SlideShare a Scribd company logo
Line Reactance, Zero
Sequence Reactance and
Mutual Zero Sequence
Reactance
By S. P. Vasekar, Superintending Engineer, MSETCL,
Testing and Communication Circle Aurangabad
Line Reactance, Zero Sequence Reactance and
Mutual Zero Sequence Reactance
• Inductance of the transmission line
– Basics of Inductance and inductance of Single and
Three Phase Lines
• Inductance of Three Phase Line as Matrix
– General Theory
• Zero Sequence Impedance of Transmission
Line
– Theory of Sequence Component and It’s
Application
• Zero Sequence Mutual Impedance of
Transmission Line
– Sequence Component Theory as Applied to Double
Circuit Line
Inductance of the
Transmission Line
Basics of Inductance and Inductance
of Single and Three Phase Line
Inductance – Quick Refresh
V = L * di/dt By definition
V = N* dΦ/dt Faradays law
N*dΦ/dt = L*di/dt
L = N*dΦ / di
Inductance is flux
linkage per ampere
of current
ϕ ϕ
I
Φ
L = NΦ/I
What is inductance (Physics)
Whenever current flows there is a loop.
This current loop setups magnetic field.
The magnetic field can be considered
as magnetic field lines and which also
setup loops. These two loops are
always interlinked
Visualization of
magnetic field with
QuickField software
Approximate Field Distribution for Circular
Loop
0.0000 mWb0.0173 mWb0.8973 mWb1.7123 mWb2.0173 mWb
What is Magnetic Flux Linkage
1000 Amp
Φ = 2 mWb
1000 mm
r = 22 mm
L = ϕ/I = 2*10-6 Henry
Magnetic Field By Two Wires
1 m
Remember Linkage
• The most important thing is flux
linkage with current loop
Inductance of a long straight wire
• Only open straight conductor can not carry any
current
• Hence magnetic flux setup by it also zero
• And it is not possible to derive any expression
for it’s inductance.
Magnetic Field Distribution – 1-Ph Line
Concept of GMR – Solid Conductor
Area A1
Area A2
A1 = A2
R
R'
R' = R*e (-1/4)
R' = 0.7788*R
ϕ
Inductance of Two Wire Line
1 m
L = 4x10-7LogeD/r’ H/m
L = 2x10-7LogeD/r’ H/m
Formula for calculation of
inductance of 3-Ph transmission line
1
2
5
7 3
6 4
GMR =
𝟕 𝟕
𝒅𝟏𝟏 ∗ 𝒅𝟏𝟐 ∗ 𝒅𝟏𝟑 ∗ 𝒅𝟏𝟒 ∗ 𝒅𝟏𝟓 ∗ 𝒅𝟏𝟔 ∗ 𝒅𝟏𝟕 ∗
𝟕
𝒅𝟐𝟏 ∗ 𝒅𝟐𝟐 ∗ 𝒅𝟐𝟑 ∗ 𝒅𝟐𝟒 ∗ 𝒅𝟐𝟓 ∗ 𝒅𝟐𝟔 ∗ 𝒅𝟐𝟕 ∗ ⋯ . .
DAB
DBC
DCA
A
B
L = 2*10-7 *Loge(GMD/GMR) H/m
C
GMD =
𝟑
𝑫 𝑨𝑩 ∗ 𝑫𝑩𝑪 ∗ 𝑫𝑪𝑨
Calculation of GMR
Solution for 132kV Line
with Panther Conductor
• L = 2x10-7*Loge(4.0/0.0086767) H/m
• L = 2x10-7*Loge(461) H/m
• L = 2x10-7*6.1334 H/m
• L = 12.2668x10-7 H/m
• L = 12.2668x10-3 H/Km
• X = 2*π*f*L
• X = 2*3.142*50*12.2668*10-3
• X = 314*12.2668*10-3
• X = 0.3851 Ω / Km
Impedance of Line as Matrix
General Equation
Effect of Mutual Coupling
N 85
A 100mm2
0.0001m2
μ0 1.257E-05H.m
μr 281
l 160mm
0.16m
L = μ0μrN2A/l
0.0159H
XL = 2*π*f*L
5.0Ohm
N 170
A 100mm2
0.0001m2
μ0 1.257E-05H.m
μr 281
l 160mm
0.16m
L = μ0μrN2A/l
0.0638H
XL = 2*π*f*L
20.0Ohm
Mutual Inductance, Mathematical Representation
ɸ
ɸ
N = 170
a = 80 mm
t = 10 mm
N = 170
b = 10 mm
b = 10 mm
a = 80 mm
Mutual Impedance – 2 Wire Line
3-Ph Transmission Line – QuickField Problem
3-Ph Transmission Line – Field Simulation
Three Phase Line Matrix Notation
Without
Considering
Mutual Coupling
With Mutual
Coupling
Generl Equation of the transmission line
parameters (Without Earth Wire)
𝑟 + 𝑅𝐶 𝑅𝐶 𝑅𝐶
𝑅𝐶 𝑟 + 𝑅𝐶 𝑅𝐶
𝑅𝐶 𝑅𝐶 𝑟 + 𝑅𝐶
From last slide we have Vabc – Vabc’ = Zabc*Iabc (All Bold
face represents matrix)
Where Zabc = Rabc + Jxabc and to calculate Zabc from
conductor and line data use
Rabc =
r is resistance (Ω/km) of the
conductor used and RC =
0.0001*π2f for f = 50 Hz RC =
0.04935 Ω/km
𝐿𝑛(
1
𝐺𝑀𝑅
) 𝐿𝑛
1
𝐷𝑎𝑏
+ 𝐺𝐶 𝐿𝑛
1
𝐷𝑎𝑐
+ 𝐺𝐶
𝐿𝑛
1
𝐷𝑏𝑎
+ 𝐺𝐶 𝐿𝑛(
1
𝐺𝑀𝑅
) 𝐿𝑛
1
𝐷𝑏𝑐
+ 𝐺𝐶
𝐿𝑛
1
𝐷𝑐𝑎
+ 𝐺𝐶 𝐿𝑛
1
𝐷𝑐𝑏
+ 𝐺𝐶 𝐿𝑛(
1
𝐺𝑀𝑅
)
Xabc =
M is for converting H/m to Ω/km
and it is 4*π*f*0.0001 for 50Hz
its value is 0.062832.
GC = ρ is earath resistivity
and for ρ = 100 Ω.m and f = 50
Hz GC = 6.8357
M*
658 ∗
𝜌
𝑓
Ln
Ω/km
Ω/km
Practical System Calculations
