SlideShare a Scribd company logo
(1)
Atomic Structure and
Interatomic Bonding
Nucleus: Z = # protons
2
orbital electrons:
n = principal
quantum number
n=3 2 1
= 1 for hydrogen to 94 for plutonium
N = # neutrons
Atomic mass A ≈ Z + N
Adapted from Fig. 2.1,
Callister 6e.
BOHR ATOM
• have discrete energy states
• tend to occupy lowest available energy state.
3
Increasingenergy
n=1
n=2
n=3
n=4
1s
2s
3s
2p
3p
4s
4p
3d
Electrons...
Adapted from Fig. 2.5,
Callister 6e.
ELECTRON ENERGY STATES
4
• have complete s and p subshells
• tend to be unreactive.
Stable electron configurations...
Z Element Configuration
2 He 1s2
10 Ne 1s22s22p6
18 Ar 1s22s22p63s23p6
36 Kr 1s22s22p63s23p63d104s24p6
Adapted from Table 2.2,
Callister 6e.
STABLE ELECTRON CONFIGURATIONS
5
• Why? Valence (outer) shell usually not filled completely.
• Most elements: Electron configuration not stable.
Element
Hydrogen
Helium
Lithium
Beryllium
Boron
Carbon
...
Neon
Sodium
Magnesium
Aluminum
...
Argon
...
Krypton
Atomic #
1
2
3
4
5
6
10
11
12
13
18
...
36
Electron configuration
1s1
1s2 (stable)
1s22s1
1s22s2
1s22s22p1
1s22s22p2
...
1s22s22p6 (stable)
1s22s22p63s1
1s22s22p63s2
1s22s22p63s23p1
...
1s22s22p63s23p6 (stable)
...
1s22s22p63s23p63d104s246 (stable)
Adapted from Table 2.2,
Callister 6e.
SURVEY OF ELEMENTS
6
• Columns: Similar Valence Structure
Electropositive elements:
Readily give up electrons
to become + ions.
Electronegative elements:
Readily acquire electrons
to become - ions.
He
Ne
Ar
Kr
Xe
Rn
inertgases
accept1e
accept2e
giveup1e
giveup2e
giveup3e
FLi Be
Metal
Nonmetal
Intermediate
H
Na Cl
Br
I
At
O
SMg
Ca
Sr
Ba
Ra
K
Rb
Cs
Fr
Sc
Y
Se
Te
Po
Adapted
from Fig. 2.6,
Callister 6e.
THE PERIODIC TABLE
METALS
CERAMICS
POLYMERS
SEMICONDUCTOR
7
• Ranges from 0.7 to 4.0,
Smaller electronegativity Larger electronegativity
He
-
Ne
-
Ar
-
Kr
-
Xe
-
Rn
-
F
4.0
Cl
3.0
Br
2.8
I
2.5
At
2.2
Li
1.0
Na
0.9
K
0.8
Rb
0.8
Cs
0.7
Fr
0.7
H
2.1
Be
1.5
Mg
1.2
Ca
1.0
Sr
1.0
Ba
0.9
Ra
0.9
Ti
1.5
Cr
1.6
Fe
1.8
Ni
1.8
Zn
1.8
As
2.0
• Large values: tendency to acquire electrons.
Adapted from Fig. 2.7, Callister 6e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the
Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell
University.
ELECTRONEGATIVITY
Na (metal)
unstable
Cl (nonmetal)
unstable
electron
+ -
Coulombic
Attraction
Na (cation)
stable
Cl (anion)
stable
8
• Occurs between + and - ions.
• Requires electron transfer.
• Large difference in electronegativity required.
• Example: NaCl
IONIC BONDING
9
• Predominant bonding in Ceramics
Give up electrons Acquire electrons
He
-
Ne
-
Ar
-
Kr
-
Xe
-
Rn
-
F
4.0
Cl
3.0
Br
2.8
I
2.5
At
2.2
Li
1.0
Na
0.9
K
0.8
Rb
0.8
Cs
0.7
Fr
0.7
H
2.1
Be
1.5
Mg
1.2
Ca
1.0
Sr
1.0
Ba
0.9
Ra
0.9
Ti
1.5
Cr
1.6
Fe
1.8
Ni
1.8
Zn
1.8
As
2.0
CsCl
MgO
CaF2
NaCl
O
3.5
Adapted from Fig. 2.7, Callister 6e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the
Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell
University.
EXAMPLES: IONIC BONDING
10
• Requires shared electrons
• Example: CH4
C: has 4 valence e,
needs 4 more
H: has 1 valence e,
needs 1 more
Electronegativities
are comparable.
shared electrons
from carbon atom
shared electrons
from hydrogen
atoms
H
H
H
H
C
CH4
Adapted from Fig. 2.10, Callister 6e.
COVALENT BONDING
11
• Molecules with nonmetals
• Molecules with metals and nonmetals
• Elemental solids
• Compound solids (about column IVA)
He
-
Ne
-
Ar
-
Kr
-
Xe
-
Rn
-
F
4.0
Cl
3.0
Br
2.8
I
2.5
At
2.2
Li
1.0
Na
0.9
K
0.8
Rb
0.8
Cs
0.7
Fr
0.7
H
2.1
Be
1.5
Mg
1.2
Ca
1.0
Sr
1.0
Ba
0.9
Ra
0.9
Ti
1.5
Cr
1.6
Fe
1.8
Ni
1.8
Zn
1.8
As
2.0
SiC
C(diamond)
H2O
C
2.5
H2
Cl2
F2
Si
1.8
Ga
1.6
GaAs
Ge
1.8
O
2.0
columnIVA
Sn
1.8
Pb
1.8
