応marsee101
 
Magnum IO GPUDirect Storage 最新情報
Magnum IO GPUDirect Storage 最新情報Magnum IO GPUDirect Storage 最新情報
Magnum IO GPUDirect Storage 最新情報NVIDIA Japan
 
CPU / GPU高速化セミナー!性能モデルの理論と実践:実践編
CPU / GPU高速化セミナー!性能モデルの理論と実践:実践編CPU / GPU高速化セミナー!性能モデルの理論と実践:実践編
CPU / GPU高速化セミナー!性能モデルの理論と実践:実践編Fixstars Corporation
 
ARM CPUにおけるSIMDを用いた高速計算入門
ARM CPUにおけるSIMDを用いた高速計算入門ARM CPUにおけるSIMDを用いた高速計算入門
ARM CPUにおけるSIMDを用いた高速計算入門Fixstars Corporation
 
組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門Norishige Fukushima
 
いまさら聞けないarmを使ったNEONの基礎と活用事例
いまさら聞けないarmを使ったNEONの基礎と活用事例いまさら聞けないarmを使ったNEONの基礎と活用事例
いまさら聞けないarmを使ったNEONの基礎と活用事例Fixstars Corporation
 
PythonとPyCoRAMでお手軽にFPGAシステムを開発してみよう
PythonとPyCoRAMでお手軽にFPGAシステムを開発してみようPythonとPyCoRAMでお手軽にFPGAシステムを開発してみよう
PythonとPyCoRAMでお手軽にFPGAシステムを開発してみようShinya Takamaeda-Y
 

More Related Content

What's hot

2値化CNN on FPGAでGPUとガチンコバトル(公開版)
2値化CNN on FPGAでGPUとガチンコバトル(公開版)2値化CNN on FPGAでGPUとガチンコバトル(公開版)
2値化CNN on FPGAでGPUとガチンコバトル(公開版)Hiroki Nakahara
 
研究者のための Python による FPGA 入門
研究者のための Python による FPGA 入門研究者のための Python による FPGA 入門
研究者のための Python による FPGA 入門ryos36
 
Ultra96ボードでYOLOを高速化
Ultra96ボードでYOLOを高速化Ultra96ボードでYOLOを高速化
Ultra96ボードでYOLOを高速化Hiroyuki Okuhata
 
CXL_説明_公開用.pdf
CXL_説明_公開用.pdfCXL_説明_公開用.pdf
CXL_説明_公開用.pdfYasunori Goto
 
FPGA+SoC+Linux実践勉強会資料
FPGA+SoC+Linux実践勉強会資料FPGA+SoC+Linux実践勉強会資料
FPGA+SoC+Linux実践勉強会資料一路 川染
 
GPU-FPGA協調プログラミングを実現するコンパイラの開発
GPU-FPGA協調プログラミングを実現するコンパイラの開発GPU-FPGA協調プログラミングを実現するコンパイラの開発
GPU-FPGA協調プログラミングを実現するコンパイラの開発Ryuuta Tsunashima
 
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜Preferred Networks
 
ACRiウェビナー:小野様ご講演資料
ACRiウェビナー:小野様ご講演資料ACRiウェビナー:小野様ご講演資料
ACRiウェビナー:小野様ご講演資料直久 住川
 
「今日から使い切る」 ための GNU Parallel による並列処理入門
「今日から使い切る」ための GNU Parallelによる並列処理入門「今日から使い切る」ための GNU Parallelによる並列処理入門
「今日から使い切る」 ための GNU Parallel による並列処理入門Koji Matsuda
 
いまさら聞けない!CUDA高速化入門
いまさら聞けない!CUDA高速化入門いまさら聞けない!CUDA高速化入門
いまさら聞けない!CUDA高速化入門Fixstars Corporation
 
ACRi HLSチャレンジ 高速化テクニック紹介
ACRi HLSチャレンジ 高速化テクニック紹介ACRi HLSチャレンジ 高速化テクニック紹介
ACRi HLSチャレンジ 高速化テクニック紹介Jun Ando
 
PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門Yosuke Onoue
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Preferred Networks
 
1076: CUDAデバッグ・プロファイリング入門
1076: CUDAデバッグ・プロファイリング入門1076: CUDAデバッグ・プロファイリング入門
1076: CUDAデバッグ・プロファイリング入門NVIDIA Japan
 