132kV
50 km
0.2 ACSR
50 MW
For 0.2 ACSR
GMR =
8.6767mm
0.008677m
For Above line
Dab = 4m
Dbc = 4m
Dca = 8m
Let ρ = 100Ω.m
f = 50Hz
r = 0.1522Ω/km
0.2015 + j0.7277 0.0493 + j0.3424 0.0493 + j0.2988
Zabc =
0.0493 + j0.3424 0.2015 + j0.7277 0.0493 + j0.3424
0.0493 + j0.2988 0.0493 + j0.3424 0.2015 + j0.7277
Zero Sequence Impedance
of Transmission Line
Sequence Component Theory and
Application
Symmetrical Components
Resolve Components
+Ve Sequence Comp.
-Ve Sequence Comp.
0 Sequence Comp.
Symmetrical Components and Matrix A-1
Operator - a
VR
VB
VY
a = -0.5 + j0.866
OR
a = 1.0 ∟1200
= a*VR
= a*a*VR
+Ve Sequence Comp.
-Ve Sequence Comp.
0 Sequence Comp.
Symmetrical Components and Matrix A
Va = Va0 + Va1 + Va2
Vb = Vb0 + Vb1 + Vb2
Vc = Vc0 + Vc1 + Vc2
Va = Va0 + Va1 + Va2
Vb = Va0 + a2Va1 + aVa2
Vc = Vc0 + aVa1 + a2Va2
Va
Vb
Vc
Va0
Va1
Va2
1 1 1
1 a2 a
1 a a2
*=
Vabc = A * V012
Symmetrical Components and Matrix A
Va
Vb
Vc
Va0
Va1
Va2
1 1 1
1 a2 a
1 a a2
*=
Vabc = A * V012
V012 = A-1 * Vabc V0
V1
V2
Va
Vb
Vc
1 1 1
1 a a2
1 a2 a
*= 1/3
U 7.07 ∟ 45.00
V 4.81 ∟-102.74
W 12.44 ∟ 27.25
U0 5.39 ∟21.80
U1 3.61 ∟-33.69
U2 5.83 ∟120.96
+Ve Sequence Comp.
-Ve Sequence Comp.
0 Sequence Comp.
U012 = A-1Uabc
Symmetrical Components and Matrix A-1
Display Matrix FormulaDisplay MatrixDisplay Zero Seq. ComponentsDisplay +Ve Seq. ComponentsDisplay-Ve Seq. ComponentsCheck Solution
Sequence Impedances
Vabc = Xabc * Iabc (1f considered Va’ = Vb’ = Vc’ = 0)
A*V012 = Xabc*A*I012
A-1*A*V012 = A-1*Xabc*A*I012
V012 = X012 * I012 Where X012 = A-1*Xabc*A
Or in General Term
Z012 = A-1 * Zabc * A
Sequence Impedances of Transmission Line
For 0.2 ACSR
GMR = 8.6767mm
0.00867m
For Above line
Dab = 4m
Dbc = 4m
Dca = 8m
Let ρ = 100Ω.m
f = 50Hz
r = 0.1522Ω/km
0.2015+j0.7277 0.0493+j0.3424 0.0493+j0.2988
Zabc = 0.0493+j0.3424 0.2015+j0.7277 0.0493+j0.3424
0.0493+j0.2988 0.0493+j0.3424 0.2015+j0.7277
0.3002+j1.3835 0.0126-j0.0073 -0.0126-j0.0073
Z012 = -0.0126-j0.0073 0.1522+j0.3999 -0.0251+j0.0145
0.0126-j0.0073 0.0251+j0.0145 0.1522+j0.3999
Application of Sequence Impedance Matrix
50 km
I1
r = 0.16/km 5 m
R1 = 8 Ohm 2 m I2
R2 = 8 Ohm
R3 = 8 Ohm I3
V = 80 V
Current through un-transposed line
36.3887 16.4190 15.3620
Xabc = 16.4190 36.3887 19.2976
15.3620 19.2976 36.3887
0.03665 -0.01159 -0.00932
Xabc
-1 -0.01159 0.04190 -0.01733
-0.00932 -0.01733 0.04061
1.258575
1.038553
1.116394
Ia
Ib
Ic
0.03665 -0.01159 -0.00932
-0.01159 0.04190 -0.01733
-0.00932 -0.01733 0.04061
80
80
80
Ia
Ib
Ic
X=
=
Current through un-transposed line
36.3887 16.4190 15.3620
Xabc = 16.4190 36.3887 19.2976
15.3620 19.2976 36.3887
I0
I1
I2
80
0
0
Ia
Ib
Ic
X=
=
0.0000 + j70.4411 0.3051 - j1.1357 -0.3051 - j1.1357
X012 = -0.3051 - j1.1357 0.0000 + j19.3625 -0.6103 + j2.2714
0.3051 - j1.1357 0.6103 + j2.2714 0.0000 + j19.3625
0.0000 + j0.014223 0.000281 - j0.000755 -0.000281 - j0.000755
-0.000281 - j0.000755 0.0000 + j0.052465 -0.001682 + j0.006115
0.000281 - j0.000755 0.001682 + j0.006115i 0.0000 + j0.052465
From
I012 = X012
-1*V012
And
Iabc = A*I012
1.2586
1.0386
1.1164
I0
I1
I2
=
1.137843
0.0604 - j0.0225
0.0604 + j0.0225
1.138∟00.0
0.064∟-20.4
0.064∟20.4
Or AND
What is special about sequence impedance matrix
0.7552 0.3459 0.3029
Zabc = 0.3459 0.7552 0.3459
0.3029 0.3459 0.7552
1.4157 0.0145 0.0145
Z012 = 0.0145 0.4279 0.0290
0.0145 0.0290 0.4279
Off diagonal elements are negligible indicates that there is minimum
mutual coupling if we use symmetrical component analysis
For a 132kV 50Hz, 0.2 ACSR, Vertical
Single Circuit Line Without Earth Wire
Short-circuit currents by using X0
0.0000 + j70.4411 0.3051 - j1.1357 -0.3051 - j1.1357
X012 = -0.3051 - j1.1357 0.0000 + j19.3625 -0.6103 + j2.2714
0.3051 - j1.1357 0.6103 + j2.2714 0.0000 + j19.3625
Ia ≈ Ib ≈ Ic ≈ I0 = V0/X0 = 80/70.44 = 1.136
Ia
Ib
Ic
=
1.2586
1.0386
1.1164
And Iavg = 1.137