Adapted from Fig. 2.7, Callister 6e. (Fig. 2.7 is
adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright
1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.
EXAMPLES: COVALENT BONDING
12
• Arises from a sea of donated valence electrons
(1, 2, or 3 from each atom).
• Primary bond for metals and their alloys
+ + +
+ + +
+ + + Adapted from Fig. 2.11, Callister 6e.
METALLIC BONDING
13
Arises from interaction between dipoles
• Permanent dipoles-molecule induced
• Fluctuating dipoles
+ - secondary
bonding
+ -
H Cl H Cl
secondary
bonding
secondary bonding
HH HH
H2 H2
secondary
bonding
ex: liquid H2asymmetric electron
clouds
+ - + -secondary
bonding
-general case:
-ex: liquid HCl
-ex: polymer
Adapted from Fig. 2.13, Callister 6e.
Adapted from Fig. 2.14,
Callister 6e.
Adapted from Fig. 2.14,
Callister 6e.
SECONDARY BONDING
14
Type
Ionic
Covalent
Metallic
Secondary
Bond Energy
Large!
Variable
large-Diamond
small-Bismuth
Variable
large-Tungsten
small-Mercury
smallest
Comments
Nondirectional (ceramics)
Directional
semiconductors, ceramics
polymer chains)
Nondirectional (metals)
Directional
inter-chain (polymer)
inter-molecular
SUMMARY: BONDING
15
• Bond length, r
• Bond energy, Eo
F
F
r
• Melting Temperature, Tm
Eo=
“bond energy”
Energy (r)
ro
r
unstretched length
r
larger Tm
smaller Tm
Energy (r)
ro
Tm is larger if Eo is larger.
PROPERTIES FROM BONDING: TM
16
• Elastic modulus, E
• E ~ curvature at ro
cross
sectional
area Ao
∆L
length, Lo
F
undeformed
deformed
∆LF
Ao
= E
Lo
Elastic modulus
r
larger Elastic Modulus
smaller Elastic Modulus
Energy
ro
unstretched length
E is larger if Eo is larger.
PROPERTIES FROM BONDING: E
17
• Coefficient of thermal expansion, α
• α ~ symmetry at ro
α is larger if Eo is smaller.
∆L
length, Lo
unheated, T1
heated, T2
= α (T2-T1)
∆L
Lo
coeff. thermal expansion
r
smaller α
larger α
Energy
ro
PROPERTIES FROM BONDING: α
18
Ceramics
(Ionic & covalent bonding):
Metals
(Metallic bonding):
Polymers
(Covalent & Secondary):
secondary bonding
Large bond energy
large Tm
large E
small α
Variable bond energy
moderate Tm
moderate E
moderate α
Directional Properties
Secondary bonding dominates
small T
small E
large α
SUMMARY: PRIMARY BONDS
2
• Non dense, random packing
• Dense, regular packing
Dense, regular-packed structures tend to have
lower energy.
Energy
r
typical neighbor
bond length
typical neighbor
bond energy
Energy
r
typical neighbor
bond length
typical neighbor
bond energy
ENERGY AND PACKING
• atoms pack in periodic, 3D arrays
• typical of:
3
Crystalline materials...
-metals
-many ceramics
-some polymers
• atoms have no periodic packing
• occurs for:
Noncrystalline materials...
-complex structures
-rapid cooling
Si Oxygen
crystalline SiO2
noncrystalline SiO2"Amorphous" = Noncrystalline
Adapted from Fig. 3.18(b),
Callister 6e.
Adapted from Fig. 3.18(a),
Callister 6e.
MATERIALS AND PACKING
4
• tend to be densely packed.
• have several reasons for dense packing:
-Typically, only one element is present, so all atomic
radii are the same.
-Metallic bonding is not directional.
-Nearest neighbor distances tend to be small in
order to lower bond energy.
• have the simplest crystal structures.
We will look at three such structures...
METALLIC CRYSTALS
5
• Rare due to poor packing (only Po has this structure)
• Close-packed directions are cube edges.
• Coordination # = 6
(# nearest neighbors)
(Courtesy P.M. Anderson)
SIMPLE CUBIC STRUCTURE (SC)
6
APF =
Volume of atoms in unit cell*
Volume of unit cell
*assume hard spheres
• APF for a simple cubic structure = 0.52
APF =
a3
4
3
π (0.5a)31
atoms
unit cell
atom
volume
unit cell
volume
close-packed directions
a
R=0.5a
contains 8 x 1/8 =
