Keiichiro Ono
UC, San Diego
Bioinformatics
Summit 2014
4/11/2014
Cytoscape
Tutorial 1: Introduction to Biological Data
Analysis and Visualization with Cytoscape
Welcome Back!
- Scope of Tutorial Session
- Part1: Basic Concepts
- Overview of Core Features
- Part2: Advanced Topics
- Effective Visualization Techniques
- External Tools
Welcome Back!
- Scope of Tutorial Session
- Part1: Basic Concepts
- Overview of Core Features
- Part2: Advanced Topics

- Effective Visualization Techniques
- External Tools
Part 1: Agenda
- Basic Concepts
- Browsing Network Data
- Networks and Tables
- Visualization
- Basic Analysis
About This Section…
- Lecture Style
- Practical introduction to specific
features
- You can play with the examples during
this session, but it’s not required
- I’ll upload all slides to the web, and you
can try it later
Core Concepts
Cytoscape is for...
- Data integration
- Join networks and annotation tables
- Network data analysis
- Visualization
Module 1
Module 2
Data Types
- There are two data types in Cytoscape:
- Network
- Table
- Mathematical Graph
- G = (V, E)
- Nodes
- Any objects
- Edges
- Relationships
between objects
Network
1 2
2 3
1 3
4 3
Network Representation
PPARG EP300!
PPARG PRNP!
PPARG MAP4K4!
…
EP300
PPARG
SMARCD3
STMN1
SMARCA4
OPTN
ATP6V1C1
PSMD1
HTT
PRNP
HNRNPUL1
CCDC88A
CLU
HSP90AB1
SMARCD3
MAP4K4
MIF4GD
USP11
MARCH6TUBB
EDF1 CHD8
PPARG two hybrid MIF4DG!
PPARG pull down SMARCD3
…
pull down
display technology
display technology
display technology
display technology
display technology
two hybrid
display technology
display technology
display technology
two hybrid
display technology
anti bait
coimmunoprecipitation
pull down
display technology
pull down
display technology
display technology
two hybrid
display technology
display technology
STMN1
PPARG
P6V1C1
SMARCD3
SMARCA4
OPTN
PSMD1
HTT
SMARCD3
CCDC88A
CLU
HNRNPUL1
PRNP
HSP90AB1
EDF1
CHD8
P11 MIF4GD
Table
Any data about nodes,
edges, and networks.
Summary
- There are two types of data

- Networks

- Attributes

- You need integrated, or annotated, network
before analyze / visualize your data
Before actual data analysis…
- There is no silver bullet!
- You cannot do everything with a single program
- Understand Cytoscape Core Features
- Research available Apps
- Data pre-processing/post-processing may be
required
- Excel, R / Bioconductor, Scripts, Web Tools
Choose a Right Tool
Choose a Right Tool
Analysis VisualizationData Preparation
Data Preparation Tips
- Prepare machine-friendly file

- CSV, TSV, XML

- Use concrete, widely-used ID sets

- NCBI Gene ID

- Ensemble Gene ID
1. Understand
Cytoscape Desktop
https://github.com/
keiono/cytoscape-
workshop-materials
Example files are available here:
tutorialYeast.cys
And there are many sample files in “Samples” directory in Cytoscape application folder
Goal of This Lesson
- Understand Basic UI
- Loading a sample Session file
- Learn how to browse the network and
attributes
- Know useful basic shortcuts/commands
Cytoscape 3.1 Desktop
Toolbar
Network Panel
Bird’s Eve View
Table Browser
Network Views
Table Browser
Local Column
Table Tabs
List Data

(Values in [ ])
Shared Column
Session File
- Snapshot of your workspace
- Networks
- Attributes
- Visual Styles
- System Properties
Saving & Opening
- In Cytoscape, Save means saving your
workspace states into a Session File
- Open means loading a Session file
- You can open only one session at a time
- Merge Session feature will be
implemented in the future version of
Cytoscape 3.x
Open a Session
- Click folder icon
- Or, File → Open
Navigation
- Pan: Middle-Click + Drag or 

