SlideShare a Scribd company logo
CHAPTER 4
Transmission Line
BEF 23803 – Polyphase Circuit Analysis
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
2
Module Outline
 Introduction
 Types of Power Lines
 Short Line
 Medium Line
 Long Line
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
3
Introduction
Distribution System
Transmission System
Generation System
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
4
Introduction – Transmission Line
 The equivalent model is on a “per-phase” basis,
i.e. VL-N, and Ip.
 Two port networks theory is used to express the
voltage and current relations.
 Short, medium, and long line models are
considered as well as the regulation and losses.
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
5
Type of Power Lines
Transmission Line Model
Short
Line
≤80km
Medium
Line
≤250km
Long
Line
≥250km
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
6
Short Line
 Definition: ≤ 80 km or ≤ 69 kV.
 Multiplying series impedance per unit length
(r + jL) by the line length (ℓ).
Z = (r + jL)ℓ = R + jX
Z = R + jX
SR
VS
+
-
+
-
VR
IS IR
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
7
Short Line
 Consider a 3Ф load with apparent power SR(3Ф)
is connected at the end of the transmission line,
the receiving end current is obtained by
 The sending end voltage is
VS = VR + ZIR
 Since the shunt capacitance is neglected, we
have
IS = IR
*
R
)
(3
*
R
R
3V
S
I

 * means conjugate, says S=(2+j3),
thus S* becomes (2-j3)
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
8
Short Line
 Two port network (ABCD) representation:
VS = AVR + BIR
IS = CVR + DIR
or in matrix form
ABCD
+
-
+
-
VS VR
IR
IS



















R
R
S
S
I
V
D
C
B
A
I
V



















R
R
S
S
I
V
1
0
Z
1
I
V
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
9
Short Line
 It is obvious that for short line,
A=1 B=Z C=0 D=1
 Voltage regulation is defined as the % change in
voltage at the receiving end in going from no-
load to full-load:
 At no-load, IR=0, thus,
100%
X
V
V
V
VR
%
R(FL)
R(FL)
R(NL) 

A
V
V S
R(NL) 
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
10
Short Line
 For short line, A=1 and VR(NL)=VS.
 Voltage regulation is measure of line voltage
drop and depends on the power factor (cos θ).
 Voltage regulation is poorer at low lagging
power factor loads (inductive).
 Voltage regulation become negative with leading
power factor loads (capacitive).
 VR(FL)
RIR
jXIR
VS
IR
Lagging pf
VR=+ve
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
11
Short Line
 Sending-end power,
 The total line loss is given by
SL(3Ф)=SS(3Ф) – SR(3Ф)
 Transmission line efficiency is given by
*
S
S
)
S(3 I
3V
S 

)
S(3
)
R(3
P
P


 
VR(FL)
RIR
jXIR
VS
IR
Leading pf
VR=-ve
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
12
Short Line
Example 4.1
A 220-kV, three-phase transmission line is 40 km long.
The resistance per phase is 0.15  per km and the
inductance per phase is 1.3263 mH per km. The shunt
capacitance is negligible. Use the short line model to find
the voltage and power at the sending end and the
voltage regulation and the efficiency when the line is
supplying a three-phase load of
a. 381 MVA at 0.8 power factor lagging at 220 kV.
b. 381 MVA at 0.8 power factor leading at 220 kV.
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
13
Short Line
Solution
a. The series impedance per phase is (f = 60 Hz)
Z=(r+jL)ℓ =(0.15+j2x60x1.3263x10-3)40
=6+j20 
The receiving end voltage per phase is
The apparent power is
SR(3Ф)= 381cos-10.8
= 381 36.87° = 304.8+j228.6 MVA
kV
0
127
3
0
220
VR(LN) 





BEF 23803 – Polyphase Circuit Analysis – Chapter 4
14
Short Line
The current per phase is
The sending end voltage is
The sending end line-to-line voltage magnitude
A
36.87
1000
0
127
x
3
x10
36.87
381
3V
S
I
3
*
R(LN)
*
)
R(3
)
R(1 












kV
4.93
144.33
)
)(10
36.87
-
j20)(1000
(6
0
127
ZI
V
V -3
)
R(1
R(LN)
S(LN)











 
kV
250
V
3
V S(LN)
L)
-
S(L 

BEF 23803 – Polyphase Circuit Analysis – Chapter 4
15
Short Line
The sending end power is
Voltage regulation is
Transmission line efficiency is
MVA
41.8
433
Mvar
j288.6
MW
322.8
10
x
36.87
1000
x
4.93
144.33
x
3
I
3V
S -3
*
)
S(1
S(LN)
)
S(3









 

13.6%
100%
x
220
220
-
250
R
V
% 

94.4%
100%
x
8
.
322
8
.
304
P
P
)
S(3
)
R(3






BEF 23803 – Polyphase Circuit Analysis – Chapter 4
16
Short Line
b. The current for 381 MVA with 0.8 leading pf is
The sending end voltage is
The sending end line-to-line voltage magnitude
A
36.87
1000
0
127
x
3
x10
36.87
381
3V
S
I
3
*
R(LN)
*
)
R(3
R(p) 









kV
9.29
121.39
)
)(10
36.87
j20)(1000
(6
0
127
ZI
V
V -3
)
R(1
R(LN)
S(LN)











 
kV
210.26
V
3
V S(LN)
L)
-
S(L 

BEF 23803 – Polyphase Circuit Analysis – Chapter 4
17
Short Line
The sending end power is
Voltage regulation is
Transmission line efficiency is
MVA
58
.
27
-
364.18
Mvar
j168.6
MW
322.8
10
x
36.87
1000
x
29
.
9
121.39
x
3
I
3V
S -3
*
)
S(1
S(LN)
)
S(3










