This is the first of a series of four webinars being
put on by Ops A La Carte, ASTR, and ASQ
Reliability Division
Each webinar will also be presented as a full 2 hour
tutorial at our ASTR Workshop Oct 9-11th, San Diego.
    Abstracts for presentations are due Apr 30.
                www.ieee-astr.org
&	
  
 Accelerated	
  Stress	
  Tes-ng	
  and	
  Reliability	
  Workshop	
  
                        October	
  9-­‐11,	
  2013	
  	
  	
  	
  	
  	
  	
  	
  San	
  Diego,	
  CA	
  

   Accelerating Reliability into the 21st Century
Keynote	
  Presenter	
  Day	
  1:	
  	
  Vice	
  Admiral	
  Walter	
  Massenburg	
  
Keynote	
  Presenter	
  Day	
  2:	
  	
  Alain	
  Bensoussan,	
  	
  Thales	
  Avionics	
  

         CALL	
  FOR	
  PRESENTATIONS:	
  	
  We	
  are	
  now	
  Accep,ng	
  Abstracts.	
  	
  	
  
                           Email	
  to:	
  don.gerstle@gmail.com.	
  	
  	
  
                        Guidelines	
  on	
  website	
  www.ieee-­‐astr.org	
  	
  
           For	
  more	
  details,	
  click	
  here	
  to	
  join	
  our	
  LinkedIn	
  Group:	
  
     IEEE/CPMT	
  Workshop	
  on	
  Accelerated	
  Stress	
  TesIng	
  and	
  Reliability	
  
Robust Design and
Reliability Engineering
        Synergy
                                       BY
Lou	
  LaVallee,	
  Senior	
  Reliability	
  Consultant,	
  Ops	
  A	
  La	
  Carte	
  
Agenda
•  Introduction              5 min

•  Robust Design            45 min

•  Questions                10 min
Lou	
  LaVallee,	
  CRE,	
  Senior	
  Reliability/Quality	
  Consultant	
  
	
  
•  Lou	
  has	
  over	
  30	
  years	
  of	
  experience	
  as	
  a	
  quality	
  and	
  reliability	
  engineer.	
  	
  
•  Lou	
  has	
  a	
  strong	
  technical	
  background	
  in	
  physics,	
  engineering	
  materials/	
  
	
  	
  	
  	
  	
  polymer	
  science	
  and	
  a	
  solid	
  grounding	
  in	
  consumer	
  product	
  design,	
  	
  
	
  	
  	
  	
  	
  development,	
  and	
  delivery.	
  	
  
•  His	
  comprehensive	
  background	
  includes	
  electronic	
  films	
  ,	
  robust	
  design,	
  modeling	
  	
  
                    analy,cs,	
  cri,cal	
  parameter	
  management,	
  six	
  sigma	
  DFSS	
  	
  DMAIC,	
  op,miza,on	
  of	
  product	
  
                    quality/reliability,	
  experimental	
  design,	
  reliability	
  test	
  methods,	
  and	
  design	
  tool	
  development	
  
                    and	
  deployment.	
  	
  
•  He	
  successfully	
  managed	
  systems	
  engineering	
  groups	
  for	
  development	
  of	
  ink	
  jet	
  print	
  heads	
  
                    at	
  Xerox	
  Corp.	
  	
  
•  Mr.	
  LaVallee	
  has	
  held	
  other	
  technical	
  management	
  posi,ons	
  in	
  manufacturing	
  technology,	
  
                    engineering	
  excellence	
  (trained	
  several	
  thousand	
  engineers	
  worldwide).	
  He	
  also	
  managed	
  
                    the	
  robust	
  engineering	
  center	
  at	
  Xerox	
  for	
  10	
  years,	
  managed	
  a	
  high	
  volume	
  prin,ng	
  product	
  
                    quality	
  and	
  reliability	
  group,	
  and	
  worked	
  extensively	
  with	
  high	
  volume	
  prin,ng	
  product	
  
                    service	
  organiza,on.	
  	
  
•  He	
  has	
  strong	
  valida,on	
  experience	
  of	
  design	
  quality	
  and	
  reliability	
  through	
  product	
  reviews	
  
                    and	
  customer	
  interac,on	
  
•  Mr.	
  LaVallee	
  holds	
  a	
  Bachelor	
  of	
  Science	
  degree	
  in	
  Physics	
  (BS),	
  and	
  an	
  MS	
  from	
  the	
  
                    University	
  of	
  Rochester	
  in	
  materials/polymer	
  engineering.	
  	
  
•  He	
  holds	
  several	
  U.S.	
  patents	
  involving	
  fluidics	
  and	
  engineering	
  design	
  processes.	
  	
  
•  Mr.	
  LaVallee	
  is	
  an	
  ASQ	
  cer,fied	
  reliability	
  engineer.	
  Lou	
  works	
  in	
  the	
  upstate	
  New	
  York	
  area.	
  
Upcoming Reliability Webinars
Title:	
  	
  Prognos-cs	
  as	
  a	
  Tool	
  for	
  Reliable	
  Systems	
  
Author:	
  	
  Doug	
  Goodman	
  of	
  Ridgetop	
  Group
Date: May 1, 2013, 11:30am PDT
haps://www2.gotomee,ng.com/register/657949994	
  
Location: Webinar

Electronics are the keystone to successful deployment of
complex systems (50+ MPUs in an automobile). Large MTBF
and Statistical Process Control and Centering methods are not
sufficient alone for reliability due to “outliers” (e.g. Toyota Prius,
Deepwater Horizon Drilling Rig, Boeing 787). Ridgetop
technology exists to pinpoint degrading systems before they
fail; supporting operational readiness objectives and cost-
saving Prognostics/Health Management (PHM) and Condition
Based Maintenance (CBM) initiatives.
Upcoming Reliability Webinars
Title:	
  	
  Accelerated	
  Reliability	
  Growth	
  Tes-ng	
  
Author:	
  	
  Milena	
  Krasich	
  of	
  Raytheon	
  IDS	
  
Date: June 12, 2013, 8:30am PDT
haps://www2.gotomee,ng.com/register/283538530	
  
Location: Webinar
This	
  webinar	
  will	
  cover	
  the	
  following:	
  
1)	
  Reliability	
  Growth	
  Test	
  overview/objec,ves	
  
2)	
  Explain	
  tradi,onal	
  Reliability	
  Growth	
  test	
  methodology	
  
3)	
  Show	
  shortcomings	
  of	
  the	
  tradi,onal	
  methods	
  
4)	
  Show	
  principles	
  of	
  the	
  Physics	
  of	
  Failure	
  test	
  methodology	
  
5)	
  Show	
  how	
  the	
  Reliability	
  growth	
  test	
  based	
  on	
  PoF	
  is	
  constructed	
  
6)	
  Show	
  how	
  the	
  expected	
  stresses	
  are	
  applied	
  and	
  accelerated	
  
7)	
  Show	
  reliability	
  measures	
  
8)	
  Show	
  advantages	
  of	
  the	
  test	
  PoF	
  test	
  design	
  and	
  accelera,on	
  
9)	
  Show	
  achieved	
  considerable	
  test	
  cost	
  reduc,on.	
  