1 atom/unit cell
Adapted from Fig. 3.19,
Callister 6e.
ATOMIC PACKING FACTOR
• Coordination # = 8
7
Adapted from Fig. 3.2,
Callister 6e.
(Courtesy P.M. Anderson)
• Close packed directions are cube diagonals.
--Note: All atoms are identical; the center atom is shaded
differently only for ease of viewing.
BODY CENTERED CUBIC STRUCTURE
(BCC)
a
R
8
• APF for a body-centered cubic structure = 0.68
Close-packed directions:
length = 4R
= 3 a
Unit cell contains:
1 + 8 x 1/8
= 2 atoms/unit cell
Adapted from
Fig. 3.2,
Callister 6e.
ATOMIC PACKING FACTOR: BCC
APF =
a3
4
3
π ( 3a/4)32
atoms
unit cell atom
volume
unit cell
volume
9
• Coordination # = 12
Adapted from Fig. 3.1(a),
Callister 6e.
(Courtesy P.M. Anderson)
• Close packed directions are face diagonals.
--Note: All atoms are identical; the face-centered atoms are shaded
differently only for ease of viewing.
FACE CENTERED CUBIC STRUCTURE
(FCC)
APF =
a3
4
3
π ( 2a/4)34
atoms
unit cell atom
volume
unit cell
volume
Unit cell contains:
6 x 1/2 + 8 x 1/8
= 4 atoms/unit cell
a
10
• APF for a body-centered cubic structure = 0.74
Close-packed directions:
length = 4R
= 2 a
Adapted from
Fig. 3.1(a),
Callister 6e.
ATOMIC PACKING FACTOR: FCC
11
• ABCABC... Stacking Sequence
• 2D Projection
A sites
B sites
C sites
B B
B
BB
B B
C C
C
A
A
• FCC Unit Cell
A
B
C
FCC STACKING SEQUENCE
12
• Coordination # = 12
• ABAB... Stacking Sequence
• APF = 0.74
• 3D Projection • 2D Projection
A sites
B sites
A sites Bottom layer
Middle layer
Top layer
Adapted from Fig. 3.3,
Callister 6e.
HEXAGONAL CLOSE-PACKED
STRUCTURE (HCP)
13
• Compounds: Often have similar close-packed structures.
• Close-packed directions
--along cube edges.
• Structure of NaCl
(Courtesy P.M. Anderson) (Courtesy P.M. Anderson)
STRUCTURE OF COMPOUNDS: NaCl
14
Example: Copper
ρ = n A
VcNA
# atoms/unit cell Atomic weight (g/mol)
Volume/unit cell
(cm3/unit cell)
Avogadro's number
(6.023 x 1023 atoms/mol)
Data from Table inside front cover of Callister (see next slide):
• crystal structure = FCC: 4 atoms/unit cell
• atomic weight = 63.55 g/mol (1 amu = 1 g/mol)
• atomic radius R = 0.128 nm (1 nm = 10 cm)-7
Vc = a3 ; For FCC, a = 4R/ 2 ; Vc = 4.75 x 10-23cm3
Compare to actual: ρCu = 8.94 g/cm3
Result: theoreticalρCu = 8.89 g/cm3
THEORETICAL DENSITY, ρ
15
Element
Aluminum
Argon
Barium
Beryllium
Boron
Bromine
Cadmium
Calcium
Carbon
Cesium
Chlorine
Chromium
Cobalt
Copper
Flourine
Gallium
Germanium
Gold
Helium
Hydrogen
Symbol
Al
Ar
Ba
Be
B
Br
Cd
Ca
C
Cs
Cl
Cr
Co
Cu
F
Ga
Ge
Au
He
H
At. Weight
(amu)
26.98
39.95
137.33
9.012
10.81
79.90
112.41
40.08
12.011
132.91
35.45
52.00
58.93
63.55
19.00
69.72
72.59
196.97
4.003
1.008
Atomic radius
(nm)
0.143
------
0.217
0.114
------
------
0.149
0.197
0.071
0.265
------
0.125
0.125
0.128
------
0.122
0.122
0.144
------
------
Density
(g/cm3)
2.71
------
3.5
1.85
2.34
------
8.65
1.55
2.25
1.87
------
7.19
8.9
8.94
------
5.90
5.32
19.32
------
------
Crystal
Structure
FCC
------
BCC
HCP
Rhomb
------
HCP
FCC
Hex
BCC
------
BCC
HCP
FCC
------
Ortho.
Dia. cubic
FCC
------
------
Adapted from
Table, "Charac-
teristics of
Selected
Elements",
inside front
cover,
Callister 6e.
Characteristics of Selected Elements at 20C
ρmetals ρceramics ρpolymers
16
ρ(g/cm3)
Graphite/
Ceramics/
Semicond
Metals/
Alloys
Composites/
fibers
Polymers
1
2
20
30
Based on data in Table B1, Callister
*GFRE, CFRE, & AFRE are Glass,
Carbon, & Aramid Fiber-Reinforced
Epoxy composites (values based on
60% volume fraction of aligned fibers
in an epoxy matrix).10
3
4
5
0.3
0.4
0.5
Magnesium
Aluminum
Steels
Titanium
Cu,Ni
Tin, Zinc
Silver, Mo
Tantalum
Gold, W
Platinum
Graphite
Silicon
Glass-soda
Concrete
Si nitride