 

4.43%
-
100%
x
220
220
-
210.26
R
V
% 

94.4%
100%
x
8
.
322
8
.
304
P
P
)
S(3
)
R(3






BEF 23803 – Polyphase Circuit Analysis – Chapter 4
18
Medium Line
 Definition: 80 km ≤ length ≤ 250 km.
 Shunt capacitance of the line is included and is
divided into two equal parts placed at the
sending and receiving ends of the line to form
the so-called nominal  model.
Z = R + jX
VS
+
-
+
-
VR
IS IR
IL
2
Y
2
Y
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
19
Medium Line
 Total shunt admittance
Y = (g +jC)ℓ
 The shunt conductance per unit length, g is
negligible, C = line to neutral capacitance per km,
and ℓ = line length.
R
R
L V
2
Y
I
I 

L
R
S ZI
V
V 
 R
R
S ZI
V
2
ZY
1
V 








S
L
S V
2
Y
I
I 
 R
R
S I
2
ZY
1
V
4
ZY
1
Y
I 















BEF 23803 – Polyphase Circuit Analysis – Chapter 4
20
Medium Line
 Representing into the two-port network:
 A and D are dimensionless and equal each
other if the line is the same when viewed from
either end.
 The dimensions of B and C are ohms and mhos,
respectively. The determinant of the line matrix
is unity, i.e.,
AD – BC = 1








2
ZY
1
A Z
B  







4
ZY
1
Y
C 







2
ZY
1
D
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
21
Medium Line
 We can find VR and IR if VS and IS are known.
 In matrix form (inverse matrix),
BC
AD
BI
DV
V S
S
R



BC
AD
CV
AI
I S
S
R



S
S
R BI
DV
V 

S
S
R CV
AI
I 






















S
S
R
R
I
V
A
C
B
D
I
V
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
22
Medium Line
 At no-load, i.e. IR is zero and thus A is the ratio
VS/VR.
 If the receiving end is short-circuited, i.e. VR is
zero and thus B is the ratio VS/IR.
 The constant A is useful in computing voltage
regulation. If VR(FL) is the receiving end voltage
at full load for a sending end voltage of VS,
100%
X
V
V
A
V
VR
%
R(FL)
R(FL)
S 

BEF 23803 – Polyphase Circuit Analysis – Chapter 4
23
Medium Line
Example 4.2
A 345 kV, three-phase transmission line is 130
km long. The resistance per phase is 0.036 
per km and the inductance per phase is 0.8 mH
per km. The shunt capacitance is 0.0112 F per
km. The receiving end load is 270 MVA with 0.8
power factor lagging at 325 kV. Use the medium
line model to find the voltage and power at the
sending end and the voltage regulation.
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
24
Medium Line
Solution
The series impedance per phase is (assume f = 60 Hz)
Z=(0.036+j2x60x0.8x10-3)130=4.68+j39.207 
Y=(0+j2x60x0.0112x10-6)130
=j0.000548899 siemens
Z = R + jX
VS
+
-
+
-
VR
IS IR
IL
2
Y
2
Y Load
270MVA
325 kV
0.8 lagging
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
25
Medium Line
0012844
.
0
j
98924
.
0
2
ZY
1
D
A 










j39.207
4.68
Z
B 


5
j0.0005459
3.5251x10
4
ZY
1
Y
C 7










 
kV
0
187.64
3
0
325
V (LN)
R 





MVA
j162
216
MVA
36.87
270
0.8
cos
270
S -1
)
R(3 







BEF 23803 – Polyphase Circuit Analysis – Chapter 4
26
Medium Line
A
36.87
479.64
0
187.64
x
3
x10
36.87
270
3V
S
I
3
*
R(LN)
*
)
R(3
)
1
R( 












)
R(1
R(LN)
)
S(1 DI
CV
I 
 





 012
.
4
19
.
199
BI
AV
V )
R(1
R(LN)
S(LN) 





 36.79
474.42
j284.0929
379.9522



 012
.
4
01
.
345
3
x
V
V S(LN)
S(LL)
0.7570
)]
angle(I
-
)
V
cos[angle(
factor
power )
S(1
S(LN) 
 
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
27
Medium Line





 36.79
x0.47442
4.012
3x199.19
xI
3xV
S *
)
S(1
S(LN)
)
S(3 

Mvar
j185.25
MW
214.6
40.802
283.5 




0,
I
load,
-
no
During R 
0
V
2
ZY
1
V R(LL)
S(LL) 









kV
76
.
348
98924
.
0
01
.
345
A
V
V
S(LL)
R(LL) 


7.3108%
x100%
325
325
-
348.76
R
V
% 


BEF 23803 – Polyphase Circuit Analysis – Chapter 4
28
Long Line
 Definition: length  250 km.
Zx
VS
+
-
+
-
VR
IS
IR
I(x)
IS(x+x)
+
-
+
-
V(x+ x) V(x)
yx yx
x x
l
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
29
Long Line
)
(
)
(
,
0
x
zI
dx
x
dV
x
zI(x)
Δx
Δx)-V(x)
V(x
xI(x)
z
V(x)
Δx)
V(x