Webinar Stats
•  This	
  is	
  our	
  27th	
  Webinar	
  	
  
•  (see	
  Ops	
  site	
  for	
  past	
  webinar	
  topics/content	
  at	
  
hap://www.opsalacarte.com/Pages/resources/resources_techpapers.htm#webinars	
  	
  

•  We	
  run	
  these	
  webinars	
  once	
  a	
  month	
  
•  We	
  partner	
  with	
  other	
  companies	
  	
  
•  We	
  partner	
  with	
  socie,es	
  	
  
	
  	
  	
  	
  (IEEE,	
  ASQ,	
  and	
  others	
  for	
  broader	
  reach)	
  
•  This	
  webinar	
  is	
  brought	
  to	
  you	
  by	
  Ops,	
  ASTR,	
  and	
  ASQ	
  
                Reliability	
  Division.	
  
•  All	
  past	
  webinars	
  are	
  archived	
  on	
  our	
  site	
  
                www.opsalacarte.com/Reliapedia.	
  
	
  
Registration Demographics
•  For this webinar we have signed up
  – 200 Registrants
  – 17 Countries
  – 28 US States
Registration Question #1
•  Have you ever practiced Robust
   Design Engineering?
Registration Question #2
•  Would you say you follow the
   philosophy of Robust Design or
   Design for Reliability more?
Robust Design and
Reliability Engineering
        Synergy
                                       BY
Lou	
  LaVallee,	
  Senior	
  Reliability	
  Consultant,	
  Ops	
  A	
  La	
  Carte	
  
Agenda
•  Background/Introduction    5 min

•  Robust Design             45 min

•  Questions                 10 min
Robust	
  or	
  Just	
  Strong	
  	
  	
  Dangerous	
  
Polling	
  Ques,on	
  1:	
  
	
  
For	
  engineering	
  ac,vi,es	
  in	
  hardware	
  development,	
  when	
  do	
  you	
  
typically	
  	
  start	
  to	
  act	
  on	
  design	
  robustness	
  and	
  reliability	
  concerns.	
  
	
  
	
  	
  	
  	
  	
  	
  	
  a)	
  	
  When	
  field	
  problems	
  	
  and	
  customer	
  complaints	
  begin.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  b)	
  	
  When	
  system	
  and	
  subsystem	
  DVT	
  tests	
  indicates	
  	
  hardware	
  	
  	
  	
  
                                      	
  failures	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  c)	
  	
  When	
  technology	
  readiness	
  tests	
  indicate	
  hardware	
  failures	
  
	
  
	
  	
  	
  	
  	
  	
  d)	
  	
  When	
  concepts	
  and	
  architecture	
  	
  are	
  being	
  selected	
  
	
  
	
  	
  
Abstract for full tutorial

  Robust Design (RD) Methodology is discussed for
hardware development. Comparison is made with reliability
engineering (RE) tools and practices. Differences and
similarities are presented.

  Proximity to ideal function for robust design is presented and
compared to physics of failure and other reliability modeling
and prediction approaches. Measurement selection is shown
to strongly differentiates RD and reliability engineering
methods When and how to get the most from each
methodology is outlined. Pitfalls for each set of practices are
also covered. (This presentation is a preview of a larger
presentation to be delivered @ ASTR conference, October,
San Diego)
Choice of Many Design Methods  Interfaces
         AXD
                          TRIZ



 QFD
                            DFR
               PUGH




                 DOE    ROBUST
                        DESIGN
       VA/VE




                             DFSS 6σ	

 CP/CS MNGMT
RD ≠ Reliability
                                                                                          Life Tests
                            P-diagram	
  	
  
                                                                              Root cause
                   Tolerance Design             Expt	
  Layout	
  
                                                                              Analysis
                Ideal Function                                                                            Physics of Failure
                                                                     DOE                  RCM
                                 Response	
  Tuning	
  
                                                              Engineering	
                 Maintainability         CBM
           6σ	

          Flexibility
Lean	
                                                            Scienc                                             Warranty
                                                                  e
                Robust Design                                   Simulation                   Reliability
Quality                                                                                                               Tes,ng	
  
Loss                                                            Math Models
                                         Reuse	
                                                FMECA
                transformability                              Planning                                        HALT/HASS	
  

       S/N	

          RSM	
                                         ADT                  Life prediction       Redundancy	
  
                                       Online QC
                                                                                             ALT
                    Parameter design                                                                          FTA
                                                                           Availability

                             Generic Function                                                        RBD
Robust Design Definition

A systematic engineering based methodology
(which is part of the Quality Engineering Process)
that develops and manufactures high reliability
products at low cost with reduced delivery cycle.
The goal of robust design is to improve RD
productivity and reduce variation while maintaining
low cost before shipment and minimal loss to society
after shipment.
Dr Taguchi , who died this year, always used to say “lets find a way to
improve reliability without measuring reliability”
Defini-ons	
  
Robustness is…

  “The ability to transform input to output as closely to
ideal function as possible. Proximity to ideal function is
highly desirable. A design is more robust if ratio of useful
part to harmful part [of input energy ] is large. A design
is more robust if it operates close to ideal, even when
exposed to various noise factors, including time”


Reliability is…
 “The ability of a system, subsystem, assembly, or
  component to perform its required functions under
  stated conditions for a specified period of time”
Variation is the Enemy of Robustness  Reliability

•    Search for root cause  eliminate it
•    Screen out defectives (scrap and rework, HASS)
•    Feedback/feed forward control systems
•    Tighten tolerances (control, noise, signal factors)
•    Add a subsystem to balance the problem
•    Calibration  adjustment
•    Robust design (Parameter design  RSM)
•    Change the concept to better one
•    Turn off or reduce the power , component derating
•    Correct design mistakes (e.g. putting diodes in
     backwards,…)
6σ Fundamental Concept
                          Y=f(X)+e

    Ø Response Y                 Ø X1, X2,…,XN
    Ø Dependent                  Ø Independent
    Ø Output                     Ø Input
    Ø Effect               =     Ø Cause
    Ø Symptom                    Ø Problem
    Ø Monitor                    Ø Control


In reliability engineering for example , Y is the continuous
stochastic variable (time-to-failure) and f(x) is the failure
mechanism, or mechanistic model . In RD, smooth
transformability between input and output is most important.
Reliability Growth
Historically, the reliability growth process has been treated
as, a reactive approach to growing reliability based on
failures “discovered” and fixed during testing or, most
unfortunately, once a system/product has been delivered to
a customer. This reactive approach ignores opportunities to
grow reliability during the earliest design phases of a
system or product.