Diamond
Al oxide
Zirconia
HDPE, PS
PP, LDPE
PC
PTFE
PET
PVC
Silicone
Wood
AFRE*
CFRE*
GFRE*
Glass fibers
Carbon fibers
Aramid fibers
Why?
Metals have...
• close-packing
(metallic bonding)
• large atomic mass
Ceramics have...
• less dense packing
(covalent bonding)
• often lighter elements
Polymers have...
• poor packing
(often amorphous)
• lighter elements (C,H,O)
Composites have...
• intermediate values Data from Table B1, Callister 6e.
DENSITIES OF MATERIAL CLASSES
17
• Some engineering applications require single crystals:
• Crystal properties reveal features
of atomic structure.
(Courtesy P.M. Anderson)
--Ex: Certain crystal planes in quartz
fracture more easily than others.
--diamond single
crystals for abrasives
--turbine blades
Fig. 8.30(c), Callister 6e.
(Fig. 8.30(c) courtesy
of Pratt and Whitney).(Courtesy Martin Deakins,
GE Superabrasives,
Worthington, OH. Used
with permission.)
CRYSTALS AS BUILDING BLOCKS
18
• Most engineering materials are polycrystals.
• Nb-Hf-W plate with an electron beam weld.
• Each "grain" is a single crystal.
• If crystals are randomly oriented,
overall component properties are not directional.
• Crystal sizes typ. range from 1 nm to 2 cm
(i.e., from a few to millions of atomic layers).
Adapted from Fig. K,
color inset pages of
Callister 6e.
(Fig. K is courtesy of
Paul E. Danielson,
Teledyne Wah Chang
Albany)
1 mm
POLYCRYSTALS
19
• Single Crystals
-Properties vary with
direction: anisotropic.
-Example: the modulus
of elasticity (E) in BCC iron:
• Polycrystals
-Properties may/may not
vary with direction.
-If grains are randomly
oriented: isotropic.
(Epoly iron = 210 GPa)
-If grains are textured,
anisotropic.
E (diagonal) = 273 GPa
E (edge) = 125 GPa
200 µm
Data from Table 3.3,
Callister 6e.
(Source of data is
R.W. Hertzberg,
Deformation and
Fracture Mechanics of
Engineering Materials,
3rd ed., John Wiley
and Sons, 1989.)
Adapted from Fig.
4.12(b), Callister 6e.
(Fig. 4.12(b) is
courtesy of L.C. Smith
and C. Brady, the
National Bureau of
Standards,
Washington, DC [now
the National Institute
of Standards and
Technology,
Gaithersburg, MD].)
SINGLE VS POLYCRYSTALS
d=nλ/2sinθc
x-ray
intensity
(from
detector)
θ
θc
20
• Incoming X-rays diffract from crystal planes.
• Measurement of:
Critical angles, θc,
for X-rays provide
atomic spacing, d.
Adapted from Fig.
3.2W, Callister 6e.
X-RAYS TO CONFIRM CRYSTAL STRUCTURE
reflections must
be in phase to
detect signal
spacing
between
planes
d
incom
ing
X-rays
outgoing
X-rays
detector
θ
λ
θ
extra
distance
travelled
by wave “2”
“1”
“2”
“1”
“2”
21
• Atoms can be arranged and imaged!
Carbon monoxide
molecules arranged
on a platinum (111)
surface.
Photos produced from
the work of C.P. Lutz,
Zeppenfeld, and D.M.
Eigler. Reprinted with
permission from
International Business
Machines
Corporation,
copyright 1995.
Iron atoms
arranged on a
copper (111)
surface. These
Kanji characters
represent the word
“atom”.
SCANNING TUNNELING
MICROSCOPY
22
• Demonstrates "polymorphism"
The same atoms can
have more than one
crystal structure.
DEMO: HEATING AND
COOLING OF AN IRON WIRE
Temperature, C
BCC Stable
FCC Stable
914
1391
1536
shorter
longer!
shorter!
longer
Tc 768 magnet falls off
BCC Stable
Liquid
heat up
cool down
• Atoms may assemble into crystalline or
amorphous structures.
• We can predict the density of a material,
provided we know the atomic weight, atomic
radius, and crystal geometry (e.g., FCC,
BCC, HCP).
• Material properties generally vary with single
crystal orientation (i.e., they are anisotropic),
but properties are generally non-directional
(i.e., they are isotropic) in polycrystals with
randomly oriented grains.
23
SUMMARY