More Related Content

What's hot

Instrument transformer CT & PT
Instrument transformer CT & PTInstrument transformer CT & PT
Instrument transformer CT & PT
Chandan Singh
 
Bus Bar Protection
Bus Bar ProtectionBus Bar Protection
Bus Bar Protection
Sumeet Ratnawat
 
Basics of overcurrent protection
Basics of overcurrent protectionBasics of overcurrent protection
Basics of overcurrent protection
Salim Palayi
 
Ppt on protection of power transformers
Ppt on protection of power transformersPpt on protection of power transformers
Ppt on protection of power transformers
siddharam kantoli
 
ETAP - Transformer mva sizing
ETAP - Transformer mva sizingETAP - Transformer mva sizing
ETAP - Transformer mva sizing
Himmelstern
 
Switchgear - complete guide
Switchgear - complete guideSwitchgear - complete guide
Switchgear - complete guide
Slides Hub
 
ABB - TRANSFORMERS-PROTECTION-COURSE (2001)
ABB - TRANSFORMERS-PROTECTION-COURSE (2001)ABB - TRANSFORMERS-PROTECTION-COURSE (2001)
ABB - TRANSFORMERS-PROTECTION-COURSE (2001)
J. FR
 
Principles Control & Protection of HVDC Schemes
Principles Control & Protection of HVDC SchemesPrinciples Control & Protection of HVDC Schemes
Principles Control & Protection of HVDC Schemes
Power System Operation
 
Protection of Transmission lines
Protection of Transmission linesProtection of Transmission lines
Protection of Transmission lines
Power System Operation
 
static series synchronus compensator
static series synchronus compensatorstatic series synchronus compensator
static series synchronus compensator
bhupendra kumar
 
Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting Calculations
Power System Operation
 
Circuit Breakers - LSIG functions - Summary Guide for Settings
Circuit Breakers - LSIG functions - Summary Guide for SettingsCircuit Breakers - LSIG functions - Summary Guide for Settings
Circuit Breakers - LSIG functions - Summary Guide for Settings
Edson Bittar Henriques
 
Lineprotection basics june2008
Lineprotection basics june2008Lineprotection basics june2008
Lineprotection basics june2008
lankeshdb
 
INVERTERS PRESENTATION
INVERTERS PRESENTATIONINVERTERS PRESENTATION
INVERTERS PRESENTATION
Rajesh V
 
Power system protection topic 1
Power system protection topic 1Power system protection topic 1
Power system protection topic 1
Siswoyo Edo
 
Line Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relayLine Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relay
david roy
 
Power system fault analysis ppt
Power system fault analysis pptPower system fault analysis ppt
Power system fault analysis ppt
karikalan123
 