                                           Delayed fix
           MTBF




                                           jump
                          New
                          build
                          jump

                  Cumulative test time
Robustness
Growth
                            S/N

Factors Can be changed
         today



                                  time

                            S/N
Factors Can be changed in
         1 week




                                  time
                            S/N
                                                   Competition at launch

Factors Can be changed in
         2 weeks
                                     Robustness gains

                                   time
Progression of Robustness to Ideal Function Development


       A	
               B	
              C	
  


 LSL           USL
 Zero Defects
                          Cpk
                        Static S/N      Dynamic S/N Ratio



When a product’s performance deviates from target, its quality
is considered inferior. Such deviations in performance cause
losses to the user of the product, and in varying degrees to the
rest of society.
Polling	
  ques,on	
  2	
  	
  
	
  
Have	
  you	
  	
  ever	
  used	
  robust	
  design	
  methods	
  for	
  hardware	
  
development	
  ?	
  
	
  
	
  	
  	
  	
  	
  a)	
  	
  Yes,	
  it	
  is	
  a	
  part	
  of	
  our	
  	
  group’s	
  engineering	
  culture	
  
	
  
	
  	
  	
  	
  	
  	
  b)	
  	
  Yes,	
  but	
  mostly	
  on	
  high	
  risk	
  issues	
  
	
  
	
  	
  	
  	
  	
  	
  c)	
  	
  Yes	
  but	
  mostly	
  on	
  low	
  risk	
  issues	
  
	
  
	
  	
  	
  	
  	
  	
  d)	
  	
  No	
  we	
  do	
  not	
  see	
  any	
  	
  advantage	
  over	
  tradi,onal	
  build-­‐test-­‐fix	
  methods	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Taxonomy of Design Function --P Diagram

                                   Useful
  Input                            Output
               Main Function
 signals         Y=f(x)+ε	

    Mi
                                  Harmful
                                  Output


           Noise        Control
           Factors      Factors
Spring	
  Example	
  
Simple	
  Metal	
  	
  Helical	
  Compression	
  	
  Spring	
  
                    	
  	
  	
  	
  	
  Force	
  vs	
  Displacement	
  ideal	
  Func,on	
  



Force	
  F	
  




                                                         Ideally,	
  	
  all	
  points	
  fall	
  on	
  dashed	
  line	
  
                                                         passing	
  through	
  origin.	
  
                                                         Noise	
  factors	
  add	
  varia,on	
  
                                                         Varia,on	
  may	
  exceed	
  	
  tolerable	
  
          0,0	
                            Displacement	
  limits	
  
                                                           	
  	
  x	
  	
  (mm)	
  
Simple Helical Spring Design

                                                      Useful
         Input signal     Main Function              Output F
              X             F=-kX+e	




Y = βM + ε       Zero Point Proportional Ideal Function


                        Forc                  Ideal (Hooke’s Law)
                        e
                         N                    Actual with Noise Factor effect




                           0,0	
     Displacement X (mm)
Transformability  Robustness Improvement
                  Before and After Improvement
Response                                    Response




               N1	
                                         N1	
  



                                                                     N2	
  

                         N2	
  


0,0           M	
  	
  	
  	
  	
  signal   0,0
                                                        M	
  	
  	
  signal

             Minimizing the effects of noise factors on transformation of
             input to output . Improves robustness  reliability. Sensitivity
             increase (tuning) can be used for power reduction, which
             also improves reliability. Tuning to different spring constants
             enabled
Typical Failure Modes and Failure
                     Causes for Mechanical Springs
  TYPE OF SPRING/
                              FAILURE MODES               FAILURE CAUSES
 STRESS CONDITION
                                 - Load loss
   - Static (constant                                     - Parameter change
                                   - Creep
 deflection or constant                                - Hydrogen embrittlement
                              -Compression Set
          load)
                                  - Yielding

                                     - Fracture
                             - Damaged spring end        - Corrosive atmosphere
- Cyclic (10,000 cycles or       - Fatigue failure            - Misalignment
        more during                 - Buckling         - Excessive stress range of
   the life of the spring)           - Surging               reverse stress **
                           - Complex stress change        - Cycling temperature
                               as a function of time                …


 - Dynamic (intermittent                                    - Surface defects
                                  - Fracture           - Excessive stress range of
     occurrences of
                               - Fatigue failure
      a load surge)                                           reverse stress
                                                          - Resonance surging
 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Ideal	
  Func-on	
  	
  Failure	
  Modes	
  
                                                                                             	
  
	
  	
  	
  If	
  data	
  remain	
  close	
  to	
  ideal	
  func-on,	
  even	
  under	
  predicted	
  
stressful	
  	
  usage	
  condi-ons,	
  and	
  	
  there	
  is	
  no	
  way	
  for	
  failure	
  to	
  
occur	
  without	
  	
  affec-ng	
  func-onal	
  varia-on	
  of	
  	
  the	
  data,	
  	
  then	
  
moving	
  closer	
  to	
  ideal	
  func-on	
  is	
  highly	
  desirable.	
  	
  
	
  
	
  	
  	
  	
  	
  For	
  example,	
  spring	
  fracture,	
  if	
  it	
  did	
  occur	
  would	
  	
  
drama-cally	
  change	
  force-­‐deflec-on	
  (F-­‐D)	
  	
  data	
  and	
  inflate	
  
data	
  varia-on.	
  	
  Similarly,	
  for	
  yielding,	
  F-­‐D	
  results	
  would	
  	
  
change	
  and	
  inflate	
  the	
  varia-on.	
  	
  Other	
  failure	
  modes	
  	
  would	
  	
  
follow	
  in	
  most	
  cases.	
  