)
(
)
(
,
0
)
(
)
(
)
(
)
(
)
(
)
(
x
yV
dx
x
dI
x
x
x
yV
x
x
I
x
x
I
x
x
xV
y
x
I
x
x
I

















)
(
)
(
)
(
2
2
x
zyV
dx
x
dI
z
dx
x
V
d


BEF 23803 – Polyphase Circuit Analysis – Chapter 4
30
Long Line
0
)
(
)
(
)
(
)
(
2
2
2
2
2
2
2





x
V
dx
x
V
d
x
V
dx
x
V
d
zy



If we take Second order differential equation:
x
x
e
A
e
A
x
V 
 

 2
1
)
(
where
length)
unit
per
(radian
constant
phase
constant,
n
attenuatio
)
)(
(
zy
constant
n
propagatio

















C
j
g
L
j
r
j
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
31
Long Line
 
   
 
y
z
z
e
A
e
A
z
x
I
or
e
A
e
A
z
y
e
A
e
A
z
x
I
e
A
e
A
z
dx
x
dV
z
x
I
c
x
x
c
x
x
x
x
x
x















impedance
stic
characteri
1
)
(
)
(
1
)
(
1
)
(
2
1
2
1
2
1
2
1











BEF 23803 – Polyphase Circuit Analysis – Chapter 4
32
Long Line
R
R
I
x
I
V
x
V
x



)
(
,
)
(
,
0
when
2
2
2
)
(
1
)
(
1
1
2
2
2
2
2
1
2
1
R
c
R
R
c
R
c
R
R
c
c
R
R
I
z
V
A
I
z
V
A
z
A
V
A
A
V
z
A
A
z
I
A
A
V













To find the constant A1 and A2
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
33
Long Line
x
R
c
R
x
R
c
R
x
R
c
R
x
R
c
R
c
x
R
c
R
x
R
c
R
e
I
z
V
e
I
z
V
x
I
e
I
z
V
e
I
z
V
z
x
I
e
I
z
V
e
I
z
V
x
V


















 







2
2
)
(
2
2
1
)
(
2
2
)
(
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
34
Long Line
R
x
x
c
R
x
x
x
R
c
x
R
c
x
R
x
R
I
e
e
Z
V
e
e
x
V
e
I
Z
e
I
Z
e
V
e
V
x
V







 








 









2
2
)
(
2
2
2
2
)
(








Re-arrange the equations we have,
R
x
x
R
x
x
c
x
R
x
c
R
x
R
x
c
R
I
e
e
V
e
e
Z
x
I
e
I
e
Z
V
e
I
e
Z
V
x
I







 








 









2
2
1
)
(
2
2
2
2
)
(








BEF 23803 – Polyphase Circuit Analysis – Chapter 4
35
Long Line
Hyperbolic function,
R
R
c
R
c
R
xI
xV
Z
x
I
xI
Z
xV
x
V




cosh
sinh
1
)
(
sinh
cosh
)
(




Setting x=l, V(l)=Vs, I(l)=Is
R
R
c
s
R
c
R
s
I
V
Z
I
I
Z
V
V








cosh
sinh
1
sinh
cosh






cosh

 D
A


sinh
c
Z
B 


sinh
1
c
Z
C 
1

 BC
AD
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
36
Long Line
R
R
s I
Z
V
Y
Z
V '
2
'
'
1 








R
R
s I
Y
Z
V
Y
Z
Y
I 















2
'
'
1
4
'
'
1
'
Comparing B constant with hyperbolic function,











sinh
sinh
sinh
sinh
' Z
z
z
y
z
Z
Z c 



Nominal  representation for long line,
Method 2
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
37
Long Line
2
tanh
2
'
sinh
1
cosh
2
tanh
,
sinh
1
cosh
2
'
1
cosh
2
'
sinh
cosh
2
'
'
1


































ZY
where
ZY
Y
Z
Y
Z
To obtain the Y’/2, compare the A constant,
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
38
Long Line
2
tanh
2
' 
 

Z
Y

2
tanh
2
tanh






z
y
z
zy


2
tanh
1
2
' 

c
Z
Y

2
tanh
2
tanh






y
y
y


BEF 23803 – Polyphase Circuit Analysis – Chapter 4
39
Long Line
2
tanh
2
' 



Y
Y

2
2
tanh
2 



Y

VS
+
-
+
-
VR
IS IR
IL
2
2
tanh
2
2
Y'




Y

2
Y'




sinh
' Z
Z 
Equivalent  model for
long length line:
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
40
Long Line
Example 4.3:
250 km, 500 kV transmission line has per
phase,
z = (0.045 + j0.4) /km
y = j4. 0 S/km
Find ABCD for a  model of the long
transmission line.
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
41
Long Line
Solution:
76
.
17
7
.
316
10
4
4
.
0
045
.
0
6
j
j
j
y
z
Zc 




 
001267
.
0
10
104
.
7
)
10
4
)(
4
.
0
045
.
0
( 5
6
j
j
j
zy 





 


36
.
98
88
.
10
)
sinh(
' j
Z
Z c 

 

001
.
0
2
2
tanh
1
' j
Z
Y
c

















BEF 23803 – Polyphase Circuit Analysis – Chapter 4
42
Long Line
0055
.
0
j
9504
.
0
2
Y'
Z'
1
D
A 