Practical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineers Practical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineers
veerraju143143
 
Transformer protection
Transformer protectionTransformer protection
Transformer protection
jawaharramaya
 
Symmetrical components
Symmetrical componentsSymmetrical components
Symmetrical components
Sirat Mahmood
 

What's hot (20)

Instrument transformer CT & PT
Instrument transformer CT & PTInstrument transformer CT & PT
Instrument transformer CT & PT
 
Bus Bar Protection
Bus Bar ProtectionBus Bar Protection
Bus Bar Protection
 
Basics of overcurrent protection
Basics of overcurrent protectionBasics of overcurrent protection
Basics of overcurrent protection
 
Ppt on protection of power transformers
Ppt on protection of power transformersPpt on protection of power transformers
Ppt on protection of power transformers
 
ETAP - Transformer mva sizing
ETAP - Transformer mva sizingETAP - Transformer mva sizing
ETAP - Transformer mva sizing
 
Switchgear - complete guide
Switchgear - complete guideSwitchgear - complete guide
Switchgear - complete guide
 
ABB - TRANSFORMERS-PROTECTION-COURSE (2001)
ABB - TRANSFORMERS-PROTECTION-COURSE (2001)ABB - TRANSFORMERS-PROTECTION-COURSE (2001)
ABB - TRANSFORMERS-PROTECTION-COURSE (2001)
 
Principles Control & Protection of HVDC Schemes
Principles Control & Protection of HVDC SchemesPrinciples Control & Protection of HVDC Schemes
Principles Control & Protection of HVDC Schemes
 
Protection of Transmission lines
Protection of Transmission linesProtection of Transmission lines
Protection of Transmission lines
 
static series synchronus compensator
static series synchronus compensatorstatic series synchronus compensator
static series synchronus compensator
 
Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting Calculations
 
Circuit Breakers - LSIG functions - Summary Guide for Settings
Circuit Breakers - LSIG functions - Summary Guide for SettingsCircuit Breakers - LSIG functions - Summary Guide for Settings
Circuit Breakers - LSIG functions - Summary Guide for Settings
 
Lineprotection basics june2008
Lineprotection basics june2008Lineprotection basics june2008
Lineprotection basics june2008
 
INVERTERS PRESENTATION
INVERTERS PRESENTATIONINVERTERS PRESENTATION
INVERTERS PRESENTATION
 
Power system protection topic 1
Power system protection topic 1Power system protection topic 1
Power system protection topic 1
 
Line Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relayLine Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relay
 
Power system fault analysis ppt
Power system fault analysis pptPower system fault analysis ppt
Power system fault analysis ppt
 
Practical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineers Practical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineers
 
Transformer protection
Transformer protectionTransformer protection
Transformer protection
 
Symmetrical components
Symmetrical componentsSymmetrical components
Symmetrical components
 

Similar to Transmission line zero seq reactance

Power System Simulation Laboratory Manual
Power System Simulation Laboratory Manual Power System Simulation Laboratory Manual
Power System Simulation Laboratory Manual
Santhosh Kumar
 
7 slides
7 slides7 slides
7 slides
Gopi Saiteja
 
Chapter 4 Transmission.ppt
Chapter 4 Transmission.pptChapter 4 Transmission.ppt
Chapter 4 Transmission.ppt
LiewChiaPing
 
Fault location for transmission line
Fault location  for transmission lineFault location  for transmission line
Fault location for transmission line
mohammed shareef
 
Ehv line design
Ehv line designEhv line design
Ehv line design
Demsew Mitiku
 
Irjet v4 i6288
Irjet v4 i6288Irjet v4 i6288
Irjet v4 i6288
Dinesh shetty
 
Laboratory Setup for Long Transmission Line
Laboratory Setup for Long Transmission LineLaboratory Setup for Long Transmission Line
Laboratory Setup for Long Transmission Line
IRJET Journal
 
Introduction to microwaves
Introduction to microwavesIntroduction to microwaves
Introduction to microwaves
Tapas Mondal
 
UNIT I.ppt
UNIT I.pptUNIT I.ppt
UNIT I.ppt
KolandasamyBaskar
 
Parametros linea de transmision
Parametros linea de transmisionParametros linea de transmision
Parametros linea de transmision
JuanMiguelDaniel
 
transmission line theory prp
transmission line theory prptransmission line theory prp
transmission line theory prp
Dr. Pravin Prajapati
 
Solucionario serway cap 27
Solucionario serway cap 27Solucionario serway cap 27
Solucionario serway cap 27
Carlo Magno
 
Sm chapter27
Sm chapter27Sm chapter27
Sm chapter27
Juan Timoteo Cori
 
Power cable - Voltage drop
Power cable - Voltage dropPower cable - Voltage drop
Power cable - Voltage drop
Leonardo ENERGY
 
Lecture 6
Lecture 6Lecture 6
Lecture 6
Forward2025
 
Si Intro(100413)
Si Intro(100413)Si Intro(100413)
Si Intro(100413)
imsong
 
A Study on Protection of Cables by Solkor Differential Protection Relay with ...
A Study on Protection of Cables by Solkor Differential Protection Relay with ...A Study on Protection of Cables by Solkor Differential Protection Relay with ...
A Study on Protection of Cables by Solkor Differential Protection Relay with ...
IJERA Editor
 