	
  
	
  	
  	
  	
  	
  	
  
	
  	
  	
  
Reliability	
  Improvement	
  with	
  Robust	
  Design	
  early	
  in	
  design	
  cycle	
  
	
  
	
  1.	
  	
  	
  Power	
  reduc-on	
  by	
  enabling	
  changes	
  in	
  sensi,vity	
  β	
  to	
  input	
  power	
  without	
  
increasing	
  sensi,vity	
  to	
  noise	
  σ.	
  	
  (Higher	
  signal-­‐to-­‐noise	
  ra,o)	
  
Higher	
  β	
  with	
  lower	
  σ. 	

	

2.	
  	
  Reducing	
  varia-on	
  of	
  useful	
  	
  and	
  harmful	
  	
  output.	
  	
  Prevent	
  ing	
  overlap	
  of	
  stress	
  PDF	
  
with	
  	
  strength	
  	
  limits,	
  	
  and	
  keeping	
  distribu,on	
  	
  away	
  from	
  failure	
  limits	

	

3.  Focus	
  on	
  energy	
  related	
  response	
  
                                                                                              Improvements	
  in	
  	
  Product/
              op-miza-on	
  ,	
  	
  not	
  dysfunc,on.	
  	
  
                                                                                                      Process	
  Varia,on	
  
              Reduced	
  complexity	
  of	
  design	
  
                                                                                                                Best	
  	
  	
  
4.  A	
  product	
  produced	
  off	
  target	
  is	
  
              inferior	
  to	
  one	
  produced	
  close	
  to	
  
              target,	
  and	
  is	
  more	
  likely	
  to	
  have	
  later	
  
              reliability	
  issues	
  due	
  to	
  driq	
  and	
                                                     Beaer	
  
              degrada,on.	
  	
                                                                                                  Good	
  	
  

5.  Develop	
  robustness	
  against	
  noise	
  
                                                                                   LFL	
                Target	
                  UFL	
  
    factor	
  ‘,me’	
  –	
  not	
  a	
  life	
  test	
  
Useful
        Input signal    Main Function             Output
             M            Y=f(x)+ε	


Main function is to transform input signal to useful output.
Energy transformation takes many different forms, (but usually
not 2nd order polynomials, as in RSM)
 Common Ideal Function Forms:
       Y = M +ε                   Y = [β + β * (M * − M * )]M + ε
       Y = βM + ε                 Y = 1 − e − βM + ε
       Y − Y0 = β ( M − M 0 ) + ε Y = β M x + ε
       Y = α + βM + ε
                                  YY = (R + jX )(R − jX ) ) + ε
       Y = β M 1M 2 + ε
              M1                              (
                                  Y =α + β M − M +ε    )
       Y =β       +ε
              M2                  ...
Ideal	
  Func,on	
  Examples	
  
Automotive Brake Example
                    One Signal Factor

Y       Ideal     Y                   Observe
                                      d           Ideal Function=Y=βM
                                                  Y=Torque Generated
                                                  M=Master cylinder
                                                  Pressure

    M                         M

                   Two	
  Signal	
  Factors	
  
                                                  Ideal Function=Y=βMM*
Y       Ideal     Y                 Observe
                                    d
                                                  Y=Torque Generated
                                                  M=Master cylinder
                                                  Pressure
                                                  M*= Pad surface area
    MM*                        MM*
Braking Ideal Function=Y=βMM*
                                                    M*=Pad surface
area
Control factors:                             M=master cylinder
pressure,
  Raw Materials
  Raw material prep process parameters
  Pad manufacturing process parameters
  Dimensions, …
Symptoms  side effects (ideally zero) :
  Brake Noise
  Part Breakage
  Wear
  Vibration,
  squealing …(GM Working on this one for many years!)
Noise factors:
  Temperature/humidity variability
  Deterioration and aging, wheel number
  Brake fluid type and amount
  Manufacturing variability
  Raw materials lot-to-lot  within lot
  Variability in process parameter settings
Measurement System Ideal Function
     Y=βM+e
     M=true value of measurand
     Y=measured value
Auto Steering Ideal function
     Y=βM+e
     M=steering wheel angle
     Y=Turning radius

Communication system ideal function
     Y=M+e
     M=signal sent
     Y=signal received

Cantilever beam Ideal Function
     Y=βM/M*+e
     M=Load
     M*=Cross sectional area
Fuel Pump Ideal Function
     Y=βM
     Y=Fuel volumetric flow rate
      M=IV/P current, voltage, backpressure
Polling	
  ques,on	
  3	
  	
  
	
  
Has	
  your	
  organiza,on	
  	
  ever	
  used	
  both	
  robust	
  design	
  methods	
  
and	
  design	
  for	
  reliability	
  in	
  the	
  same	
  program?	
  
	
  
	
  	
  	
  	
  	
  	
  	
  a)	
  	
  Yes,	
  	
  we	
  have	
  used	
  both	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  b)	
  	
  	
  No,	
  only	
  used	
  RD	
  
	
  
	
  	
  	
  	
  	
  	
  	
  c)	
  	
  No,	
  only	
  used	
  DFR	
  
	
  
	
  	
  	
  	
  	
  	
  	
  d)	
  	
  No,	
  used	
  neither	
  
	
  
	
  
Comparison	
  	
  
          Robust	
  Design	
                              Reliability	
  	
  
Focus on design transfer functions,    Focus on design dysfunction, failure modes,
ideal function development             failure times, mechanisms of failure
Engineering focus, empirical models, Mechanistic understanding, science oriented
Generic Models , statistics          approach
Optimization of functions with         Characterization of natural phenomena with
verification testing requirement       root cause analysis and countermeasures
Orthogonal array testing, Design of    Life tests, accelerated life tests, highly
Experiments planning                   accelerated tests, accelerated degradation 
                                       survival tests,
Multitude of Control, noise, and       Single factor testing, some multifactor testing .
signal factor combinations for         Fixed design with noise factors, acceleration
reducing sensitivity to noise and      factors
amplifying sensitivity to signal
Actively change design parameters      Design-Build-test-fix cycles for reliability
to improve insensitivity to noise      growth
factors, and sensitivity to signal
factors
Robust	
  Design	
                              Reliability	
  	
  
Failure inspection only with            Design out failure mechanisms.
verification testing of improved        Reduce variation in product strength. Reduce
functions                               the effect of usage/environment.