FPGAのトレンドをまとめてみた
FPGAのトレンドをまとめてみたFPGAのトレンドをまとめてみた
FPGAのトレンドをまとめてみたTakefumi MIYOSHI
 
TCAMのしくみ
TCAMのしくみTCAMのしくみ
TCAMのしくみogatay
 
冬のLock free祭り safe
冬のLock free祭り safe冬のLock free祭り safe
冬のLock free祭り safeKumazaki Hiroki
 
Chainer で Tensor コア (fp16) を使いこなす
Chainer で Tensor コア (fp16) を使いこなすChainer で Tensor コア (fp16) を使いこなす
Chainer で Tensor コア (fp16) を使いこなすNVIDIA Japan
 
【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?Masanao Ochi
 
オープンソースコンパイラNNgenでつくるエッジ・ディープラーニングシステム
オープンソースコンパイラNNgenでつくるエッジ・ディープラーニングシステムオープンソースコンパイラNNgenでつくるエッジ・ディープラーニングシステム
オープンソースコンパイラNNgenでつくるエッジ・ディープラーニングシステムShinya Takamaeda-Y
 

What's hot (20)

2値化CNN on FPGAでGPUとガチンコバトル(公開版)
2値化CNN on FPGAでGPUとガチンコバトル(公開版)2値化CNN on FPGAでGPUとガチンコバトル(公開版)
2値化CNN on FPGAでGPUとガチンコバトル(公開版)
 
研究者のための Python による FPGA 入門
研究者のための Python による FPGA 入門研究者のための Python による FPGA 入門
研究者のための Python による FPGA 入門
 
Ultra96ボードでYOLOを高速化
Ultra96ボードでYOLOを高速化Ultra96ボードでYOLOを高速化
Ultra96ボードでYOLOを高速化
 
CXL_説明_公開用.pdf
CXL_説明_公開用.pdfCXL_説明_公開用.pdf
CXL_説明_公開用.pdf
 
FPGA+SoC+Linux実践勉強会資料
FPGA+SoC+Linux実践勉強会資料FPGA+SoC+Linux実践勉強会資料
FPGA+SoC+Linux実践勉強会資料
 
GPU-FPGA協調プログラミングを実現するコンパイラの開発
GPU-FPGA協調プログラミングを実現するコンパイラの開発GPU-FPGA協調プログラミングを実現するコンパイラの開発
GPU-FPGA協調プログラミングを実現するコンパイラの開発
 
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
 
ACRiウェビナー:小野様ご講演資料
ACRiウェビナー:小野様ご講演資料ACRiウェビナー:小野様ご講演資料
ACRiウェビナー:小野様ご講演資料
 
「今日から使い切る」 ための GNU Parallel による並列処理入門
「今日から使い切る」ための GNU Parallelによる並列処理入門「今日から使い切る」ための GNU Parallelによる並列処理入門
「今日から使い切る」 ための GNU Parallel による並列処理入門
 
いまさら聞けない!CUDA高速化入門
いまさら聞けない!CUDA高速化入門いまさら聞けない!CUDA高速化入門
いまさら聞けない!CUDA高速化入門
 
ACRi HLSチャレンジ 高速化テクニック紹介
ACRi HLSチャレンジ 高速化テクニック紹介ACRi HLSチャレンジ 高速化テクニック紹介
ACRi HLSチャレンジ 高速化テクニック紹介
 
PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
 
1076: CUDAデバッグ・プロファイリング入門
1076: CUDAデバッグ・プロファイリング入門1076: CUDAデバッグ・プロファイリング入門
1076: CUDAデバッグ・プロファイリング入門
 
FPGAのトレンドをまとめてみた
FPGAのトレンドをまとめてみたFPGAのトレンドをまとめてみた
FPGAのトレンドをまとめてみた
 
TCAMのしくみ
TCAMのしくみTCAMのしくみ
TCAMのしくみ
 
冬のLock free祭り safe
冬のLock free祭り safe冬のLock free祭り safe
冬のLock free祭り safe
 
Chainer で Tensor コア (fp16) を使いこなす
Chainer で Tensor コア (fp16) を使いこなすChainer で Tensor コア (fp16) を使いこなす
Chainer で Tensor コア (fp16) を使いこなす
 
【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?
 