36
.
98
88
.
10
Z'
B j



j0.00098
4
Y'
Z'
1
Y'
C 









More Related Content

What's hot

ELECTROCHEMICAL MACHINING-PPT.pptx
ELECTROCHEMICAL MACHINING-PPT.pptxELECTROCHEMICAL MACHINING-PPT.pptx
ELECTROCHEMICAL MACHINING-PPT.pptx
Sharath804420
 
FORGE WELDING
FORGE WELDINGFORGE WELDING
FORGE WELDING
Souvik Roy
 
Elastimold Connectors - Loadbreak & Deadbreak Elbow & Bolted Tee Connectors -...
Elastimold Connectors - Loadbreak & Deadbreak Elbow & Bolted Tee Connectors -...Elastimold Connectors - Loadbreak & Deadbreak Elbow & Bolted Tee Connectors -...
Elastimold Connectors - Loadbreak & Deadbreak Elbow & Bolted Tee Connectors -...
Thorne & Derrick International
 
Study tour to optcl
Study tour to optclStudy tour to optcl
Study tour to optcl
SoumyaRanjanDas13
 
Electrical Wiring.pdf
Electrical Wiring.pdfElectrical Wiring.pdf
Electrical Wiring.pdf
Achyut Mazumder
 
Under water welding
Under water weldingUnder water welding
Under water welding
Nandish Nandi
 
electric heating and welding.pptx
electric heating and welding.pptxelectric heating and welding.pptx
electric heating and welding.pptx
LordofVel
 
Welding
WeldingWelding
Inches to-millimeters-conversion-chart
Inches to-millimeters-conversion-chartInches to-millimeters-conversion-chart
Inches to-millimeters-conversion-chart
HomeInt
 
Forge welding
Forge weldingForge welding
Forge welding
Kumar Chirra
 
Flash butt welding
Flash butt weldingFlash butt welding
Flash butt welding
sabdou
 
surabhi
surabhisurabhi
surabhi
Surabhi Goyal
 
132KV SUBSTATION UPPTCL
132KV SUBSTATION UPPTCL132KV SUBSTATION UPPTCL
132KV SUBSTATION UPPTCL
Aman Rajput
 
Positioners used for welding ppt
Positioners used for welding pptPositioners used for welding ppt
Positioners used for welding ppt
Arcraft Plasma Equipments ( I ) Pvt Ltd
 
MRR improvement in electrical discharge machining
MRR improvement in electrical discharge machiningMRR improvement in electrical discharge machining
MRR improvement in electrical discharge machining
Praveen Kumar Kushwah
 
Engineering Drawing
Engineering DrawingEngineering Drawing
Engineering Drawing
Deepa Rani
 
Raychem saudi arabia ltd. high voltage , medium voltage & low voltage cab...
Raychem saudi arabia ltd. high voltage , medium voltage & low voltage cab...Raychem saudi arabia ltd. high voltage , medium voltage & low voltage cab...
Raychem saudi arabia ltd. high voltage , medium voltage & low voltage cab...
AKBAR TRADING
 
Training Courses For Electricians
Training Courses For ElectriciansTraining Courses For Electricians
Training Courses For Electricians
carltrom
 

What's hot (18)

ELECTROCHEMICAL MACHINING-PPT.pptx
ELECTROCHEMICAL MACHINING-PPT.pptxELECTROCHEMICAL MACHINING-PPT.pptx
ELECTROCHEMICAL MACHINING-PPT.pptx
 
FORGE WELDING
FORGE WELDINGFORGE WELDING
FORGE WELDING
 
Elastimold Connectors - Loadbreak & Deadbreak Elbow & Bolted Tee Connectors -...
Elastimold Connectors - Loadbreak & Deadbreak Elbow & Bolted Tee Connectors -...Elastimold Connectors - Loadbreak & Deadbreak Elbow & Bolted Tee Connectors -...
Elastimold Connectors - Loadbreak & Deadbreak Elbow & Bolted Tee Connectors -...
 
Study tour to optcl
Study tour to optclStudy tour to optcl
Study tour to optcl
 
Electrical Wiring.pdf
Electrical Wiring.pdfElectrical Wiring.pdf
Electrical Wiring.pdf
 
Under water welding
Under water weldingUnder water welding
Under water welding
 
electric heating and welding.pptx
electric heating and welding.pptxelectric heating and welding.pptx
electric heating and welding.pptx
 
Welding
WeldingWelding
Welding
 
Inches to-millimeters-conversion-chart
Inches to-millimeters-conversion-chartInches to-millimeters-conversion-chart
Inches to-millimeters-conversion-chart
 
Forge welding
Forge weldingForge welding
Forge welding
 
Flash butt welding
Flash butt weldingFlash butt welding
Flash butt welding
 
surabhi
surabhisurabhi
surabhi
 
132KV SUBSTATION UPPTCL
132KV SUBSTATION UPPTCL132KV SUBSTATION UPPTCL
132KV SUBSTATION UPPTCL
 
Positioners used for welding ppt
Positioners used for welding pptPositioners used for welding ppt
Positioners used for welding ppt
 
MRR improvement in electrical discharge machining
MRR improvement in electrical discharge machiningMRR improvement in electrical discharge machining
MRR improvement in electrical discharge machining
 
Engineering Drawing
Engineering DrawingEngineering Drawing
Engineering Drawing
 
Raychem saudi arabia ltd. high voltage , medium voltage & low voltage cab...
Raychem saudi arabia ltd. high voltage , medium voltage & low voltage cab...Raychem saudi arabia ltd. high voltage , medium voltage & low voltage cab...
Raychem saudi arabia ltd. high voltage , medium voltage & low voltage cab...
 
