Your SlideShare is downloading. ×
Solving polynomial inequalities by graphing
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Solving polynomial inequalities by graphing

459

Published on

Solving polynomial inequalities by graphing

Solving polynomial inequalities by graphing

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
459
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. TARUN GEHLOT (B.E, CIVIL, HONOURS) Solving Polynomial Inequalities by Graphing Let's suppose you want to solve the inequality x2 -1<0. Here is the graph of the function f(x)=x2 -1: A given x will solve the inequality if f(x)<0, i.e., if f(x) is below the x-axis. Thus the set of our solutions is the part of the x-axis indicated below in red, the interval (-1,1):
  • 2. TARUN GEHLOT (B.E, CIVIL, HONOURS) If we want to see the solutions of the inequality x2 -1>0, that's just as easy. Now we have to pick all values of x for which f(x)=x2 -1 is above the x- axis. As you can see, we obtain as solutions the set , indicated below in blue. Note the pivotal role played by the "yellow dots", the x-intercepts of f(x). f(x) can only change its sign by passing through an x-intercept, i.e., a solution of f(x)=0 will always separate parts of the graph of f(x) above the x-axis from parts below the x- axis. This property of polynomials is called theIntermediate Value Property of polynomials; your teacher might also refer to this property as continuity. Let us consider another example: Solve the inequality Here is the graph of the function f(x)=x4 +x3 -2x2 -2x>0:
  • 3. TARUN GEHLOT (B.E, CIVIL, HONOURS) A given x will solve the inequality if , i.e., if f(x) is above the x-axis. Thus the set of our solutions is the part of the x-axis indicated below in blue, the union of the following three intervals:
  • 4. TARUN GEHLOT (B.E, CIVIL, HONOURS) The (finite) endpoints are included since at these points f(x)=0 and so these x's are included in our quest of finding the solutions of . Our answer is approximate, the endpoints of the intervals were found by inspection; you can usually obtain better estimates for the endpoints by using a numerical solver to find the solutions of f(x)=0. In fact, as you will learn in the next section, the precise endpoints of the intervals are , -1, 0 and . Two more caveats: The method will only work, if your graphing window contains all x- intercepts. Here is a rather simple-minded example to illustrate the point: Suppose you want to solve the inequality x2 -10x<0. If your graphing window is set to the interval [-5,5], you will miss half of the action, and probably come up with the incorrect answer: To find the correct answer, the interval (0,10), your graphing window has to include the second x-intercept at x=10:
  • 5. TARUN GEHLOT (B.E, CIVIL, HONOURS) Here is another danger: Consider the three inequalities , and . If you do not zoom in rather drastically, all three graphs look about the same: Only zooming in reveals that the solutions to the three inequalities show a rather different behavior. The first inequality has a single solution, x=0. (This also illustrates the fact that a function f(x) does not always change sign at points where f(x)=0.)
  • 6. TARUN GEHLOT (B.E, CIVIL, HONOURS) The second inequality, , has as its solutions the interval [-0.01,0.01]: The third inequality, , has no solutions:
  • 7. TARUN GEHLOT (B.E, CIVIL, HONOURS)

×