オープンソースコンパイラNNgenでつくるエッジ・ディープラーニングシステム
オープンソースコンパイラNNgenでつくるエッジ・ディープラーニングシステムオープンソースコンパイラNNgenでつくるエッジ・ディープラーニングシステム
オープンソースコンパイラNNgenでつくるエッジ・ディープラーニングシステム
 

Viewers also liked

A Random Forest using a Multi-valued Decision Diagram on an FPGa
A Random Forest using a Multi-valued Decision Diagram on an FPGaA Random Forest using a Multi-valued Decision Diagram on an FPGa
A Random Forest using a Multi-valued Decision Diagram on an FPGaHiroki Nakahara
 
(公開版)FPGAエクストリームコンピューティング2017
(公開版)FPGAエクストリームコンピューティング2017 (公開版)FPGAエクストリームコンピューティング2017
(公開版)FPGAエクストリームコンピューティング2017 Hiroki Nakahara
 
(公開版)Reconf研2017GUINNESS
(公開版)Reconf研2017GUINNESS(公開版)Reconf研2017GUINNESS
(公開版)Reconf研2017GUINNESSHiroki Nakahara
 
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介Hiroki Nakahara
 
Verilog-HDL Tutorial (15) software
Verilog-HDL Tutorial (15) softwareVerilog-HDL Tutorial (15) software
Verilog-HDL Tutorial (15) softwareHiroki Nakahara
 
FPGAX2016 ドキュンなFPGA
FPGAX2016 ドキュンなFPGAFPGAX2016 ドキュンなFPGA
FPGAX2016 ドキュンなFPGAHiroki Nakahara
 
Nested RNSを用いたディープニューラルネットワークのFPGA実装
Nested RNSを用いたディープニューラルネットワークのFPGA実装Nested RNSを用いたディープニューラルネットワークのFPGA実装
Nested RNSを用いたディープニューラルネットワークのFPGA実装Hiroki Nakahara
 
Verilog-HDL Tutorial (12)
Verilog-HDL Tutorial (12)Verilog-HDL Tutorial (12)
Verilog-HDL Tutorial (12)Hiroki Nakahara
 
FPL15 talk: Deep Convolutional Neural Network on FPGA
FPL15 talk: Deep Convolutional Neural Network on FPGAFPL15 talk: Deep Convolutional Neural Network on FPGA
FPL15 talk: Deep Convolutional Neural Network on FPGAHiroki Nakahara
 
Verilog-HDL Tutorial (11)
Verilog-HDL Tutorial (11)Verilog-HDL Tutorial (11)
Verilog-HDL Tutorial (11)Hiroki Nakahara
 
Verilog-HDL Tutorial (13)
Verilog-HDL Tutorial (13)Verilog-HDL Tutorial (13)
Verilog-HDL Tutorial (13)Hiroki Nakahara
 
Verilog-HDL Tutorial (14)
Verilog-HDL Tutorial (14)Verilog-HDL Tutorial (14)
Verilog-HDL Tutorial (14)Hiroki Nakahara
 
Verilog-HDL Tutorial (9)
Verilog-HDL Tutorial (9)Verilog-HDL Tutorial (9)
Verilog-HDL Tutorial (9)Hiroki Nakahara
 
Verilog-HDL Tutorial (15) hardware
Verilog-HDL Tutorial (15) hardwareVerilog-HDL Tutorial (15) hardware
Verilog-HDL Tutorial (15) hardwareHiroki Nakahara
 
私のファミコンのfpsは530000です。もちろんフルパワーで(以下略
私のファミコンのfpsは530000です。もちろんフルパワーで(以下略私のファミコンのfpsは530000です。もちろんフルパワーで(以下略
私のファミコンのfpsは530000です。もちろんフルパワーで(以下略Hiroki Nakahara
 
Altera sdk for open cl アンケート集計結果(公開版)
Altera sdk for open cl アンケート集計結果(公開版)Altera sdk for open cl アンケート集計結果(公開版)
Altera sdk for open cl アンケート集計結果(公開版)Hiroki Nakahara
 