Training Courses For Electricians
Training Courses For ElectriciansTraining Courses For Electricians
Training Courses For Electricians
 

Similar to Chapter 4 Transmission.ppt

Tranp.pptx
Tranp.pptxTranp.pptx
Chapter 3 transmission line performance
Chapter 3  transmission line performanceChapter 3  transmission line performance
Chapter 3 transmission line performance
firaoltemesgen1
 
transmission line theory prp
transmission line theory prptransmission line theory prp
transmission line theory prp
Dr. Pravin Prajapati
 
Transmission line zero seq reactance
Transmission line zero seq reactanceTransmission line zero seq reactance
Transmission line zero seq reactance
Shyamkant Vasekar
 
Introduction to microwaves
Introduction to microwavesIntroduction to microwaves
Introduction to microwaves
Tapas Mondal
 
Cigre test system description justifications and simulation results v3
Cigre test system   description justifications and simulation results v3Cigre test system   description justifications and simulation results v3
Cigre test system description justifications and simulation results v3
sebden
 
Ee6378 linear regulators
Ee6378 linear regulatorsEe6378 linear regulators
Ee6378 linear regulators
ssuser2038c9
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
Pei-Che Chang
 
UNIT I.ppt
UNIT I.pptUNIT I.ppt
UNIT I.ppt
KolandasamyBaskar
 
Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission lines
Amit Rastogi
 
Electrical transmission line
Electrical transmission lineElectrical transmission line
Electrical transmission line
Dhananjay Jha
 
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOM
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOMDistance Algorithm for Transmission Line with Mid-Point Connected STATCOM
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOM
IRJET Journal
 
L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)
Pradeep Godara
 
A novel voltage reference without the operational amplifier and resistors
A novel voltage reference without the operational amplifier and resistorsA novel voltage reference without the operational amplifier and resistors
A novel voltage reference without the operational amplifier and resistors
IJRES Journal
 
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docxreference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
debishakespeare
 
Eet3082 binod kumar sahu lecturer_10
Eet3082 binod kumar sahu lecturer_10Eet3082 binod kumar sahu lecturer_10
Eet3082 binod kumar sahu lecturer_10
BinodKumarSahu5
 
Ferroresonance Conditions in Wind Parks
Ferroresonance Conditions in Wind Parks Ferroresonance Conditions in Wind Parks
Ferroresonance Conditions in Wind Parks
Bérengère VIGNAUX
 
CVT design
CVT designCVT design
CVT design
binodsahu8
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
Chirag Shetty
 
copperlosessssssssssssssssssssssssssssssssssssssss
copperlosesssssssssssssssssssssssssssssssssssssssscopperlosessssssssssssssssssssssssssssssssssssssss
copperlosessssssssssssssssssssssssssssssssssssssss
FrankJhoelIC
 

Similar to Chapter 4 Transmission.ppt (20)

Tranp.pptx
Tranp.pptxTranp.pptx
Tranp.pptx
 
Chapter 3 transmission line performance
Chapter 3  transmission line performanceChapter 3  transmission line performance
Chapter 3 transmission line performance
 
transmission line theory prp
transmission line theory prptransmission line theory prp
transmission line theory prp
 
Transmission line zero seq reactance
Transmission line zero seq reactanceTransmission line zero seq reactance
Transmission line zero seq reactance
 
Introduction to microwaves
Introduction to microwavesIntroduction to microwaves
Introduction to microwaves
 
Cigre test system description justifications and simulation results v3
Cigre test system   description justifications and simulation results v3Cigre test system   description justifications and simulation results v3
Cigre test system description justifications and simulation results v3
 
Ee6378 linear regulators
Ee6378 linear regulatorsEe6378 linear regulators
Ee6378 linear regulators
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
 
UNIT I.ppt
UNIT I.pptUNIT I.ppt
UNIT I.ppt
 
Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission lines
 
Electrical transmission line
Electrical transmission lineElectrical transmission line
Electrical transmission line
 
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOM
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOMDistance Algorithm for Transmission Line with Mid-Point Connected STATCOM
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOM
 
L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)
 
A novel voltage reference without the operational amplifier and resistors
A novel voltage reference without the operational amplifier and resistorsA novel voltage reference without the operational amplifier and resistors
A novel voltage reference without the operational amplifier and resistors
 
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docxreference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
 
Eet3082 binod kumar sahu lecturer_10
Eet3082 binod kumar sahu lecturer_10Eet3082 binod kumar sahu lecturer_10
Eet3082 binod kumar sahu lecturer_10
 
Ferroresonance Conditions in Wind Parks
Ferroresonance Conditions in Wind Parks Ferroresonance Conditions in Wind Parks
Ferroresonance Conditions in Wind Parks
 
CVT design
CVT designCVT design
CVT design
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
 
copperlosessssssssssssssssssssssssssssssssssssssss
copperlosesssssssssssssssssssssssssssssssssssssssscopperlosessssssssssssssssssssssssssssssssssssssss
copperlosessssssssssssssssssssssssssssssssssssssss
 