More Related Content

What's hot

Laporan praktikum kimia fisika
Laporan praktikum kimia fisika Laporan praktikum kimia fisika
Laporan praktikum kimia fisika Dede Suhendra
 
Stereoisomer Konfigurasional
Stereoisomer KonfigurasionalStereoisomer Konfigurasional
Stereoisomer Konfigurasional
Trisna Firmansyah
 
Bab 11 senyawa kompleks & polimer
Bab 11 senyawa kompleks & polimerBab 11 senyawa kompleks & polimer
Bab 11 senyawa kompleks & polimerImo Priyanto
 
Kimia Organik (Asam karboksilat dan ester)
Kimia Organik (Asam karboksilat dan ester)Kimia Organik (Asam karboksilat dan ester)
Kimia Organik (Asam karboksilat dan ester)
nailaamaliaa
 
Teori Orbital Molekul dan Ligan Field Theory PPT
Teori Orbital Molekul dan Ligan Field Theory PPTTeori Orbital Molekul dan Ligan Field Theory PPT
Teori Orbital Molekul dan Ligan Field Theory PPT
University Of Jakarta
 
Pertemuan 1 anorg.lanjut
Pertemuan 1 anorg.lanjutPertemuan 1 anorg.lanjut
Pertemuan 1 anorg.lanjut
Elisabeth Singarimbun
 
Senyawa koordinasi (kompleks)
Senyawa koordinasi (kompleks)Senyawa koordinasi (kompleks)
Senyawa koordinasi (kompleks)
Windha Herjinda
 
Analisis kation dan_anion
Analisis kation dan_anionAnalisis kation dan_anion
Analisis kation dan_anion
witri
 
Kestabilan ion kompleks
Kestabilan ion kompleksKestabilan ion kompleks
Kestabilan ion kompleks
Diana Rahmawati
 
Bank soal kimia dasar i
Bank soal kimia dasar iBank soal kimia dasar i
Bank soal kimia dasar itriyanidesi
 
ikatan kovalen koordinasi
ikatan kovalen koordinasiikatan kovalen koordinasi
ikatan kovalen koordinasi
Suprapta Winarka
 
Teori ikatan valensi
Teori ikatan valensiTeori ikatan valensi
Teori ikatan valensi
Devi Sudrajat
 
ANALISIS SENYAWA (ALKANA, SIKLOALKANA, ALKENA, ALKUNA, ALKOHOL DAN ETER)
ANALISIS SENYAWA (ALKANA, SIKLOALKANA, ALKENA, ALKUNA, ALKOHOL DAN ETER)ANALISIS SENYAWA (ALKANA, SIKLOALKANA, ALKENA, ALKUNA, ALKOHOL DAN ETER)
ANALISIS SENYAWA (ALKANA, SIKLOALKANA, ALKENA, ALKUNA, ALKOHOL DAN ETER)
Avivah Nasution
 
Ppt ikatan kimia (kelompok 1)
Ppt ikatan kimia (kelompok 1)Ppt ikatan kimia (kelompok 1)
Ppt ikatan kimia (kelompok 1)
kovalenkimia
 
Media Pembelajaran Larutan Elektrolit dan Non-elektrolit
Media Pembelajaran Larutan Elektrolit dan Non-elektrolitMedia Pembelajaran Larutan Elektrolit dan Non-elektrolit
Media Pembelajaran Larutan Elektrolit dan Non-elektrolit
Reza Firmansyah
 
HNO3
HNO3HNO3
Kinetika kimia kelompok 4
Kinetika kimia kelompok 4Kinetika kimia kelompok 4
Kinetika kimia kelompok 4
Nanda Reda
 
Isotop, isobar dan isoton
Isotop, isobar dan isotonIsotop, isobar dan isoton
Isotop, isobar dan isotonABINUL HAKIM
 

What's hot (20)

Laporan praktikum kimia fisika
Laporan praktikum kimia fisika Laporan praktikum kimia fisika
Laporan praktikum kimia fisika
 
Stereoisomer Konfigurasional
Stereoisomer KonfigurasionalStereoisomer Konfigurasional
Stereoisomer Konfigurasional
 
Bab 11 senyawa kompleks & polimer
Bab 11 senyawa kompleks & polimerBab 11 senyawa kompleks & polimer
Bab 11 senyawa kompleks & polimer
 
Kimia Organik (Asam karboksilat dan ester)
Kimia Organik (Asam karboksilat dan ester)Kimia Organik (Asam karboksilat dan ester)
Kimia Organik (Asam karboksilat dan ester)
 
Teori Orbital Molekul dan Ligan Field Theory PPT
Teori Orbital Molekul dan Ligan Field Theory PPTTeori Orbital Molekul dan Ligan Field Theory PPT
Teori Orbital Molekul dan Ligan Field Theory PPT
 
Pertemuan 1 anorg.lanjut
Pertemuan 1 anorg.lanjutPertemuan 1 anorg.lanjut
Pertemuan 1 anorg.lanjut
 
Senyawa koordinasi (kompleks)
Senyawa koordinasi (kompleks)Senyawa koordinasi (kompleks)
Senyawa koordinasi (kompleks)
 
Analisis kation dan_anion
Analisis kation dan_anionAnalisis kation dan_anion
Analisis kation dan_anion
 
Kestabilan ion kompleks
Kestabilan ion kompleksKestabilan ion kompleks
Kestabilan ion kompleks
 
Alkuna
AlkunaAlkuna
Alkuna
 
Padatan ionik
Padatan ionikPadatan ionik
Padatan ionik
 
Bank soal kimia dasar i
Bank soal kimia dasar iBank soal kimia dasar i
Bank soal kimia dasar i
 
ikatan kovalen koordinasi
ikatan kovalen koordinasiikatan kovalen koordinasi
ikatan kovalen koordinasi
 
Teori ikatan valensi
Teori ikatan valensiTeori ikatan valensi
Teori ikatan valensi
 
ANALISIS SENYAWA (ALKANA, SIKLOALKANA, ALKENA, ALKUNA, ALKOHOL DAN ETER)
ANALISIS SENYAWA (ALKANA, SIKLOALKANA, ALKENA, ALKUNA, ALKOHOL DAN ETER)ANALISIS SENYAWA (ALKANA, SIKLOALKANA, ALKENA, ALKUNA, ALKOHOL DAN ETER)
ANALISIS SENYAWA (ALKANA, SIKLOALKANA, ALKENA, ALKUNA, ALKOHOL DAN ETER)
 