電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみた
電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみた電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみた
電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみたHiroki Nakahara
 
Cortex-M0プロセッサから自作して Lチカをやってみた
Cortex-M0プロセッサから自作してLチカをやってみたCortex-M0プロセッサから自作してLチカをやってみた
Cortex-M0プロセッサから自作して LチカをやってみたJunichi Akita
 
FPGAによる津波シミュレーション -- GPUを超える高性能計算の手法
FPGAによる津波シミュレーション -- GPUを超える高性能計算の手法FPGAによる津波シミュレーション -- GPUを超える高性能計算の手法
FPGAによる津波シミュレーション -- GPUを超える高性能計算の手法Kentaro Sano
 

Viewers also liked (20)

A Random Forest using a Multi-valued Decision Diagram on an FPGa
A Random Forest using a Multi-valued Decision Diagram on an FPGaA Random Forest using a Multi-valued Decision Diagram on an FPGa
A Random Forest using a Multi-valued Decision Diagram on an FPGa
 
(公開版)FPGAエクストリームコンピューティング2017
(公開版)FPGAエクストリームコンピューティング2017 (公開版)FPGAエクストリームコンピューティング2017
(公開版)FPGAエクストリームコンピューティング2017
 
(公開版)Reconf研2017GUINNESS
(公開版)Reconf研2017GUINNESS(公開版)Reconf研2017GUINNESS
(公開版)Reconf研2017GUINNESS
 
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
 
Naist2015 dec ver1
Naist2015 dec ver1Naist2015 dec ver1
Naist2015 dec ver1
 
Verilog-HDL Tutorial (15) software
Verilog-HDL Tutorial (15) softwareVerilog-HDL Tutorial (15) software
Verilog-HDL Tutorial (15) software
 
FPGAX2016 ドキュンなFPGA
FPGAX2016 ドキュンなFPGAFPGAX2016 ドキュンなFPGA
FPGAX2016 ドキュンなFPGA
 
Nested RNSを用いたディープニューラルネットワークのFPGA実装
Nested RNSを用いたディープニューラルネットワークのFPGA実装Nested RNSを用いたディープニューラルネットワークのFPGA実装
Nested RNSを用いたディープニューラルネットワークのFPGA実装
 
Verilog-HDL Tutorial (12)
Verilog-HDL Tutorial (12)Verilog-HDL Tutorial (12)
Verilog-HDL Tutorial (12)
 
FPL15 talk: Deep Convolutional Neural Network on FPGA
FPL15 talk: Deep Convolutional Neural Network on FPGAFPL15 talk: Deep Convolutional Neural Network on FPGA
FPL15 talk: Deep Convolutional Neural Network on FPGA
 
Verilog-HDL Tutorial (11)
Verilog-HDL Tutorial (11)Verilog-HDL Tutorial (11)
Verilog-HDL Tutorial (11)
 
Verilog-HDL Tutorial (13)
Verilog-HDL Tutorial (13)Verilog-HDL Tutorial (13)
Verilog-HDL Tutorial (13)
 
Verilog-HDL Tutorial (14)
Verilog-HDL Tutorial (14)Verilog-HDL Tutorial (14)
Verilog-HDL Tutorial (14)
 
Verilog-HDL Tutorial (9)
Verilog-HDL Tutorial (9)Verilog-HDL Tutorial (9)
Verilog-HDL Tutorial (9)
 
Verilog-HDL Tutorial (15) hardware
Verilog-HDL Tutorial (15) hardwareVerilog-HDL Tutorial (15) hardware
Verilog-HDL Tutorial (15) hardware
 
私のファミコンのfpsは530000です。もちろんフルパワーで(以下略
私のファミコンのfpsは530000です。もちろんフルパワーで(以下略私のファミコンのfpsは530000です。もちろんフルパワーで(以下略
私のファミコンのfpsは530000です。もちろんフルパワーで(以下略
 
Altera sdk for open cl アンケート集計結果(公開版)
Altera sdk for open cl アンケート集計結果(公開版)Altera sdk for open cl アンケート集計結果(公開版)
Altera sdk for open cl アンケート集計結果(公開版)
 
電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみた
電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみた電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみた
電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみた
 