More from LiewChiaPing

chapter4 DC to AC Converter.ppt
chapter4 DC to AC Converter.pptchapter4 DC to AC Converter.ppt
chapter4 DC to AC Converter.ppt
LiewChiaPing
 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptx
LiewChiaPing
 
chapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.pptchapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.ppt
LiewChiaPing
 
Chapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdfChapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdf
LiewChiaPing
 
Chapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfChapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdf
LiewChiaPing
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdf
LiewChiaPing
 
Chapter 4 Inverters.pdf
Chapter 4 Inverters.pdfChapter 4 Inverters.pdf
Chapter 4 Inverters.pdf
LiewChiaPing
 
Chapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfChapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdf
LiewChiaPing
 
Chapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfChapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdf
LiewChiaPing
 
Chapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdfChapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdf
LiewChiaPing
 
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdfBEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
LiewChiaPing
 
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdfBEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
LiewChiaPing
 
BEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdfBEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdf
LiewChiaPing
 
BEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdfBEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdf
LiewChiaPing
 
BEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdfBEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdf
LiewChiaPing
 
BEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdfBEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdf
LiewChiaPing
 
BEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdfBEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdf
LiewChiaPing
 
BEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdfBEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdf
LiewChiaPing
 
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdfBEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
LiewChiaPing
 
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdfBEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
LiewChiaPing
 

More from LiewChiaPing (20)

chapter4 DC to AC Converter.ppt
chapter4 DC to AC Converter.pptchapter4 DC to AC Converter.ppt
chapter4 DC to AC Converter.ppt
 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptx
 
chapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.pptchapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.ppt
 
Chapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdfChapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdf
 
Chapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfChapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdf
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdf
 
Chapter 4 Inverters.pdf
Chapter 4 Inverters.pdfChapter 4 Inverters.pdf
Chapter 4 Inverters.pdf
 
Chapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfChapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdf
 
Chapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfChapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdf
 
Chapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdfChapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdf
 
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdfBEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
 
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdfBEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
 
BEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdfBEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdf
 
BEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdfBEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdf
 
BEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdfBEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdf
 
BEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdfBEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdf
 
BEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdfBEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdf
 
BEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdfBEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdf
 
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdfBEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
 
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdfBEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
 

Recently uploaded

What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
GeorgeMilliken2
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Denish Jangid
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
Himanshu Rai
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
PECB
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
สมใจ จันสุกสี
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
Priyankaranawat4
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
TechSoup
 
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching AptitudeUGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
S. Raj Kumar
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
How to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 InventoryHow to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 Inventory
Celine George
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
Katrina Pritchard
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
Nguyen Thanh Tu Collection
 

Recently uploaded (20)

What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
 
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching AptitudeUGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
How to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 InventoryHow to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 Inventory
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
 