Voltage Drop Calculation.pdf
Voltage Drop Calculation.pdfVoltage Drop Calculation.pdf
Voltage Drop Calculation.pdf
MesiasJohnFederico
 
POWER SYSTEM SIMULATION LAB-1 MANUAL (ELECTRICAL - POWER SYSTEM ENGINEERING )
POWER SYSTEM SIMULATION LAB-1 MANUAL (ELECTRICAL - POWER SYSTEM ENGINEERING )POWER SYSTEM SIMULATION LAB-1 MANUAL (ELECTRICAL - POWER SYSTEM ENGINEERING )
POWER SYSTEM SIMULATION LAB-1 MANUAL (ELECTRICAL - POWER SYSTEM ENGINEERING )
Mathankumar S
 
FAST TRANSIENT RESPONSE LOW DROPOUT VOLTAGE REGULATOR
FAST TRANSIENT RESPONSE LOW DROPOUT VOLTAGE REGULATORFAST TRANSIENT RESPONSE LOW DROPOUT VOLTAGE REGULATOR
FAST TRANSIENT RESPONSE LOW DROPOUT VOLTAGE REGULATOR
ijseajournal
 

Similar to Transmission line zero seq reactance (20)

Power System Simulation Laboratory Manual
Power System Simulation Laboratory Manual Power System Simulation Laboratory Manual
Power System Simulation Laboratory Manual
 
7 slides
7 slides7 slides
7 slides
 
Chapter 4 Transmission.ppt
Chapter 4 Transmission.pptChapter 4 Transmission.ppt
Chapter 4 Transmission.ppt
 
Fault location for transmission line
Fault location  for transmission lineFault location  for transmission line
Fault location for transmission line
 
Ehv line design
Ehv line designEhv line design
Ehv line design
 
Irjet v4 i6288
Irjet v4 i6288Irjet v4 i6288
Irjet v4 i6288
 
Laboratory Setup for Long Transmission Line
Laboratory Setup for Long Transmission LineLaboratory Setup for Long Transmission Line
Laboratory Setup for Long Transmission Line
 
Introduction to microwaves
Introduction to microwavesIntroduction to microwaves
Introduction to microwaves
 
UNIT I.ppt
UNIT I.pptUNIT I.ppt
UNIT I.ppt
 
Parametros linea de transmision
Parametros linea de transmisionParametros linea de transmision
Parametros linea de transmision
 
transmission line theory prp
transmission line theory prptransmission line theory prp
transmission line theory prp
 
Solucionario serway cap 27
Solucionario serway cap 27Solucionario serway cap 27
Solucionario serway cap 27
 
Sm chapter27
Sm chapter27Sm chapter27
Sm chapter27
 
Power cable - Voltage drop
Power cable - Voltage dropPower cable - Voltage drop
Power cable - Voltage drop
 
Lecture 6
Lecture 6Lecture 6
Lecture 6
 
Si Intro(100413)
Si Intro(100413)Si Intro(100413)
Si Intro(100413)
 
A Study on Protection of Cables by Solkor Differential Protection Relay with ...
A Study on Protection of Cables by Solkor Differential Protection Relay with ...A Study on Protection of Cables by Solkor Differential Protection Relay with ...
A Study on Protection of Cables by Solkor Differential Protection Relay with ...
 
Voltage Drop Calculation.pdf
Voltage Drop Calculation.pdfVoltage Drop Calculation.pdf
Voltage Drop Calculation.pdf
 
POWER SYSTEM SIMULATION LAB-1 MANUAL (ELECTRICAL - POWER SYSTEM ENGINEERING )
POWER SYSTEM SIMULATION LAB-1 MANUAL (ELECTRICAL - POWER SYSTEM ENGINEERING )POWER SYSTEM SIMULATION LAB-1 MANUAL (ELECTRICAL - POWER SYSTEM ENGINEERING )
POWER SYSTEM SIMULATION LAB-1 MANUAL (ELECTRICAL - POWER SYSTEM ENGINEERING )
 
FAST TRANSIENT RESPONSE LOW DROPOUT VOLTAGE REGULATOR
FAST TRANSIENT RESPONSE LOW DROPOUT VOLTAGE REGULATORFAST TRANSIENT RESPONSE LOW DROPOUT VOLTAGE REGULATOR
FAST TRANSIENT RESPONSE LOW DROPOUT VOLTAGE REGULATOR
 

Recently uploaded

Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
AjmalKhan50578
 
Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...
Prakhyath Rai
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
ElakkiaU
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
RamonNovais6
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
Digital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptxDigital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptx
aryanpankaj78
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
ijaia
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
Atif Razi
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
Gino153088
 
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
upoux
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
shadow0702a
 
morris_worm_intro_and_source_code_analysis_.pdf
morris_worm_intro_and_source_code_analysis_.pdfmorris_worm_intro_and_source_code_analysis_.pdf
morris_worm_intro_and_source_code_analysis_.pdf
ycwu0509
 
AI for Legal Research with applications, tools
AI for Legal Research with applications, toolsAI for Legal Research with applications, tools
AI for Legal Research with applications, tools
mahaffeycheryld
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
bijceesjournal
 