Ppt ikatan kimia (kelompok 1)
Ppt ikatan kimia (kelompok 1)Ppt ikatan kimia (kelompok 1)
Ppt ikatan kimia (kelompok 1)
 
Media Pembelajaran Larutan Elektrolit dan Non-elektrolit
Media Pembelajaran Larutan Elektrolit dan Non-elektrolitMedia Pembelajaran Larutan Elektrolit dan Non-elektrolit
Media Pembelajaran Larutan Elektrolit dan Non-elektrolit
 
HNO3
HNO3HNO3
HNO3
 
Kinetika kimia kelompok 4
Kinetika kimia kelompok 4Kinetika kimia kelompok 4
Kinetika kimia kelompok 4
 
Isotop, isobar dan isoton
Isotop, isobar dan isotonIsotop, isobar dan isoton
Isotop, isobar dan isoton
 

Viewers also liked

Struktur dan ikatan atom
Struktur dan ikatan atomStruktur dan ikatan atom
Struktur dan ikatan atom
Suratno X-fRiend
 
Ppt struktur atom spu ikatan kimia
Ppt struktur atom spu ikatan kimiaPpt struktur atom spu ikatan kimia
Ppt struktur atom spu ikatan kimia
fkipkimia11
 
Nature of bonding
Nature of bondingNature of bonding
Nature of bonding
Zargham Shafi
 
Translate Bab 8 mechanics metallurgy Dieter (8.1-8.5)
Translate Bab 8 mechanics metallurgy Dieter (8.1-8.5)Translate Bab 8 mechanics metallurgy Dieter (8.1-8.5)
Translate Bab 8 mechanics metallurgy Dieter (8.1-8.5)
indra mawan
 
Bab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XI
Bab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XIBab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XI
Bab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XI
Bayu Ariantika Irsan
 
Wykład 20 Chemia nieorganiczna 1
Wykład 20 Chemia nieorganiczna 1Wykład 20 Chemia nieorganiczna 1
Wykład 20 Chemia nieorganiczna 1lojewska
 
Uji tarik
Uji tarikUji tarik
Uji tarik
alainbagus
 
Lecture of chemistry of secondary bonding
Lecture of chemistry of secondary bondingLecture of chemistry of secondary bonding
Lecture of chemistry of secondary bonding
BILAL ABDULLAH
 
Makalah Struktur Atom
Makalah Struktur AtomMakalah Struktur Atom
Makalah Struktur Atom
marnitukan
 
38368006 materi-pengetahuan-bahan-i
38368006 materi-pengetahuan-bahan-i38368006 materi-pengetahuan-bahan-i
38368006 materi-pengetahuan-bahan-i
shanchan29
 
Atomic bonding
Atomic bondingAtomic bonding
Atomic bonding
onlinemetallurgy.com
 
Material teknik
Material teknikMaterial teknik
Material teknik
Endang Hastutiningsih
 
Ringkasan zat padat
Ringkasan zat padatRingkasan zat padat
Ringkasan zat padat
Salim Abhitah
 
Ikatan Kristal - Fisika Zat Padat
Ikatan Kristal - Fisika Zat PadatIkatan Kristal - Fisika Zat Padat
Ikatan Kristal - Fisika Zat Padat
Ahmad Faisal Harish
 
Struktur kristal zat padat
Struktur kristal zat padatStruktur kristal zat padat
Struktur kristal zat padat
Vincent Cahya
 
Bab2: Struktur atom kimia tingkatan 4
Bab2: Struktur atom kimia tingkatan 4Bab2: Struktur atom kimia tingkatan 4
Bab2: Struktur atom kimia tingkatan 4
Surryaraj Poobalan
 
Ikatan Ion, Ikatan Kovalen, Senyawa Polar Non Polar, Gaya antar molekul
Ikatan Ion, Ikatan Kovalen, Senyawa Polar Non Polar, Gaya antar molekulIkatan Ion, Ikatan Kovalen, Senyawa Polar Non Polar, Gaya antar molekul
Ikatan Ion, Ikatan Kovalen, Senyawa Polar Non Polar, Gaya antar molekul
Niel Victory
 
Material Teknik Polimer
Material Teknik PolimerMaterial Teknik Polimer
Material Teknik Polimer
Zhafran Anas
 
Ikatan kimia ppt
Ikatan kimia pptIkatan kimia ppt
Ikatan kimia ppt
Venus Adhila
 
Diagram fasa
Diagram fasaDiagram fasa
Diagram fasa
SMK IT TEBUIRENG III
 

Viewers also liked (20)

Struktur dan ikatan atom
Struktur dan ikatan atomStruktur dan ikatan atom
Struktur dan ikatan atom
 
Ppt struktur atom spu ikatan kimia
Ppt struktur atom spu ikatan kimiaPpt struktur atom spu ikatan kimia
Ppt struktur atom spu ikatan kimia
 