Cortex-M0プロセッサから自作して Lチカをやってみた
Cortex-M0プロセッサから自作してLチカをやってみたCortex-M0プロセッサから自作してLチカをやってみた
Cortex-M0プロセッサから自作して Lチカをやってみた
 
FPGAによる津波シミュレーション -- GPUを超える高性能計算の手法
FPGAによる津波シミュレーション -- GPUを超える高性能計算の手法FPGAによる津波シミュレーション -- GPUを超える高性能計算の手法
FPGAによる津波シミュレーション -- GPUを超える高性能計算の手法
 

Similar to Tensor flow usergroup 2016 (公開版)

FPGA・リコンフィギャラブルシステム研究の最新動向
FPGA・リコンフィギャラブルシステム研究の最新動向FPGA・リコンフィギャラブルシステム研究の最新動向
FPGA・リコンフィギャラブルシステム研究の最新動向Shinya Takamaeda-Y
 
2012研究室紹介(大川)
2012研究室紹介(大川)2012研究室紹介(大川)
2012研究室紹介(大川)猛 大川
 
FPGAをロボット(ROS)で「やわらかく」使うには
FPGAをロボット(ROS)で「やわらかく」使うにはFPGAをロボット(ROS)で「やわらかく」使うには
FPGAをロボット(ROS)で「やわらかく」使うにはHideki Takase
 
PyCoRAMを用いたグラフ処理FPGAアクセラレータ
PyCoRAMを用いたグラフ処理FPGAアクセラレータPyCoRAMを用いたグラフ処理FPGAアクセラレータ
PyCoRAMを用いたグラフ処理FPGAアクセラレータShinya Takamaeda-Y
 
ACRi_webinar_20220118_miyo
ACRi_webinar_20220118_miyoACRi_webinar_20220118_miyo
ACRi_webinar_20220118_miyoTakefumi MIYOSHI
 
ソフトウェア技術者はFPGAをどのように使うか
ソフトウェア技術者はFPGAをどのように使うかソフトウェア技術者はFPGAをどのように使うか
ソフトウェア技術者はFPGAをどのように使うかなおき きしだ
 
組込向けDeep Learning最新技術の紹介 量子化テクニックとDorefaNetについて
組込向けDeep Learning最新技術の紹介量子化テクニックとDorefaNetについて組込向けDeep Learning最新技術の紹介量子化テクニックとDorefaNetについて
組込向けDeep Learning最新技術の紹介 量子化テクニックとDorefaNetについてNatsutani Minoru
 
第162回情報処理学会ハイパフォーマンスコンピューティング研究発表会
第162回情報処理学会ハイパフォーマンスコンピューティング研究発表会第162回情報処理学会ハイパフォーマンスコンピューティング研究発表会
第162回情報処理学会ハイパフォーマンスコンピューティング研究発表会Hitoshi Sato
 
High speed-pc-router 201505
High speed-pc-router 201505High speed-pc-router 201505
High speed-pc-router 201505ykuga
 
ソフトウェア志向の組込みシステム協調設計環境
ソフトウェア志向の組込みシステム協調設計環境ソフトウェア志向の組込みシステム協調設計環境
ソフトウェア志向の組込みシステム協調設計環境Hideki Takase
 
Faster SRv6 D-plane with XDP
Faster SRv6 D-plane with XDPFaster SRv6 D-plane with XDP
Faster SRv6 D-plane with XDPRyoga Saito
 
2021 03-09-ac ri-nngen
2021 03-09-ac ri-nngen2021 03-09-ac ri-nngen
2021 03-09-ac ri-nngen直久 住川
 
Abstracts of FPGA2017 papers (Temporary Version)
Abstracts of FPGA2017 papers (Temporary Version)Abstracts of FPGA2017 papers (Temporary Version)
Abstracts of FPGA2017 papers (Temporary Version)Takefumi MIYOSHI
 
PyCoRAMによるPythonを用いたポータブルなFPGAアクセラレータ開発 (チュートリアル@ESS2014)
PyCoRAMによるPythonを用いたポータブルなFPGAアクセラレータ開発 (チュートリアル@ESS2014)PyCoRAMによるPythonを用いたポータブルなFPGAアクセラレータ開発 (チュートリアル@ESS2014)
PyCoRAMによるPythonを用いたポータブルなFPGAアクセラレータ開発 (チュートリアル@ESS2014)Shinya Takamaeda-Y
 