Command + Left-Click + Drag on Mac
- Zoom
- IN: Mouse Wheel UP
- OUT: Mouse Wheel DOWN
- Selection: Left-Click and Drag
- Fit to Window
- Selected region
- Entire network
First Neighbor of Nodes
CTR+6
Create New Sub-Network From Selection
CTR+N
- CTR (Command on Mac) + G
Show Graphics Details
- View → Show Graphics Details
Lesson 1 Demo
Lesson 1: Summary
- Session File is a snapshot of your workspace
- Creating subnetworks from selection is easy
- Attribute browser is a spreadsheet-like viewer
for your attributes
2. Data Import
Data Integration
- Loading networks and mapping attributes
onto them
- Cytoscape provides:
- Data import from files
- Direct access to remote data sources
Import & Export
- Import
- Load any type of data
- Network, Attributes, Visual Styles, etc.
- Export
- as network files, tables, or images
Network Import
- Usually, imported from pre-formatted data file
- Or, use Table Import feature to select
columns to be used as edges
SIF File
YJR022W pp YOR167C
YJR022W pp YLR264W
YJR022W pp YNR053C
YER116C pp YDL013W
YNL307C pp YAL038W
YNL216W pd YCR012W
YNL216W pd YGR254W
YNL216W pd YHR174W
YNL216W pd YIL133C
YNL216W pd YLR044C
YNL216W pd YOL120C
YNL216W pd YNL301C
YNL216W pd YCL030C
Loading & Mapping Tables
- In most cases you need to import them
from tables
- e.g. Expression matrix saved as
Excel workbook
Mapping Key in
the Network
Mapping Key in
the Table
Load Network from Table
- Simple list of binary interactions can be
loaded as networks
!
- Source - Interaction Type - Target
- Or, Source - Target
Import Public Data
Small Network Data
- Send query to database
- List of genes
- Keywords
Import from Public Database
Large Network Data (Interactome)
- Start from an Interactome
- Filter and extract smaller
modules
Download Zipped Archives
Large Network Data
(Interactome)
- Download Database Dump
- Extract compressed data
- Import as table
- Filter
- Visualize
Lesson 2 Demo
Lesson 2: Summary
- Cytoscape supports many standard
network data formats
- Any table data can be imported to
Cytoscape by Table Import function
- Preparing your table data with widely-used
ID is important for easy mapping
3. Basic Analysis
Goal of This Section
- Calculate network statistics by Network
Analyzer
- Filtering based on statistics
- Basic search by EnhancedSearch Plugin
- Try some more realistic example (requires
faster machine!)
Core Analysis Features
- Network Statistics
- Search
- Filtering
Network Statistics
Network Analyzer
- Provides basic statistics
of networks
- Degree
- Centrality
- Shortest Pass
Length Distribution
- etc.
Filtering by Network Statistics
- NetworkAnalyzer provides all results as regular attributes
- Can be used for filtering
Search
Query Syntax
Cytoscape ESP: simple search of complex
biological networks
!
Maital Ashkenazi, Gary D. Bader, Allan Kuchinsky, Menachem Moshelion,
David J. States
!
Bioinformatics. 2008 June 15; 24(12): 1465–1466. Published online 2008
April 28. doi: 10.1093/bioinformatics/btn208
PMCID: PMC2427162
Lesson 3 Demo
4. Visualization
Layouts
Automatic Layout
- Choose proper algorithm
- Tree-like data - Hierarchical Layout
- Scale-Free Network - Force-directed
- Circular process - Circular Layout
- Tweak parameters if necessary
Manual Layout
- Tweak result from
automatic layout
- Scale
- Align
- Rotate
Visual Style
- Collection of mappings from
Attributes to Visual
Properties
Visual Styles
- Defaults + Mappings
- Expression values to node color
- Gene function to node shape
- Interaction detection method to edge line
type
- Confidence score to edge width
Data Controls The View
Discrete Mapping Editor
Continuous Mapping Editor
Demo
Summary
Original
Visual Style Applied
Final Visualization
Visualization Techniques
will be discussed in
Part 2
Apps
Apps
- Adding new features to Cytoscape
- Lots of categories
- (Almost) all of them are free, so just play
with it to learn what’s possible
Installing Apps
- Easy - Just install
from App manager.
- For browsing, just visit
App Store
- http://apps.cytoscape.org/
To be Continued…
Further Readings 1
- Introduction to Network Biology
- Deciphering Protein–Protein Interactions. Part I. Experimental
Techniques and Databases