Nature of bonding
Nature of bondingNature of bonding
Nature of bonding
 
Translate Bab 8 mechanics metallurgy Dieter (8.1-8.5)
Translate Bab 8 mechanics metallurgy Dieter (8.1-8.5)Translate Bab 8 mechanics metallurgy Dieter (8.1-8.5)
Translate Bab 8 mechanics metallurgy Dieter (8.1-8.5)
 
Bab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XI
Bab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XIBab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XI
Bab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XI
 
Wykład 20 Chemia nieorganiczna 1
Wykład 20 Chemia nieorganiczna 1Wykład 20 Chemia nieorganiczna 1
Wykład 20 Chemia nieorganiczna 1
 
Uji tarik
Uji tarikUji tarik
Uji tarik
 
Lecture of chemistry of secondary bonding
Lecture of chemistry of secondary bondingLecture of chemistry of secondary bonding
Lecture of chemistry of secondary bonding
 
Makalah Struktur Atom
Makalah Struktur AtomMakalah Struktur Atom
Makalah Struktur Atom
 
38368006 materi-pengetahuan-bahan-i
38368006 materi-pengetahuan-bahan-i38368006 materi-pengetahuan-bahan-i
38368006 materi-pengetahuan-bahan-i
 
Atomic bonding
Atomic bondingAtomic bonding
Atomic bonding
 
Material teknik
Material teknikMaterial teknik
Material teknik
 
Ringkasan zat padat
Ringkasan zat padatRingkasan zat padat
Ringkasan zat padat
 
Ikatan Kristal - Fisika Zat Padat
Ikatan Kristal - Fisika Zat PadatIkatan Kristal - Fisika Zat Padat
Ikatan Kristal - Fisika Zat Padat
 
Struktur kristal zat padat
Struktur kristal zat padatStruktur kristal zat padat
Struktur kristal zat padat
 
Bab2: Struktur atom kimia tingkatan 4
Bab2: Struktur atom kimia tingkatan 4Bab2: Struktur atom kimia tingkatan 4
Bab2: Struktur atom kimia tingkatan 4
 
Ikatan Ion, Ikatan Kovalen, Senyawa Polar Non Polar, Gaya antar molekul
Ikatan Ion, Ikatan Kovalen, Senyawa Polar Non Polar, Gaya antar molekulIkatan Ion, Ikatan Kovalen, Senyawa Polar Non Polar, Gaya antar molekul
Ikatan Ion, Ikatan Kovalen, Senyawa Polar Non Polar, Gaya antar molekul
 
Material Teknik Polimer
Material Teknik PolimerMaterial Teknik Polimer
Material Teknik Polimer
 
Ikatan kimia ppt
Ikatan kimia pptIkatan kimia ppt
Ikatan kimia ppt
 
Diagram fasa
Diagram fasaDiagram fasa
Diagram fasa
 

Similar to Struktur atom dan ikatan antar atom

Jif 419 webex1
Jif 419 webex1Jif 419 webex1
Jif 419 webex1
Fairul Izwan Muzamuddin
 
Ch03 crystal structures-fall2016-sent
Ch03 crystal structures-fall2016-sentCh03 crystal structures-fall2016-sent
Ch03 crystal structures-fall2016-sent
Savanna Holt
 
Crystals 3
Crystals 3Crystals 3
Lecture 2-Crystal Structure.pptx
Lecture 2-Crystal Structure.pptxLecture 2-Crystal Structure.pptx
Lecture 2-Crystal Structure.pptx
Hdjd9
 
Phys 4710 lec 3
Phys 4710 lec 3Phys 4710 lec 3
Phys 4710 lec 3
Dr. Abeer Kamal
 
Ch03 m
Ch03 mCh03 m
crystalstructure
crystalstructurecrystalstructure
Chapter 3 - crystal structure and solid state physics
Chapter 3 - crystal structure and solid state physicsChapter 3 - crystal structure and solid state physics
Chapter 3 - crystal structure and solid state physics
RockeyKumar5
 
Atoms and molecules
Atoms and moleculesAtoms and molecules
Atoms and molecules
harsh48041
 
Week-3-Day-1-Structure-of-Crystalline-Solids.ppt
Week-3-Day-1-Structure-of-Crystalline-Solids.pptWeek-3-Day-1-Structure-of-Crystalline-Solids.ppt
Week-3-Day-1-Structure-of-Crystalline-Solids.ppt
GERONVENICEV
 
Week-3-Day-1-Structure-of-Crystalline-Solids.ppt
Week-3-Day-1-Structure-of-Crystalline-Solids.pptWeek-3-Day-1-Structure-of-Crystalline-Solids.ppt
Week-3-Day-1-Structure-of-Crystalline-Solids.ppt
Nadyshuka
 
Solid state 12th
Solid state 12thSolid state 12th
Solid state 12th
adityaprashar7
 
Material sciece1 lecture 1 part 2
Material sciece1 lecture  1 part 2Material sciece1 lecture  1 part 2
Material sciece1 lecture 1 part 2
FREE EDUCATION FOR ALL
 
Module2
Module2Module2
Module2
rpclemson
 
1. Atomic Structure_Chemical Bonding(1).pdf
1. Atomic Structure_Chemical Bonding(1).pdf1. Atomic Structure_Chemical Bonding(1).pdf
1. Atomic Structure_Chemical Bonding(1).pdf
ssuserb2c8b0
 