Synergy with axiomatic design           Simplify design complexity for reliability
methodology including ideal design,     improvement. Reuse reliable hardware
and simpler design
Hierarchy of limits including           Identify  Increase design margins, HALT 
functional limit, spec limit, control   HASS testing to expose design weaknesses.
limit, adjustment limits                Temperature  vibration stressors
                                        predominate
Measurement system and response         Time-to-failure quantitative measurements
selection paramount                     supported by analytic methods
Ideal function development for          Fitting distributions to stochastic failure time
energy relate measures                  data
                                        Time compression by stress application

Compound noise factors largest          HALT  HASS highly accelerated testing to
stress. Reduce variability to noise     reveal design vulnerabilities and expand
factors by interaction between noise    margins. Root cause exploration and
and control factors, signal and noise   mitigation
factor.
Summary
•  RD methods and Reliability methods both have functionality at their
   core. RD methods attempt to optimize the designs toward ideal
   function, diverting energy from creating problems and dysfunction.
   Reliability methods attempt to minimize dysfunction through
   mechanistic understand and mitigation of the root causes for
   problems.

•  RD methods actively change design parameters to efficiently and
   cost effectively explore viable design space. Reliability methods
   subject the designs to stresses, accelerating stresses, and even
   highly accelerated stresses, [to improve time and cost of testing].
   First principle physical models are considered where available to
   predict stability.

•  Both RE and RD methods have strong merits, and learning when
   and how to apply each is a great advantage to product engineering
   teams.
Ques,ons?	
  
•  Slides	
  will	
  be	
  made	
  available	
  on	
  ASQ	
  website	
  	
  
•  E-­‐Mail	
  ques,ons	
  	
  comments	
  to	
  
   Loul@opsalacarte.com	
  

•  Thanks	
  for	
  your	
  ,me	
  and	
  aaen,on	
  
Poll	
  Ques-on	
  #4	
  
Do	
  you	
  think	
  you	
  will	
  be	
  able	
  to	
  come	
  to	
  ASTR	
  
Oct	
  9-­‐11	
  in	
  San	
  Diego	
  ?	
  
      a)  Yes	
  and	
  I	
  plan	
  on	
  submitng	
  an	
  abstract	
  by	
  
          April	
  30	
  
      b)  Yes	
  I	
  will	
  come	
  but	
  will	
  not	
  be	
  submitng	
  an	
  
          abstract	
  
      c)  Maybe,	
  I	
  will	
  check	
  it	
  out	
  
      d)  No	
  because	
  I	
  have	
  no	
  ,me	
  
      e)  No	
  because	
  I	
  have	
  no	
  travel	
  budget	
  
Poll	
  Ques-on	
  #5	
  
If	
  you	
  answered	
  “No	
  because	
  I	
  have	
  no	
  travel	
  budget”	
  
  a)    Would	
  you	
  consider	
  joining	
  by	
  webinar	
  if	
  it	
  were	
  free	
  ?	
  
  b)    Would	
  you	
  consider	
  joining	
  by	
  webinar	
  if	
  it	
  was	
  	
  $50	
  ?	
  
  c)    Would	
  you	
  consider	
  joining	
  by	
  webinar	
  if	
  it	
  was	
  $50-­‐100	
  ?	
  
  d)    Would	
  you	
  consider	
  joining	
  by	
  webinar	
  if	
  it	
  was	
  $100-­‐150	
  ?	
  
Poll	
  Ques-on	
  #6	
  
If	
  you	
  are	
  considering	
  joining	
  ASTR	
  via	
  webinar	
  
  a)  Would	
  you	
  want	
  streaming	
  video	
  of	
  audience	
  and	
  
      presenter	
  ?	
  
  b)  Would	
  you	
  want	
  webconference	
  only	
  ?	
  
  c)  Would	
  you	
  want	
  both?	
  
Our	
  Next	
  FREE	
  Webinar	
  will	
  be	
  on	
  May	
  
                        1st	
  on	
  	
  
                           	
  
         Prognos-cs	
  as	
  a	
  Tool	
  for	
  	
  
                Reliable	
  Systems	
  
                                 	
  
        haps://www2.gotomee,ng.com/register/657949994	
  
                                 	
  
  (special	
  ediIon	
  presented	
  through	
  ASTR/ASQ	
  RD)	
  
After signing off the webinar, you
will be asked to take a quick 3
minute survey

If you fill out survey, you will receive
slides and webcast of broadcast.
Contact	
  Informa-on	
  

    Ops	
  A	
  La	
  Carte,	
  LLC	
  
                    	
  

      Mike	
  Silverman	
  
     Managing	
  Partner	
  
      (408)	
  472-­‐3889	
  
  mikes@opsalacarte.com	
  
   www.opsalacarte.com	
  
Questions


Thank you for your attention.

What questions do you have?