Software Engineering and Project Management - Software Testing + Agile Method...
Software Engineering and Project Management - Software Testing + Agile Method...Software Engineering and Project Management - Software Testing + Agile Method...
Software Engineering and Project Management - Software Testing + Agile Method...
Prakhyath Rai
 
SCALING OF MOS CIRCUITS m .pptx
SCALING OF MOS CIRCUITS m                 .pptxSCALING OF MOS CIRCUITS m                 .pptx
SCALING OF MOS CIRCUITS m .pptx
harshapolam10
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
ecqow
 
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
nedcocy
 

Recently uploaded (20)

Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
 
Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
Digital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptxDigital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptx
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
 
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
 
morris_worm_intro_and_source_code_analysis_.pdf
morris_worm_intro_and_source_code_analysis_.pdfmorris_worm_intro_and_source_code_analysis_.pdf
morris_worm_intro_and_source_code_analysis_.pdf
 
AI for Legal Research with applications, tools
AI for Legal Research with applications, toolsAI for Legal Research with applications, tools
AI for Legal Research with applications, tools
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
 
Software Engineering and Project Management - Software Testing + Agile Method...
Software Engineering and Project Management - Software Testing + Agile Method...Software Engineering and Project Management - Software Testing + Agile Method...
Software Engineering and Project Management - Software Testing + Agile Method...
 
SCALING OF MOS CIRCUITS m .pptx
SCALING OF MOS CIRCUITS m                 .pptxSCALING OF MOS CIRCUITS m                 .pptx
SCALING OF MOS CIRCUITS m .pptx
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
 