[DL Hacks]ディープラーニングを まともに動かすために ハードウェアの人が考えていること
[DL Hacks]ディープラーニングを まともに動かすために ハードウェアの人が考えていること[DL Hacks]ディープラーニングを まともに動かすために ハードウェアの人が考えていること
[DL Hacks]ディープラーニングを まともに動かすために ハードウェアの人が考えていることDeep Learning JP
 

Similar to Tensor flow usergroup 2016 (公開版) (20)

FPGA・リコンフィギャラブルシステム研究の最新動向
FPGA・リコンフィギャラブルシステム研究の最新動向FPGA・リコンフィギャラブルシステム研究の最新動向
FPGA・リコンフィギャラブルシステム研究の最新動向
 
Myoshimi extreme
Myoshimi extremeMyoshimi extreme
Myoshimi extreme
 
2012研究室紹介(大川)
2012研究室紹介(大川)2012研究室紹介(大川)
2012研究室紹介(大川)
 
FPGAをロボット(ROS)で「やわらかく」使うには
FPGAをロボット(ROS)で「やわらかく」使うにはFPGAをロボット(ROS)で「やわらかく」使うには
FPGAをロボット(ROS)で「やわらかく」使うには
 
PyCoRAMを用いたグラフ処理FPGAアクセラレータ
PyCoRAMを用いたグラフ処理FPGAアクセラレータPyCoRAMを用いたグラフ処理FPGAアクセラレータ
PyCoRAMを用いたグラフ処理FPGAアクセラレータ
 
[DL Hacks]FPGA入門
[DL Hacks]FPGA入門[DL Hacks]FPGA入門
[DL Hacks]FPGA入門
 
ACRi_webinar_20220118_miyo
ACRi_webinar_20220118_miyoACRi_webinar_20220118_miyo
ACRi_webinar_20220118_miyo
 
ソフトウェア技術者はFPGAをどのように使うか
ソフトウェア技術者はFPGAをどのように使うかソフトウェア技術者はFPGAをどのように使うか
ソフトウェア技術者はFPGAをどのように使うか
 
組込向けDeep Learning最新技術の紹介 量子化テクニックとDorefaNetについて
組込向けDeep Learning最新技術の紹介量子化テクニックとDorefaNetについて組込向けDeep Learning最新技術の紹介量子化テクニックとDorefaNetについて
組込向けDeep Learning最新技術の紹介 量子化テクニックとDorefaNetについて
 
第162回情報処理学会ハイパフォーマンスコンピューティング研究発表会
第162回情報処理学会ハイパフォーマンスコンピューティング研究発表会第162回情報処理学会ハイパフォーマンスコンピューティング研究発表会
第162回情報処理学会ハイパフォーマンスコンピューティング研究発表会
 
FPGA
FPGAFPGA
FPGA
 
Cmc cmd slim
Cmc cmd slimCmc cmd slim
Cmc cmd slim
 
ICD/CPSY 201412
ICD/CPSY 201412ICD/CPSY 201412
ICD/CPSY 201412
 
High speed-pc-router 201505
High speed-pc-router 201505High speed-pc-router 201505
High speed-pc-router 201505
 
ソフトウェア志向の組込みシステム協調設計環境
ソフトウェア志向の組込みシステム協調設計環境ソフトウェア志向の組込みシステム協調設計環境
ソフトウェア志向の組込みシステム協調設計環境
 
Faster SRv6 D-plane with XDP
Faster SRv6 D-plane with XDPFaster SRv6 D-plane with XDP
Faster SRv6 D-plane with XDP
 
2021 03-09-ac ri-nngen
2021 03-09-ac ri-nngen2021 03-09-ac ri-nngen
2021 03-09-ac ri-nngen
 
Abstracts of FPGA2017 papers (Temporary Version)
Abstracts of FPGA2017 papers (Temporary Version)Abstracts of FPGA2017 papers (Temporary Version)
Abstracts of FPGA2017 papers (Temporary Version)
 