Robust design and reliability engineering synergy webinar 2013 04 10

  • 2.
    This is thefirst of a series of four webinars being put on by Ops A La Carte, ASTR, and ASQ Reliability Division Each webinar will also be presented as a full 2 hour tutorial at our ASTR Workshop Oct 9-11th, San Diego. Abstracts for presentations are due Apr 30. www.ieee-astr.org
  • 3.
    &   Accelerated  Stress  Tes-ng  and  Reliability  Workshop   October  9-­‐11,  2013                San  Diego,  CA   Accelerating Reliability into the 21st Century Keynote  Presenter  Day  1:    Vice  Admiral  Walter  Massenburg   Keynote  Presenter  Day  2:    Alain  Bensoussan,    Thales  Avionics   CALL  FOR  PRESENTATIONS:    We  are  now  Accep,ng  Abstracts.       Email  to:  don.gerstle@gmail.com.       Guidelines  on  website  www.ieee-­‐astr.org     For  more  details,  click  here  to  join  our  LinkedIn  Group:   IEEE/CPMT  Workshop  on  Accelerated  Stress  TesIng  and  Reliability  
  • 4.
    Robust Design and ReliabilityEngineering Synergy BY Lou  LaVallee,  Senior  Reliability  Consultant,  Ops  A  La  Carte  
  • 5.
    Agenda •  Introduction 5 min •  Robust Design 45 min •  Questions 10 min
  • 6.
    Lou  LaVallee,  CRE,  Senior  Reliability/Quality  Consultant     •  Lou  has  over  30  years  of  experience  as  a  quality  and  reliability  engineer.     •  Lou  has  a  strong  technical  background  in  physics,  engineering  materials/            polymer  science  and  a  solid  grounding  in  consumer  product  design,              development,  and  delivery.     •  His  comprehensive  background  includes  electronic  films  ,  robust  design,  modeling     analy,cs,  cri,cal  parameter  management,  six  sigma  DFSS    DMAIC,  op,miza,on  of  product   quality/reliability,  experimental  design,  reliability  test  methods,  and  design  tool  development   and  deployment.     •  He  successfully  managed  systems  engineering  groups  for  development  of  ink  jet  print  heads   at  Xerox  Corp.     •  Mr.  LaVallee  has  held  other  technical  management  posi,ons  in  manufacturing  technology,   engineering  excellence  (trained  several  thousand  engineers  worldwide).  He  also  managed   the  robust  engineering  center  at  Xerox  for  10  years,  managed  a  high  volume  prin,ng  product   quality  and  reliability  group,  and  worked  extensively  with  high  volume  prin,ng  product   service  organiza,on.     •  He  has  strong  valida,on  experience  of  design  quality  and  reliability  through  product  reviews   and  customer  interac,on   •  Mr.  LaVallee  holds  a  Bachelor  of  Science  degree  in  Physics  (BS),  and  an  MS  from  the   University  of  Rochester  in  materials/polymer  engineering.     •  He  holds  several  U.S.  patents  involving  fluidics  and  engineering  design  processes.     •  Mr.  LaVallee  is  an  ASQ  cer,fied  reliability  engineer.  Lou  works  in  the  upstate  New  York  area.  
  • 7.
    Upcoming Reliability Webinars Title:    Prognos-cs  as  a  Tool  for  Reliable  Systems   Author:    Doug  Goodman  of  Ridgetop  Group Date: May 1, 2013, 11:30am PDT haps://www2.gotomee,ng.com/register/657949994   Location: Webinar Electronics are the keystone to successful deployment of complex systems (50+ MPUs in an automobile). Large MTBF and Statistical Process Control and Centering methods are not sufficient alone for reliability due to “outliers” (e.g. Toyota Prius, Deepwater Horizon Drilling Rig, Boeing 787). Ridgetop technology exists to pinpoint degrading systems before they fail; supporting operational readiness objectives and cost- saving Prognostics/Health Management (PHM) and Condition Based Maintenance (CBM) initiatives.
  • 8.
    Upcoming Reliability Webinars Title:    Accelerated  Reliability  Growth  Tes-ng   Author:    Milena  Krasich  of  Raytheon  IDS   Date: June 12, 2013, 8:30am PDT haps://www2.gotomee,ng.com/register/283538530   Location: Webinar This  webinar  will  cover  the  following:   1)  Reliability  Growth  Test  overview/objec,ves   2)  Explain  tradi,onal  Reliability  Growth  test  methodology   3)  Show  shortcomings  of  the  tradi,onal  methods   4)  Show  principles  of  the  Physics  of  Failure  test  methodology   5)  Show  how  the  Reliability  growth  test  based  on  PoF  is  constructed   6)  Show  how  the  expected  stresses  are  applied  and  accelerated   7)  Show  reliability  measures   8)  Show  advantages  of  the  test  PoF  test  design  and  accelera,on   9)  Show  achieved  considerable  test  cost  reduc,on.  
  • 9.
    Webinar Stats •  This  is  our  27th  Webinar     •  (see  Ops  site  for  past  webinar  topics/content  at   hap://www.opsalacarte.com/Pages/resources/resources_techpapers.htm#webinars     •  We  run  these  webinars  once  a  month   •  We  partner  with  other  companies     •  We  partner  with  socie,es            (IEEE,  ASQ,  and  others  for  broader  reach)   •  This  webinar  is  brought  to  you  by  Ops,  ASTR,  and  ASQ   Reliability  Division.   •  All  past  webinars  are  archived  on  our  site   www.opsalacarte.com/Reliapedia.    
  • 10.
    Registration Demographics •  Forthis webinar we have signed up – 200 Registrants – 17 Countries – 28 US States
  • 11.
    Registration Question #1 • Have you ever practiced Robust Design Engineering?
  • 12.
    Registration Question #2 • Would you say you follow the philosophy of Robust Design or Design for Reliability more?
  • 13.
    Robust Design and ReliabilityEngineering Synergy BY Lou  LaVallee,  Senior  Reliability  Consultant,  Ops  A  La  Carte  
  • 14.
    Agenda •  Background/Introduction 5 min •  Robust Design 45 min •  Questions 10 min
  • 15.
    Robust  or  Just  Strong      Dangerous  
  • 16.
    Polling  Ques,on  1:     For  engineering  ac,vi,es  in  hardware  development,  when  do  you   typically    start  to  act  on  design  robustness  and  reliability  concerns.                  a)    When  field  problems    and  customer  complaints  begin.                                  b)    When  system  and  subsystem  DVT  tests  indicates    hardware          failures                    c)    When  technology  readiness  tests  indicate  hardware  failures                d)    When  concepts  and  architecture    are  being  selected        
  • 17.
    Abstract for fulltutorial Robust Design (RD) Methodology is discussed for hardware development. Comparison is made with reliability engineering (RE) tools and practices. Differences and similarities are presented. Proximity to ideal function for robust design is presented and compared to physics of failure and other reliability modeling and prediction approaches. Measurement selection is shown to strongly differentiates RD and reliability engineering methods When and how to get the most from each methodology is outlined. Pitfalls for each set of practices are also covered. (This presentation is a preview of a larger presentation to be delivered @ ASTR conference, October, San Diego)
  • 18.
    Choice of ManyDesign Methods Interfaces AXD TRIZ QFD DFR PUGH DOE ROBUST DESIGN VA/VE DFSS 6σ CP/CS MNGMT
  • 19.