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
 

Transmission line zero seq reactance

  • 1. Line Reactance, Zero Sequence Reactance and Mutual Zero Sequence Reactance By S. P. Vasekar, Superintending Engineer, MSETCL, Testing and Communication Circle Aurangabad
  • 2. Line Reactance, Zero Sequence Reactance and Mutual Zero Sequence Reactance • Inductance of the transmission line – Basics of Inductance and inductance of Single and Three Phase Lines • Inductance of Three Phase Line as Matrix – General Theory • Zero Sequence Impedance of Transmission Line – Theory of Sequence Component and It’s Application • Zero Sequence Mutual Impedance of Transmission Line – Sequence Component Theory as Applied to Double Circuit Line
  • 3. Inductance of the Transmission Line Basics of Inductance and Inductance of Single and Three Phase Line
  • 4. Inductance – Quick Refresh V = L * di/dt By definition V = N* dΦ/dt Faradays law N*dΦ/dt = L*di/dt L = N*dΦ / di Inductance is flux linkage per ampere of current ϕ ϕ I Φ L = NΦ/I
  • 5. What is inductance (Physics) Whenever current flows there is a loop. This current loop setups magnetic field. The magnetic field can be considered as magnetic field lines and which also setup loops. These two loops are always interlinked Visualization of magnetic field with QuickField software
  • 6. Approximate Field Distribution for Circular Loop 0.0000 mWb0.0173 mWb0.8973 mWb1.7123 mWb2.0173 mWb
  • 7. What is Magnetic Flux Linkage 1000 Amp Φ = 2 mWb 1000 mm r = 22 mm L = ϕ/I = 2*10-6 Henry
  • 8. Magnetic Field By Two Wires 1 m
  • 9. Remember Linkage • The most important thing is flux linkage with current loop
  • 10. Inductance of a long straight wire • Only open straight conductor can not carry any current • Hence magnetic flux setup by it also zero • And it is not possible to derive any expression for it’s inductance.
  • 12. Concept of GMR – Solid Conductor Area A1 Area A2 A1 = A2 R R' R' = R*e (-1/4) R' = 0.7788*R ϕ
  • 13. Inductance of Two Wire Line 1 m L = 4x10-7LogeD/r’ H/m L = 2x10-7LogeD/r’ H/m
  • 14. Formula for calculation of inductance of 3-Ph transmission line 1 2 5 7 3 6 4 GMR = 𝟕 𝟕 𝒅𝟏𝟏 ∗ 𝒅𝟏𝟐 ∗ 𝒅𝟏𝟑 ∗ 𝒅𝟏𝟒 ∗ 𝒅𝟏𝟓 ∗ 𝒅𝟏𝟔 ∗ 𝒅𝟏𝟕 ∗ 𝟕 𝒅𝟐𝟏 ∗ 𝒅𝟐𝟐 ∗ 𝒅𝟐𝟑 ∗ 𝒅𝟐𝟒 ∗ 𝒅𝟐𝟓 ∗ 𝒅𝟐𝟔 ∗ 𝒅𝟐𝟕 ∗ ⋯ . . DAB DBC DCA A B L = 2*10-7 *Loge(GMD/GMR) H/m C GMD = 𝟑 𝑫 𝑨𝑩 ∗ 𝑫𝑩𝑪 ∗ 𝑫𝑪𝑨
  • 16. Solution for 132kV Line with Panther Conductor • L = 2x10-7*Loge(4.0/0.0086767) H/m • L = 2x10-7*Loge(461) H/m • L = 2x10-7*6.1334 H/m • L = 12.2668x10-7 H/m • L = 12.2668x10-3 H/Km • X = 2*π*f*L • X = 2*3.142*50*12.2668*10-3 • X = 314*12.2668*10-3 • X = 0.3851 Ω / Km
  • 17. Impedance of Line as Matrix General Equation
  • 18. Effect of Mutual Coupling N 85 A 100mm2 0.0001m2 μ0 1.257E-05H.m μr 281 l 160mm 0.16m L = μ0μrN2A/l 0.0159H XL = 2*π*f*L 5.0Ohm N 170 A 100mm2 0.0001m2 μ0 1.257E-05H.m μr 281 l 160mm 0.16m L = μ0μrN2A/l 0.0638H XL = 2*π*f*L 20.0Ohm
  • 19. Mutual Inductance, Mathematical Representation ɸ ɸ N = 170 a = 80 mm t = 10 mm N = 170 b = 10 mm b = 10 mm a = 80 mm
  • 20. Mutual Impedance – 2 Wire Line
  • 21. 3-Ph Transmission Line – QuickField Problem
  • 22. 3-Ph Transmission Line – Field Simulation
  • 23. Three Phase Line Matrix Notation Without Considering Mutual Coupling With Mutual Coupling
  • 24. Generl Equation of the transmission line parameters (Without Earth Wire) 𝑟 + 𝑅𝐶 𝑅𝐶 𝑅𝐶 𝑅𝐶 𝑟 + 𝑅𝐶 𝑅𝐶 𝑅𝐶 𝑅𝐶 𝑟 + 𝑅𝐶 From last slide we have Vabc – Vabc’ = Zabc*Iabc (All Bold face represents matrix) Where Zabc = Rabc + Jxabc and to calculate Zabc from conductor and line data use Rabc = r is resistance (Ω/km) of the conductor used and RC = 0.0001*π2f for f = 50 Hz RC = 0.04935 Ω/km 𝐿𝑛( 1 𝐺𝑀𝑅 ) 𝐿𝑛 1 𝐷𝑎𝑏 + 𝐺𝐶 𝐿𝑛 1 𝐷𝑎𝑐 + 𝐺𝐶 𝐿𝑛 1 𝐷𝑏𝑎 + 𝐺𝐶 𝐿𝑛( 1 𝐺𝑀𝑅 ) 𝐿𝑛 1 𝐷𝑏𝑐 + 𝐺𝐶 𝐿𝑛 1 𝐷𝑐𝑎 + 𝐺𝐶 𝐿𝑛 1 𝐷𝑐𝑏 + 𝐺𝐶 𝐿𝑛( 1 𝐺𝑀𝑅 ) Xabc = M is for converting H/m to Ω/km and it is 4*π*f*0.0001 for 50Hz its value is 0.062832. GC = ρ is earath resistivity and for ρ = 100 Ω.m and f = 50 Hz GC = 6.8357 M* 658 ∗ 𝜌 𝑓 Ln Ω/km Ω/km
  • 25. Practical System Calculations 132kV 50 km 0.2 ACSR 50 MW For 0.2 ACSR GMR = 8.6767mm 0.008677m For Above line Dab = 4m Dbc = 4m Dca = 8m Let ρ = 100Ω.m f = 50Hz r = 0.1522Ω/km 0.2015 + j0.7277 0.0493 + j0.3424 0.0493 + j0.2988 Zabc = 0.0493 + j0.3424 0.2015 + j0.7277 0.0493 + j0.3424 0.0493 + j0.2988 0.0493 + j0.3424 0.2015 + j0.7277
  • 26. Zero Sequence Impedance of Transmission Line Sequence Component Theory and Application
  • 28. +Ve Sequence Comp. -Ve Sequence Comp. 0 Sequence Comp. Symmetrical Components and Matrix A-1
  • 29. Operator - a VR VB VY a = -0.5 + j0.866 OR a = 1.0 ∟1200 = a*VR = a*a*VR