PyCoRAMによるPythonを用いたポータブルなFPGAアクセラレータ開発 (チュートリアル@ESS2014)
PyCoRAMによるPythonを用いたポータブルなFPGAアクセラレータ開発 (チュートリアル@ESS2014)PyCoRAMによるPythonを用いたポータブルなFPGAアクセラレータ開発 (チュートリアル@ESS2014)
PyCoRAMによるPythonを用いたポータブルなFPGAアクセラレータ開発 (チュートリアル@ESS2014)
 
[DL Hacks]ディープラーニングを まともに動かすために ハードウェアの人が考えていること
[DL Hacks]ディープラーニングを まともに動かすために ハードウェアの人が考えていること[DL Hacks]ディープラーニングを まともに動かすために ハードウェアの人が考えていること
[DL Hacks]ディープラーニングを まともに動かすために ハードウェアの人が考えていること
 

More from Hiroki Nakahara

FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...
FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...
FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...Hiroki Nakahara
 
ROS User Group Meeting #28 マルチ深層学習とROS
ROS User Group Meeting #28 マルチ深層学習とROSROS User Group Meeting #28 マルチ深層学習とROS
ROS User Group Meeting #28 マルチ深層学習とROSHiroki Nakahara
 
DSF2018講演スライド
DSF2018講演スライドDSF2018講演スライド
DSF2018講演スライドHiroki Nakahara
 
ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...
ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...
ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...Hiroki Nakahara
 
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural NetworkISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural NetworkHiroki Nakahara
 
FPGA2018: A Lightweight YOLOv2: A binarized CNN with a parallel support vecto...
FPGA2018: A Lightweight YOLOv2: A binarized CNN with a parallel support vecto...FPGA2018: A Lightweight YOLOv2: A binarized CNN with a parallel support vecto...
FPGA2018: A Lightweight YOLOv2: A binarized CNN with a parallel support vecto...Hiroki Nakahara
 
FPT17: An object detector based on multiscale sliding window search using a f...
FPT17: An object detector based on multiscale sliding window search using a f...FPT17: An object detector based on multiscale sliding window search using a f...
FPT17: An object detector based on multiscale sliding window search using a f...Hiroki Nakahara
 
Verilog-HDL Tutorial (8)
Verilog-HDL Tutorial (8)Verilog-HDL Tutorial (8)
Verilog-HDL Tutorial (8)Hiroki Nakahara
 
Verilog-HDL Tutorial (7)
Verilog-HDL Tutorial (7)Verilog-HDL Tutorial (7)
Verilog-HDL Tutorial (7)Hiroki Nakahara
 

More from Hiroki Nakahara (11)

FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...
FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...
FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...
 
ROS User Group Meeting #28 マルチ深層学習とROS
ROS User Group Meeting #28 マルチ深層学習とROSROS User Group Meeting #28 マルチ深層学習とROS
ROS User Group Meeting #28 マルチ深層学習とROS
 
FPGAX2019
FPGAX2019FPGAX2019
FPGAX2019
 
SBRA2018講演資料
SBRA2018講演資料SBRA2018講演資料
SBRA2018講演資料
 
DSF2018講演スライド
DSF2018講演スライドDSF2018講演スライド
DSF2018講演スライド
 
ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...
ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...
ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...
 
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural NetworkISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
 
FPGA2018: A Lightweight YOLOv2: A binarized CNN with a parallel support vecto...
FPGA2018: A Lightweight YOLOv2: A binarized CNN with a parallel support vecto...FPGA2018: A Lightweight YOLOv2: A binarized CNN with a parallel support vecto...
FPGA2018: A Lightweight YOLOv2: A binarized CNN with a parallel support vecto...
 
FPT17: An object detector based on multiscale sliding window search using a f...
FPT17: An object detector based on multiscale sliding window search using a f...FPT17: An object detector based on multiscale sliding window search using a f...
FPT17: An object detector based on multiscale sliding window search using a f...
 
Verilog-HDL Tutorial (8)
Verilog-HDL Tutorial (8)Verilog-HDL Tutorial (8)
Verilog-HDL Tutorial (8)
 
Verilog-HDL Tutorial (7)
Verilog-HDL Tutorial (7)Verilog-HDL Tutorial (7)
Verilog-HDL Tutorial (7)
 

Tensor flow usergroup 2016 (公開版)