    RD ≠ Reliability Life Tests P-diagram     Root cause Tolerance Design Expt  Layout   Analysis Ideal Function Physics of Failure DOE RCM Response  Tuning   Engineering   Maintainability CBM 6σ Flexibility Lean   Scienc Warranty e Robust Design Simulation Reliability Quality Tes,ng   Loss Math Models Reuse   FMECA transformability Planning HALT/HASS   S/N RSM   ADT Life prediction Redundancy   Online QC ALT Parameter design FTA Availability Generic Function RBD
  • 20.
    Robust Design Definition Asystematic engineering based methodology (which is part of the Quality Engineering Process) that develops and manufactures high reliability products at low cost with reduced delivery cycle. The goal of robust design is to improve RD productivity and reduce variation while maintaining low cost before shipment and minimal loss to society after shipment. Dr Taguchi , who died this year, always used to say “lets find a way to improve reliability without measuring reliability”
  • 21.
    Defini-ons   Robustness is… “The ability to transform input to output as closely to ideal function as possible. Proximity to ideal function is highly desirable. A design is more robust if ratio of useful part to harmful part [of input energy ] is large. A design is more robust if it operates close to ideal, even when exposed to various noise factors, including time” Reliability is… “The ability of a system, subsystem, assembly, or component to perform its required functions under stated conditions for a specified period of time”
  • 22.
    Variation is theEnemy of Robustness Reliability •  Search for root cause eliminate it •  Screen out defectives (scrap and rework, HASS) •  Feedback/feed forward control systems •  Tighten tolerances (control, noise, signal factors) •  Add a subsystem to balance the problem •  Calibration adjustment •  Robust design (Parameter design RSM) •  Change the concept to better one •  Turn off or reduce the power , component derating •  Correct design mistakes (e.g. putting diodes in backwards,…)
  • 23.
    6σ Fundamental Concept Y=f(X)+e Ø Response Y Ø X1, X2,…,XN Ø Dependent Ø Independent Ø Output Ø Input Ø Effect = Ø Cause Ø Symptom Ø Problem Ø Monitor Ø Control In reliability engineering for example , Y is the continuous stochastic variable (time-to-failure) and f(x) is the failure mechanism, or mechanistic model . In RD, smooth transformability between input and output is most important.
  • 24.
    Reliability Growth Historically, thereliability growth process has been treated as, a reactive approach to growing reliability based on failures “discovered” and fixed during testing or, most unfortunately, once a system/product has been delivered to a customer. This reactive approach ignores opportunities to grow reliability during the earliest design phases of a system or product. Delayed fix MTBF jump New build jump Cumulative test time
  • 25.
    Robustness Growth S/N Factors Can be changed today time S/N Factors Can be changed in 1 week time S/N Competition at launch Factors Can be changed in 2 weeks Robustness gains time
  • 26.
    Progression of Robustnessto Ideal Function Development A   B   C   LSL USL Zero Defects Cpk Static S/N Dynamic S/N Ratio When a product’s performance deviates from target, its quality is considered inferior. Such deviations in performance cause losses to the user of the product, and in varying degrees to the rest of society.
  • 27.
    Polling  ques,on  2       Have  you    ever  used  robust  design  methods  for  hardware   development  ?              a)    Yes,  it  is  a  part  of  our    group’s  engineering  culture                b)    Yes,  but  mostly  on  high  risk  issues                c)    Yes  but  mostly  on  low  risk  issues                d)    No  we  do  not  see  any    advantage  over  tradi,onal  build-­‐test-­‐fix  methods                    
  • 28.
    Taxonomy of DesignFunction --P Diagram Useful Input Output Main Function signals Y=f(x)+ε Mi Harmful Output Noise Control Factors Factors
  • 29.
  • 30.
    Simple  Metal    Helical  Compression    Spring            Force  vs  Displacement  ideal  Func,on   Force  F   Ideally,    all  points  fall  on  dashed  line   passing  through  origin.   Noise  factors  add  varia,on   Varia,on  may  exceed    tolerable   0,0   Displacement  limits      x    (mm)  
  • 31.
    Simple Helical SpringDesign Useful Input signal Main Function Output F X F=-kX+e Y = βM + ε Zero Point Proportional Ideal Function Forc Ideal (Hooke’s Law) e N Actual with Noise Factor effect 0,0   Displacement X (mm)
  • 32.
    Transformability RobustnessImprovement Before and After Improvement Response Response N1   N1   N2   N2   0,0 M          signal 0,0 M      signal Minimizing the effects of noise factors on transformation of input to output . Improves robustness reliability. Sensitivity increase (tuning) can be used for power reduction, which also improves reliability. Tuning to different spring constants enabled
  • 33.
    Typical Failure Modesand Failure Causes for Mechanical Springs TYPE OF SPRING/ FAILURE MODES FAILURE CAUSES STRESS CONDITION - Load loss - Static (constant - Parameter change - Creep deflection or constant - Hydrogen embrittlement -Compression Set load) - Yielding - Fracture - Damaged spring end - Corrosive atmosphere - Cyclic (10,000 cycles or - Fatigue failure - Misalignment more during - Buckling - Excessive stress range of the life of the spring) - Surging reverse stress ** - Complex stress change - Cycling temperature as a function of time … - Dynamic (intermittent - Surface defects - Fracture - Excessive stress range of occurrences of - Fatigue failure a load surge) reverse stress - Resonance surging
  • 34.
                                         Ideal  Func-on    Failure  Modes          If  data  remain  close  to  ideal  func-on,  even  under  predicted   stressful    usage  condi-ons,  and    there  is  no  way  for  failure  to   occur  without    affec-ng  func-onal  varia-on  of    the  data,    then   moving  closer  to  ideal  func-on  is  highly  desirable.                For  example,  spring  fracture,  if  it  did  occur  would     drama-cally  change  force-­‐deflec-on  (F-­‐D)    data  and  inflate   data  varia-on.    Similarly,  for  yielding,  F-­‐D  results  would     change  and  inflate  the  varia-on.    Other  failure  modes    would     follow  in  most  cases.                      
  • 35.
    Reliability  Improvement  with  Robust  Design  early  in  design  cycle      1.      Power  reduc-on  by  enabling  changes  in  sensi,vity  β  to  input  power  without   increasing  sensi,vity  to  noise  σ.    (Higher  signal-­‐to-­‐noise  ra,o)   Higher  β  with  lower  σ. 2.    Reducing  varia-on  of  useful    and  harmful    output.    Prevent  ing  overlap  of  stress  PDF   with    strength    limits,    and  keeping  distribu,on    away  from  failure  limits 3.  Focus  on  energy  related  response   Improvements  in    Product/ op-miza-on  ,    not  dysfunc,on.     Process  Varia,on   Reduced  complexity  of  design   Best       4.  A  product  produced  off  target  is   inferior  to  one  produced  close  to   target,  and  is  more  likely  to  have  later   reliability  issues  due  to  driq  and   Beaer   degrada,on.     Good     5.  Develop  robustness  against  noise   LFL   Target   UFL   factor  ‘,me’  –  not  a  life  test  