Chapter 4 Transmission.ppt

  • 1. CHAPTER 4 Transmission Line BEF 23803 – Polyphase Circuit Analysis
  • 2. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 2 Module Outline  Introduction  Types of Power Lines  Short Line  Medium Line  Long Line
  • 3. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 3 Introduction Distribution System Transmission System Generation System
  • 4. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 4 Introduction – Transmission Line  The equivalent model is on a “per-phase” basis, i.e. VL-N, and Ip.  Two port networks theory is used to express the voltage and current relations.  Short, medium, and long line models are considered as well as the regulation and losses.
  • 5. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 5 Type of Power Lines Transmission Line Model Short Line ≤80km Medium Line ≤250km Long Line ≥250km
  • 6. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 6 Short Line  Definition: ≤ 80 km or ≤ 69 kV.  Multiplying series impedance per unit length (r + jL) by the line length (ℓ). Z = (r + jL)ℓ = R + jX Z = R + jX SR VS + - + - VR IS IR
  • 7. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 7 Short Line  Consider a 3Ф load with apparent power SR(3Ф) is connected at the end of the transmission line, the receiving end current is obtained by  The sending end voltage is VS = VR + ZIR  Since the shunt capacitance is neglected, we have IS = IR * R ) (3 * R R 3V S I   * means conjugate, says S=(2+j3), thus S* becomes (2-j3)
  • 8. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 8 Short Line  Two port network (ABCD) representation: VS = AVR + BIR IS = CVR + DIR or in matrix form ABCD + - + - VS VR IR IS                    R R S S I V D C B A I V                    R R S S I V 1 0 Z 1 I V
  • 9. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 9 Short Line  It is obvious that for short line, A=1 B=Z C=0 D=1  Voltage regulation is defined as the % change in voltage at the receiving end in going from no- load to full-load:  At no-load, IR=0, thus, 100% X V V V VR % R(FL) R(FL) R(NL)   A V V S R(NL) 
  • 10. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 10 Short Line  For short line, A=1 and VR(NL)=VS.  Voltage regulation is measure of line voltage drop and depends on the power factor (cos θ).  Voltage regulation is poorer at low lagging power factor loads (inductive).  Voltage regulation become negative with leading power factor loads (capacitive).  VR(FL) RIR jXIR VS IR Lagging pf VR=+ve
  • 11. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 11 Short Line  Sending-end power,  The total line loss is given by SL(3Ф)=SS(3Ф) – SR(3Ф)  Transmission line efficiency is given by * S S ) S(3 I 3V S   ) S(3 ) R(3 P P     VR(FL) RIR jXIR VS IR Leading pf VR=-ve
  • 12. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 12 Short Line Example 4.1 A 220-kV, three-phase transmission line is 40 km long. The resistance per phase is 0.15  per km and the inductance per phase is 1.3263 mH per km. The shunt capacitance is negligible. Use the short line model to find the voltage and power at the sending end and the voltage regulation and the efficiency when the line is supplying a three-phase load of a. 381 MVA at 0.8 power factor lagging at 220 kV. b. 381 MVA at 0.8 power factor leading at 220 kV.
  • 13. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 13 Short Line Solution a. The series impedance per phase is (f = 60 Hz) Z=(r+jL)ℓ =(0.15+j2x60x1.3263x10-3)40 =6+j20  The receiving end voltage per phase is The apparent power is SR(3Ф)= 381cos-10.8 = 381 36.87° = 304.8+j228.6 MVA kV 0 127 3 0 220 VR(LN)      
  • 14. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 14 Short Line The current per phase is The sending end voltage is The sending end line-to-line voltage magnitude A 36.87 1000 0 127 x 3 x10 36.87 381 3V S I 3 * R(LN) * ) R(3 ) R(1              kV 4.93 144.33 ) )(10 36.87 - j20)(1000 (6 0 127 ZI V V -3 ) R(1 R(LN) S(LN)              kV 250 V 3 V S(LN) L) - S(L  
  • 15. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 15 Short Line The sending end power is Voltage regulation is Transmission line efficiency is MVA 41.8 433 Mvar j288.6 MW 322.8 10 x 36.87 1000 x 4.93 144.33 x 3 I 3V S -3 * ) S(1 S(LN) ) S(3             13.6% 100% x 220 220 - 250 R V %   94.4% 100% x 8 . 322 8 . 304 P P ) S(3 ) R(3      
  • 16. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 16 Short Line b. The current for 381 MVA with 0.8 leading pf is The sending end voltage is The sending end line-to-line voltage magnitude A 36.87 1000 0 127 x 3 x10 36.87 381 3V S I 3 * R(LN) * ) R(3 R(p)           kV 9.29 121.39 ) )(10 36.87 j20)(1000 (6 0 127 ZI V V -3 ) R(1 R(LN) S(LN)              kV 210.26 V 3 V S(LN) L) - S(L  
  • 17. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 17 Short Line The sending end power is Voltage regulation is Transmission line efficiency is MVA 58 . 27 - 364.18 Mvar j168.6 MW 322.8 10 x 36.87 1000 x 29 . 9 121.39 x 3 I 3V S -3 * ) S(1 S(LN) ) S(3              4.43% - 100% x 220 220 - 210.26 R V %   94.4% 100% x 8 . 322 8 . 304 P P ) S(3 ) R(3      
  • 18. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 18 Medium Line  Definition: 80 km ≤ length ≤ 250 km.  Shunt capacitance of the line is included and is divided into two equal parts placed at the sending and receiving ends of the line to form the so-called nominal  model. Z = R + jX VS + - + - VR IS IR IL 2 Y 2 Y
  • 19. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 19 Medium Line  Total shunt admittance Y = (g +jC)ℓ  The shunt conductance per unit length, g is negligible, C = line to neutral capacitance per km, and ℓ = line length. R R L V 2 Y I I   L R S ZI V V   R R S ZI V 2 ZY 1 V          S L S V 2 Y I I   R R S I 2 ZY 1 V 4 ZY 1 Y I                
  • 20. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 20 Medium Line  Representing into the two-port network:  A and D are dimensionless and equal each other if the line is the same when viewed from either end.  The dimensions of B and C are ohms and mhos, respectively. The determinant of the line matrix is unity, i.e., AD – BC = 1         2 ZY 1 A Z B          4 ZY 1 Y C         2 ZY 1 D