Shoemaker BA, Panchenko AR (2007) Deciphering Protein–Protein
Interactions. Part I. Experimental Techniques and Databases. PLoS
Comput Biol 3(3): e42.doi:10.1371/journal.pcbi.0030042
- Deciphering Protein–Protein Interactions. Part II. Computational
Methods to Predict Protein and Domain Interaction Partners



Shoemaker BA, Panchenko AR (2007) Deciphering Protein–Protein
Interactions. Part II. Computational Methods to Predict Protein and
Domain Interaction Partners. PLoS Comput Biol 3(4): e43. doi:10.1371/
journal.pcbi.0030043
Further Readings 2
- Overview of Cytoscape Apps (Plugins)
- A travel guide to Cytoscape plugins



Rintaro Saito, Michael E Smoot, Keiichiro Ono, Johannes Ruscheinski,
Peng-Liang Wang, Samad Lotia, Alexander R Pico, Gary D Bader, Trey
Ideker (2012) Nature Methods 9 (11) p. 1069-1076
- Sample Protocol (based on 2.x)
− Integration of biological networks and gene expression data using
Cytoscape



Cline, et al. Nature Protocols, 2, 2366-2382 (2007).
Further Readings 3
- Cytoscape Tutorial Booklet:



Analysis and Visualization of Biological Networks with Cytoscape
- http://www.rbvi.ucsf.edu/Outreach/Workshops/ISMBTutorial.pdf
!
2014 Keiichiro Ono
kono@ucsd.edu

Cytoscape Tutorial Session 1 at UT-KBRIN Bioinformatics Summit 2014 (4/11/2014)