  • 36.
    Useful Input signal Main Function Output M Y=f(x)+ε Main function is to transform input signal to useful output. Energy transformation takes many different forms, (but usually not 2nd order polynomials, as in RSM) Common Ideal Function Forms: Y = M +ε Y = [β + β * (M * − M * )]M + ε Y = βM + ε Y = 1 − e − βM + ε Y − Y0 = β ( M − M 0 ) + ε Y = β M x + ε Y = α + βM + ε YY = (R + jX )(R − jX ) ) + ε Y = β M 1M 2 + ε M1 ( Y =α + β M − M +ε ) Y =β +ε M2 ...
  • 37.
  • 38.
    Automotive Brake Example One Signal Factor Y Ideal Y Observe d Ideal Function=Y=βM Y=Torque Generated M=Master cylinder Pressure M M Two  Signal  Factors   Ideal Function=Y=βMM* Y Ideal Y Observe d Y=Torque Generated M=Master cylinder Pressure M*= Pad surface area MM* MM*
  • 39.
    Braking Ideal Function=Y=βMM* M*=Pad surface area Control factors: M=master cylinder pressure, Raw Materials Raw material prep process parameters Pad manufacturing process parameters Dimensions, … Symptoms side effects (ideally zero) : Brake Noise Part Breakage Wear Vibration, squealing …(GM Working on this one for many years!) Noise factors: Temperature/humidity variability Deterioration and aging, wheel number Brake fluid type and amount Manufacturing variability Raw materials lot-to-lot within lot Variability in process parameter settings
  • 40.
    Measurement System IdealFunction Y=βM+e M=true value of measurand Y=measured value Auto Steering Ideal function Y=βM+e M=steering wheel angle Y=Turning radius Communication system ideal function Y=M+e M=signal sent Y=signal received Cantilever beam Ideal Function Y=βM/M*+e M=Load M*=Cross sectional area Fuel Pump Ideal Function Y=βM Y=Fuel volumetric flow rate M=IV/P current, voltage, backpressure
  • 41.
    Polling  ques,on  3       Has  your  organiza,on    ever  used  both  robust  design  methods   and  design  for  reliability  in  the  same  program?                  a)    Yes,    we  have  used  both                                    b)      No,  only  used  RD                  c)    No,  only  used  DFR                  d)    No,  used  neither      
  • 42.
    Comparison     Robust  Design   Reliability     Focus on design transfer functions, Focus on design dysfunction, failure modes, ideal function development failure times, mechanisms of failure Engineering focus, empirical models, Mechanistic understanding, science oriented Generic Models , statistics approach Optimization of functions with Characterization of natural phenomena with verification testing requirement root cause analysis and countermeasures Orthogonal array testing, Design of Life tests, accelerated life tests, highly Experiments planning accelerated tests, accelerated degradation survival tests, Multitude of Control, noise, and Single factor testing, some multifactor testing . signal factor combinations for Fixed design with noise factors, acceleration reducing sensitivity to noise and factors amplifying sensitivity to signal Actively change design parameters Design-Build-test-fix cycles for reliability to improve insensitivity to noise growth factors, and sensitivity to signal factors
  • 43.
    Robust  Design   Reliability     Failure inspection only with Design out failure mechanisms. verification testing of improved Reduce variation in product strength. Reduce functions the effect of usage/environment. Synergy with axiomatic design Simplify design complexity for reliability methodology including ideal design, improvement. Reuse reliable hardware and simpler design Hierarchy of limits including Identify Increase design margins, HALT functional limit, spec limit, control HASS testing to expose design weaknesses. limit, adjustment limits Temperature vibration stressors predominate Measurement system and response Time-to-failure quantitative measurements selection paramount supported by analytic methods Ideal function development for Fitting distributions to stochastic failure time energy relate measures data Time compression by stress application Compound noise factors largest HALT HASS highly accelerated testing to stress. Reduce variability to noise reveal design vulnerabilities and expand factors by interaction between noise margins. Root cause exploration and and control factors, signal and noise mitigation factor.
  • 44.
    Summary •  RD methodsand Reliability methods both have functionality at their core. RD methods attempt to optimize the designs toward ideal function, diverting energy from creating problems and dysfunction. Reliability methods attempt to minimize dysfunction through mechanistic understand and mitigation of the root causes for problems. •  RD methods actively change design parameters to efficiently and cost effectively explore viable design space. Reliability methods subject the designs to stresses, accelerating stresses, and even highly accelerated stresses, [to improve time and cost of testing]. First principle physical models are considered where available to predict stability. •  Both RE and RD methods have strong merits, and learning when and how to apply each is a great advantage to product engineering teams.
  • 45.
    Ques,ons?   •  Slides  will  be  made  available  on  ASQ  website     •  E-­‐Mail  ques,ons    comments  to   Loul@opsalacarte.com   •  Thanks  for  your  ,me  and  aaen,on  
  • 46.
    Poll  Ques-on  #4   Do  you  think  you  will  be  able  to  come  to  ASTR   Oct  9-­‐11  in  San  Diego  ?   a)  Yes  and  I  plan  on  submitng  an  abstract  by   April  30   b)  Yes  I  will  come  but  will  not  be  submitng  an   abstract   c)  Maybe,  I  will  check  it  out   d)  No  because  I  have  no  ,me   e)  No  because  I  have  no  travel  budget  
  • 47.
    Poll  Ques-on  #5   If  you  answered  “No  because  I  have  no  travel  budget”   a)  Would  you  consider  joining  by  webinar  if  it  were  free  ?   b)  Would  you  consider  joining  by  webinar  if  it  was    $50  ?   c)  Would  you  consider  joining  by  webinar  if  it  was  $50-­‐100  ?   d)  Would  you  consider  joining  by  webinar  if  it  was  $100-­‐150  ?  
  • 48.
    Poll  Ques-on  #6   If  you  are  considering  joining  ASTR  via  webinar   a)  Would  you  want  streaming  video  of  audience  and   presenter  ?   b)  Would  you  want  webconference  only  ?   c)  Would  you  want  both?  
  • 49.
    Our  Next  FREE  Webinar  will  be  on  May   1st  on       Prognos-cs  as  a  Tool  for     Reliable  Systems     haps://www2.gotomee,ng.com/register/657949994     (special  ediIon  presented  through  ASTR/ASQ  RD)  
  • 50.
    After signing offthe webinar, you will be asked to take a quick 3 minute survey If you fill out survey, you will receive slides and webcast of broadcast.
  • 51.
    Contact  Informa-on   Ops  A  La  Carte,  LLC     Mike  Silverman   Managing  Partner   (408)  472-­‐3889   mikes@opsalacarte.com   www.opsalacarte.com  
  • 52.
    Questions Thank you foryour attention. What questions do you have?