  • 21. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 21 Medium Line  We can find VR and IR if VS and IS are known.  In matrix form (inverse matrix), BC AD BI DV V S S R    BC AD CV AI I S S R    S S R BI DV V   S S R CV AI I                        S S R R I V A C B D I V
  • 22. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 22 Medium Line  At no-load, i.e. IR is zero and thus A is the ratio VS/VR.  If the receiving end is short-circuited, i.e. VR is zero and thus B is the ratio VS/IR.  The constant A is useful in computing voltage regulation. If VR(FL) is the receiving end voltage at full load for a sending end voltage of VS, 100% X V V A V VR % R(FL) R(FL) S  
  • 23. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 23 Medium Line Example 4.2 A 345 kV, three-phase transmission line is 130 km long. The resistance per phase is 0.036  per km and the inductance per phase is 0.8 mH per km. The shunt capacitance is 0.0112 F per km. The receiving end load is 270 MVA with 0.8 power factor lagging at 325 kV. Use the medium line model to find the voltage and power at the sending end and the voltage regulation.
  • 24. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 24 Medium Line Solution The series impedance per phase is (assume f = 60 Hz) Z=(0.036+j2x60x0.8x10-3)130=4.68+j39.207  Y=(0+j2x60x0.0112x10-6)130 =j0.000548899 siemens Z = R + jX VS + - + - VR IS IR IL 2 Y 2 Y Load 270MVA 325 kV 0.8 lagging
  • 25. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 25 Medium Line 0012844 . 0 j 98924 . 0 2 ZY 1 D A            j39.207 4.68 Z B    5 j0.0005459 3.5251x10 4 ZY 1 Y C 7             kV 0 187.64 3 0 325 V (LN) R       MVA j162 216 MVA 36.87 270 0.8 cos 270 S -1 ) R(3        
  • 26. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 26 Medium Line A 36.87 479.64 0 187.64 x 3 x10 36.87 270 3V S I 3 * R(LN) * ) R(3 ) 1 R(              ) R(1 R(LN) ) S(1 DI CV I          012 . 4 19 . 199 BI AV V ) R(1 R(LN) S(LN)        36.79 474.42 j284.0929 379.9522     012 . 4 01 . 345 3 x V V S(LN) S(LL) 0.7570 )] angle(I - ) V cos[angle( factor power ) S(1 S(LN)   
  • 27. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 27 Medium Line       36.79 x0.47442 4.012 3x199.19 xI 3xV S * ) S(1 S(LN) ) S(3   Mvar j185.25 MW 214.6 40.802 283.5      0, I load, - no During R  0 V 2 ZY 1 V R(LL) S(LL)           kV 76 . 348 98924 . 0 01 . 345 A V V S(LL) R(LL)    7.3108% x100% 325 325 - 348.76 R V %   
  • 28. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 28 Long Line  Definition: length  250 km. Zx VS + - + - VR IS IR I(x) IS(x+x) + - + - V(x+ x) V(x) yx yx x x l
  • 29. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 29 Long Line ) ( ) ( , 0 x zI dx x dV x zI(x) Δx Δx)-V(x) V(x xI(x) z V(x) Δx) V(x          ) ( ) ( , 0 ) ( ) ( ) ( ) ( ) ( ) ( x yV dx x dI x x x yV x x I x x I x x xV y x I x x I                  ) ( ) ( ) ( 2 2 x zyV dx x dI z dx x V d  
  • 30. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 30 Long Line 0 ) ( ) ( ) ( ) ( 2 2 2 2 2 2 2      x V dx x V d x V dx x V d zy    If we take Second order differential equation: x x e A e A x V      2 1 ) ( where length) unit per (radian constant phase constant, n attenuatio ) )( ( zy constant n propagatio                  C j g L j r j
  • 31. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 31 Long Line         y z z e A e A z x I or e A e A z y e A e A z x I e A e A z dx x dV z x I c x x c x x x x x x                impedance stic characteri 1 ) ( ) ( 1 ) ( 1 ) ( 2 1 2 1 2 1 2 1           
  • 32. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 32 Long Line R R I x I V x V x    ) ( , ) ( , 0 when 2 2 2 ) ( 1 ) ( 1 1 2 2 2 2 2 1 2 1 R c R R c R c R R c c R R I z V A I z V A z A V A A V z A A z I A A V              To find the constant A1 and A2
  • 33. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 33 Long Line x R c R x R c R x R c R x R c R c x R c R x R c R e I z V e I z V x I e I z V e I z V z x I e I z V e I z V x V                            2 2 ) ( 2 2 1 ) ( 2 2 ) (
  • 34. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 34 Long Line R x x c R x x x R c x R c x R x R I e e Z V e e x V e I Z e I Z e V e V x V                             2 2 ) ( 2 2 2 2 ) (         Re-arrange the equations we have, R x x R x x c x R x c R x R x c R I e e V e e Z x I e I e Z V e I e Z V x I                             2 2 1 ) ( 2 2 2 2 ) (        
  • 35. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 35 Long Line Hyperbolic function, R R c R c R xI xV Z x I xI Z xV x V     cosh sinh 1 ) ( sinh cosh ) (     Setting x=l, V(l)=Vs, I(l)=Is R R c s R c R s I V Z I I Z V V         cosh sinh 1 sinh cosh       cosh   D A   sinh c Z B    sinh 1 c Z C  1   BC AD
  • 36. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 36 Long Line R R s I Z V Y Z V ' 2 ' ' 1          R R s I Y Z V Y Z Y I                 2 ' ' 1 4 ' ' 1 ' Comparing B constant with hyperbolic function,            sinh sinh sinh sinh ' Z z z y z Z Z c     Nominal  representation for long line, Method 2
  • 37. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 37 Long Line 2 tanh 2 ' sinh 1 cosh 2 tanh , sinh 1 cosh 2 ' 1 cosh 2 ' sinh cosh 2 ' ' 1                                   ZY where ZY Y Z Y Z To obtain the Y’/2, compare the A constant,
  • 38. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 38 Long Line 2 tanh 2 '     Z Y  2 tanh 2 tanh       z y z zy   2 tanh 1 2 '   c Z Y  2 tanh 2 tanh       y y y  
  • 39. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 39 Long Line 2 tanh 2 '     Y Y  2 2 tanh 2     Y  VS + - + - VR IS IR IL 2 2 tanh 2 2 Y'     Y  2 Y'     sinh ' Z Z  Equivalent  model for long length line:
  • 40. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 40 Long Line Example 4.3: 250 km, 500 kV transmission line has per phase, z = (0.045 + j0.4) /km y = j4. 0 S/km Find ABCD for a  model of the long transmission line.
  • 41. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 41 Long Line Solution: 76 . 17 7 . 316 10 4 4 . 0 045 . 0 6 j j j y z Zc        001267 . 0 10 104 . 7 ) 10 4 )( 4 . 0 045 . 0 ( 5 6 j j j zy           36 . 98 88 . 10 ) sinh( ' j Z Z c      001 . 0 2 2 tanh 1 ' j Z Y c                 
  • 42. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 42 Long Line 0055 . 0 j 9504 . 0 2 Y' Z' 1 D A            36 . 98 88 . 10 Z' B j    j0.00098 4 Y' Z' 1 Y' C         