  • 1.
    Keiichiro Ono UC, SanDiego Bioinformatics Summit 2014 4/11/2014 Cytoscape Tutorial 1: Introduction to Biological Data Analysis and Visualization with Cytoscape
  • 2.
    Welcome Back! - Scopeof Tutorial Session - Part1: Basic Concepts - Overview of Core Features - Part2: Advanced Topics - Effective Visualization Techniques - External Tools
  • 3.
    Welcome Back! - Scopeof Tutorial Session - Part1: Basic Concepts - Overview of Core Features - Part2: Advanced Topics - Effective Visualization Techniques - External Tools
  • 4.
    Part 1: Agenda -Basic Concepts - Browsing Network Data - Networks and Tables - Visualization - Basic Analysis
  • 5.
    About This Section… -Lecture Style - Practical introduction to specific features - You can play with the examples during this session, but it’s not required - I’ll upload all slides to the web, and you can try it later
  • 6.
  • 7.
    Cytoscape is for... -Data integration - Join networks and annotation tables - Network data analysis - Visualization
  • 8.
  • 9.
    Data Types - Thereare two data types in Cytoscape: - Network - Table
  • 10.
    - Mathematical Graph -G = (V, E) - Nodes - Any objects - Edges - Relationships between objects Network
  • 11.
    1 2 2 3 13 4 3 Network Representation
  • 12.
    PPARG EP300! PPARG PRNP! PPARGMAP4K4! … EP300 PPARG SMARCD3 STMN1 SMARCA4 OPTN ATP6V1C1 PSMD1 HTT PRNP HNRNPUL1 CCDC88A CLU HSP90AB1 SMARCD3 MAP4K4 MIF4GD USP11 MARCH6TUBB EDF1 CHD8
  • 13.
    PPARG two hybridMIF4DG! PPARG pull down SMARCD3 … pull down display technology display technology display technology display technology display technology two hybrid display technology display technology display technology two hybrid display technology anti bait coimmunoprecipitation pull down display technology pull down display technology display technology two hybrid display technology display technology STMN1 PPARG P6V1C1 SMARCD3 SMARCA4 OPTN PSMD1 HTT SMARCD3 CCDC88A CLU HNRNPUL1 PRNP HSP90AB1 EDF1 CHD8 P11 MIF4GD
  • 14.
    Table Any data aboutnodes, edges, and networks.
  • 15.
    Summary - There aretwo types of data - Networks - Attributes - You need integrated, or annotated, network before analyze / visualize your data
  • 16.
    Before actual dataanalysis… - There is no silver bullet! - You cannot do everything with a single program - Understand Cytoscape Core Features - Research available Apps - Data pre-processing/post-processing may be required - Excel, R / Bioconductor, Scripts, Web Tools
  • 17.
  • 18.
    Choose a RightTool Analysis VisualizationData Preparation
  • 19.
    Data Preparation Tips -Prepare machine-friendly file - CSV, TSV, XML - Use concrete, widely-used ID sets - NCBI Gene ID - Ensemble Gene ID
  • 20.
  • 21.
    https://github.com/ keiono/cytoscape- workshop-materials Example files areavailable here: tutorialYeast.cys And there are many sample files in “Samples” directory in Cytoscape application folder
  • 22.
    Goal of ThisLesson - Understand Basic UI - Loading a sample Session file - Learn how to browse the network and attributes - Know useful basic shortcuts/commands
  • 23.
    Cytoscape 3.1 Desktop Toolbar NetworkPanel Bird’s Eve View Table Browser Network Views
  • 24.
    Table Browser Local Column TableTabs List Data
 (Values in [ ]) Shared Column
  • 25.
    Session File - Snapshotof your workspace - Networks - Attributes - Visual Styles - System Properties
  • 26.
    Saving & Opening -In Cytoscape, Save means saving your workspace states into a Session File - Open means loading a Session file - You can open only one session at a time - Merge Session feature will be implemented in the future version of Cytoscape 3.x
  • 27.
    Open a Session -Click folder icon - Or, File → Open
  • 28.
    Navigation - Pan: Middle-Click+ Drag or 
 Command + Left-Click + Drag on Mac - Zoom - IN: Mouse Wheel UP - OUT: Mouse Wheel DOWN - Selection: Left-Click and Drag - Fit to Window - Selected region - Entire network
  • 29.
    First Neighbor ofNodes CTR+6
  • 30.
    Create New Sub-NetworkFrom Selection CTR+N
  • 31.
    - CTR (Commandon Mac) + G
  • 32.
    Show Graphics Details -View → Show Graphics Details
  • 33.
  • 34.
    Lesson 1: Summary -Session File is a snapshot of your workspace - Creating subnetworks from selection is easy - Attribute browser is a spreadsheet-like viewer for your attributes
  • 35.
  • 36.
    Data Integration - Loadingnetworks and mapping attributes onto them - Cytoscape provides: - Data import from files - Direct access to remote data sources