  • 30. +Ve Sequence Comp. -Ve Sequence Comp. 0 Sequence Comp. Symmetrical Components and Matrix A Va = Va0 + Va1 + Va2 Vb = Vb0 + Vb1 + Vb2 Vc = Vc0 + Vc1 + Vc2 Va = Va0 + Va1 + Va2 Vb = Va0 + a2Va1 + aVa2 Vc = Vc0 + aVa1 + a2Va2 Va Vb Vc Va0 Va1 Va2 1 1 1 1 a2 a 1 a a2 *= Vabc = A * V012
  • 31. Symmetrical Components and Matrix A Va Vb Vc Va0 Va1 Va2 1 1 1 1 a2 a 1 a a2 *= Vabc = A * V012 V012 = A-1 * Vabc V0 V1 V2 Va Vb Vc 1 1 1 1 a a2 1 a2 a *= 1/3
  • 32. U 7.07 ∟ 45.00 V 4.81 ∟-102.74 W 12.44 ∟ 27.25 U0 5.39 ∟21.80 U1 3.61 ∟-33.69 U2 5.83 ∟120.96 +Ve Sequence Comp. -Ve Sequence Comp. 0 Sequence Comp. U012 = A-1Uabc Symmetrical Components and Matrix A-1 Display Matrix FormulaDisplay MatrixDisplay Zero Seq. ComponentsDisplay +Ve Seq. ComponentsDisplay-Ve Seq. ComponentsCheck Solution
  • 33. Sequence Impedances Vabc = Xabc * Iabc (1f considered Va’ = Vb’ = Vc’ = 0) A*V012 = Xabc*A*I012 A-1*A*V012 = A-1*Xabc*A*I012 V012 = X012 * I012 Where X012 = A-1*Xabc*A Or in General Term Z012 = A-1 * Zabc * A
  • 34. Sequence Impedances of Transmission Line For 0.2 ACSR GMR = 8.6767mm 0.00867m For Above line Dab = 4m Dbc = 4m Dca = 8m Let ρ = 100Ω.m f = 50Hz r = 0.1522Ω/km 0.2015+j0.7277 0.0493+j0.3424 0.0493+j0.2988 Zabc = 0.0493+j0.3424 0.2015+j0.7277 0.0493+j0.3424 0.0493+j0.2988 0.0493+j0.3424 0.2015+j0.7277 0.3002+j1.3835 0.0126-j0.0073 -0.0126-j0.0073 Z012 = -0.0126-j0.0073 0.1522+j0.3999 -0.0251+j0.0145 0.0126-j0.0073 0.0251+j0.0145 0.1522+j0.3999
  • 35. Application of Sequence Impedance Matrix 50 km I1 r = 0.16/km 5 m R1 = 8 Ohm 2 m I2 R2 = 8 Ohm R3 = 8 Ohm I3 V = 80 V
  • 36. Current through un-transposed line 36.3887 16.4190 15.3620 Xabc = 16.4190 36.3887 19.2976 15.3620 19.2976 36.3887 0.03665 -0.01159 -0.00932 Xabc -1 -0.01159 0.04190 -0.01733 -0.00932 -0.01733 0.04061 1.258575 1.038553 1.116394 Ia Ib Ic 0.03665 -0.01159 -0.00932 -0.01159 0.04190 -0.01733 -0.00932 -0.01733 0.04061 80 80 80 Ia Ib Ic X= =
  • 37. Current through un-transposed line 36.3887 16.4190 15.3620 Xabc = 16.4190 36.3887 19.2976 15.3620 19.2976 36.3887 I0 I1 I2 80 0 0 Ia Ib Ic X= = 0.0000 + j70.4411 0.3051 - j1.1357 -0.3051 - j1.1357 X012 = -0.3051 - j1.1357 0.0000 + j19.3625 -0.6103 + j2.2714 0.3051 - j1.1357 0.6103 + j2.2714 0.0000 + j19.3625 0.0000 + j0.014223 0.000281 - j0.000755 -0.000281 - j0.000755 -0.000281 - j0.000755 0.0000 + j0.052465 -0.001682 + j0.006115 0.000281 - j0.000755 0.001682 + j0.006115i 0.0000 + j0.052465 From I012 = X012 -1*V012 And Iabc = A*I012 1.2586 1.0386 1.1164 I0 I1 I2 = 1.137843 0.0604 - j0.0225 0.0604 + j0.0225 1.138∟00.0 0.064∟-20.4 0.064∟20.4 Or AND
  • 38. What is special about sequence impedance matrix 0.7552 0.3459 0.3029 Zabc = 0.3459 0.7552 0.3459 0.3029 0.3459 0.7552 1.4157 0.0145 0.0145 Z012 = 0.0145 0.4279 0.0290 0.0145 0.0290 0.4279 Off diagonal elements are negligible indicates that there is minimum mutual coupling if we use symmetrical component analysis For a 132kV 50Hz, 0.2 ACSR, Vertical Single Circuit Line Without Earth Wire
  • 39. Short-circuit currents by using X0 0.0000 + j70.4411 0.3051 - j1.1357 -0.3051 - j1.1357 X012 = -0.3051 - j1.1357 0.0000 + j19.3625 -0.6103 + j2.2714 0.3051 - j1.1357 0.6103 + j2.2714 0.0000 + j19.3625 Ia ≈ Ib ≈ Ic ≈ I0 = V0/X0 = 80/70.44 = 1.136 Ia Ib Ic = 1.2586 1.0386 1.1164 And Iavg = 1.137

Editor's Notes

  1. After visualizing magnetic field of 3-Ph transmission line we will go through mathematical modelling of the line. To understand the mathematical modelling first let consider a transmission line as shown in fig-1 where line is shown only by inductances without mutual coupling. Obviously for a phase receiving end voltage will be Va’ = Va – XaIa. Similarly we can have equations for all other lines too. These set of equations can be represented by matrix notation as shown in fig-1. It is to note that here off diagonal elements of the matrix are zero. Now consider the same transmission line but having mutual coupling equivalent to reactance Xab = Xba, Xbc = Xcb, Xca = Xac between conductors as shown in fig-2. Here we can write equations for receiving end voltages as Va’ = Va – XaaIa + XabIb + XacIc. Vb’ = Vb – XbaIb + XbbIb + XbcIc Vc’ = Vc – XcaIa + XcbIb + XccIc Or mathematically this can be represented by matrix notation as shown in fig-2 Here diagonal terms are self inductance of the conductor and off diagonal elements are the mutual inductance of the conductor. Please note that in actual physical system of 3-Ph transmission line these terms does not have any physical meaning they are only mathematical constructs for final derivation of zero sequence impedance of the line After understanding this mathematical notations we will go further to symmetrical components before understanding Zero Sequence Reactance.