  • 37.
    Import & Export -Import - Load any type of data - Network, Attributes, Visual Styles, etc. - Export - as network files, tables, or images
  • 38.
    Network Import - Usually,imported from pre-formatted data file - Or, use Table Import feature to select columns to be used as edges
  • 39.
    SIF File YJR022W ppYOR167C YJR022W pp YLR264W YJR022W pp YNR053C YER116C pp YDL013W YNL307C pp YAL038W YNL216W pd YCR012W YNL216W pd YGR254W YNL216W pd YHR174W YNL216W pd YIL133C YNL216W pd YLR044C YNL216W pd YOL120C YNL216W pd YNL301C YNL216W pd YCL030C
  • 40.
    Loading & MappingTables - In most cases you need to import them from tables - e.g. Expression matrix saved as Excel workbook
  • 42.
    Mapping Key in theNetwork Mapping Key in the Table
  • 43.
    Load Network fromTable - Simple list of binary interactions can be loaded as networks ! - Source - Interaction Type - Target - Or, Source - Target
  • 44.
  • 45.
    Small Network Data -Send query to database - List of genes - Keywords
  • 46.
  • 47.
    Large Network Data(Interactome) - Start from an Interactome - Filter and extract smaller modules
  • 48.
  • 50.
    Large Network Data (Interactome) -Download Database Dump - Extract compressed data - Import as table - Filter - Visualize
  • 51.
  • 52.
    Lesson 2: Summary -Cytoscape supports many standard network data formats - Any table data can be imported to Cytoscape by Table Import function - Preparing your table data with widely-used ID is important for easy mapping
  • 53.
  • 54.
    Goal of ThisSection - Calculate network statistics by Network Analyzer - Filtering based on statistics - Basic search by EnhancedSearch Plugin - Try some more realistic example (requires faster machine!)
  • 55.
    Core Analysis Features -Network Statistics - Search - Filtering
  • 56.
  • 57.
    Network Analyzer - Providesbasic statistics of networks - Degree - Centrality - Shortest Pass Length Distribution - etc.
  • 58.
    Filtering by NetworkStatistics - NetworkAnalyzer provides all results as regular attributes - Can be used for filtering
  • 59.
  • 60.
    Query Syntax Cytoscape ESP:simple search of complex biological networks ! Maital Ashkenazi, Gary D. Bader, Allan Kuchinsky, Menachem Moshelion, David J. States ! Bioinformatics. 2008 June 15; 24(12): 1465–1466. Published online 2008 April 28. doi: 10.1093/bioinformatics/btn208 PMCID: PMC2427162
  • 61.
  • 62.
  • 63.
  • 64.
    Automatic Layout - Chooseproper algorithm - Tree-like data - Hierarchical Layout - Scale-Free Network - Force-directed - Circular process - Circular Layout - Tweak parameters if necessary
  • 65.
    Manual Layout - Tweakresult from automatic layout - Scale - Align - Rotate
  • 66.
    Visual Style - Collectionof mappings from Attributes to Visual Properties
  • 67.
    Visual Styles - Defaults+ Mappings - Expression values to node color - Gene function to node shape - Interaction detection method to edge line type - Confidence score to edge width
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
    Apps - Adding newfeatures to Cytoscape - Lots of categories - (Almost) all of them are free, so just play with it to learn what’s possible
  • 78.
    Installing Apps - Easy- Just install from App manager. - For browsing, just visit App Store - http://apps.cytoscape.org/
  • 79.
  • 80.
    Further Readings 1 -Introduction to Network Biology - Deciphering Protein–Protein Interactions. Part I. Experimental Techniques and Databases
 
 Shoemaker BA, Panchenko AR (2007) Deciphering Protein–Protein Interactions. Part I. Experimental Techniques and Databases. PLoS Comput Biol 3(3): e42.doi:10.1371/journal.pcbi.0030042 - Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners
 
 Shoemaker BA, Panchenko AR (2007) Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners. PLoS Comput Biol 3(4): e43. doi:10.1371/ journal.pcbi.0030043
  • 81.
    Further Readings 2 -Overview of Cytoscape Apps (Plugins) - A travel guide to Cytoscape plugins
 
 Rintaro Saito, Michael E Smoot, Keiichiro Ono, Johannes Ruscheinski, Peng-Liang Wang, Samad Lotia, Alexander R Pico, Gary D Bader, Trey Ideker (2012) Nature Methods 9 (11) p. 1069-1076 - Sample Protocol (based on 2.x) − Integration of biological networks and gene expression data using Cytoscape
 
 Cline, et al. Nature Protocols, 2, 2366-2382 (2007).
  • 82.
    Further Readings 3 -Cytoscape Tutorial Booklet:
 
 Analysis and Visualization of Biological Networks with Cytoscape - http://www.rbvi.ucsf.edu/Outreach/Workshops/ISMBTutorial.pdf !
  • 83.