Electronic configuration
Electronic configurationElectronic configuration
Electronic configuration
Hoshi94
 
Chemistry The Science in Context Volume I and II 4th Edition Gilbert Solution...
Chemistry The Science in Context Volume I and II 4th Edition Gilbert Solution...Chemistry The Science in Context Volume I and II 4th Edition Gilbert Solution...
Chemistry The Science in Context Volume I and II 4th Edition Gilbert Solution...
QuincyBrowns
 
Chapter 1.1
Chapter 1.1Chapter 1.1
Chapter 1.1
Wan Zulfadli
 
2. Atomic Structure and Interatomic Bonding.ppt
2. Atomic Structure and Interatomic Bonding.ppt2. Atomic Structure and Interatomic Bonding.ppt
2. Atomic Structure and Interatomic Bonding.ppt
AparnaZagabathuni1
 
Chemistry The Science in Context Volume I and II 5th Edition Gilbert Solution...
Chemistry The Science in Context Volume I and II 5th Edition Gilbert Solution...Chemistry The Science in Context Volume I and II 5th Edition Gilbert Solution...
Chemistry The Science in Context Volume I and II 5th Edition Gilbert Solution...
Andersonasaa
 

Similar to Struktur atom dan ikatan antar atom (20)

Jif 419 webex1
Jif 419 webex1Jif 419 webex1
Jif 419 webex1
 
Ch03 crystal structures-fall2016-sent
Ch03 crystal structures-fall2016-sentCh03 crystal structures-fall2016-sent
Ch03 crystal structures-fall2016-sent
 
Crystals 3
Crystals 3Crystals 3
Crystals 3
 
Lecture 2-Crystal Structure.pptx
Lecture 2-Crystal Structure.pptxLecture 2-Crystal Structure.pptx
Lecture 2-Crystal Structure.pptx
 
Phys 4710 lec 3
Phys 4710 lec 3Phys 4710 lec 3
Phys 4710 lec 3
 
Ch03 m
Ch03 mCh03 m
Ch03 m
 
crystalstructure
crystalstructurecrystalstructure
crystalstructure
 
Chapter 3 - crystal structure and solid state physics
Chapter 3 - crystal structure and solid state physicsChapter 3 - crystal structure and solid state physics
Chapter 3 - crystal structure and solid state physics
 
Atoms and molecules
Atoms and moleculesAtoms and molecules
Atoms and molecules
 
Week-3-Day-1-Structure-of-Crystalline-Solids.ppt
Week-3-Day-1-Structure-of-Crystalline-Solids.pptWeek-3-Day-1-Structure-of-Crystalline-Solids.ppt
Week-3-Day-1-Structure-of-Crystalline-Solids.ppt
 
Week-3-Day-1-Structure-of-Crystalline-Solids.ppt
Week-3-Day-1-Structure-of-Crystalline-Solids.pptWeek-3-Day-1-Structure-of-Crystalline-Solids.ppt
Week-3-Day-1-Structure-of-Crystalline-Solids.ppt
 
Solid state 12th
Solid state 12thSolid state 12th
Solid state 12th
 
Material sciece1 lecture 1 part 2
Material sciece1 lecture  1 part 2Material sciece1 lecture  1 part 2
Material sciece1 lecture 1 part 2
 
Module2
Module2Module2
Module2
 
1. Atomic Structure_Chemical Bonding(1).pdf
1. Atomic Structure_Chemical Bonding(1).pdf1. Atomic Structure_Chemical Bonding(1).pdf
1. Atomic Structure_Chemical Bonding(1).pdf
 
Electronic configuration
Electronic configurationElectronic configuration
Electronic configuration
 
Chemistry The Science in Context Volume I and II 4th Edition Gilbert Solution...
Chemistry The Science in Context Volume I and II 4th Edition Gilbert Solution...Chemistry The Science in Context Volume I and II 4th Edition Gilbert Solution...
Chemistry The Science in Context Volume I and II 4th Edition Gilbert Solution...
 
Chapter 1.1
Chapter 1.1Chapter 1.1
Chapter 1.1
 
2. Atomic Structure and Interatomic Bonding.ppt
2. Atomic Structure and Interatomic Bonding.ppt2. Atomic Structure and Interatomic Bonding.ppt
2. Atomic Structure and Interatomic Bonding.ppt
 
Chemistry The Science in Context Volume I and II 5th Edition Gilbert Solution...
Chemistry The Science in Context Volume I and II 5th Edition Gilbert Solution...Chemistry The Science in Context Volume I and II 5th Edition Gilbert Solution...
Chemistry The Science in Context Volume I and II 5th Edition Gilbert Solution...
 

Recently uploaded

The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptxThe use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
MAGOTI ERNEST
 
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdfTopic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
TinyAnderson
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
vluwdy49
 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
Anagha Prasad
 
Basics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different formsBasics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different forms
MaheshaNanjegowda
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
Abdul Wali Khan University Mardan,kP,Pakistan
 
aziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobelaziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobel
İsa Badur
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
Sérgio Sacani
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
University of Maribor
 
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Leonel Morgado
 
Immersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths ForwardImmersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths Forward
Leonel Morgado
 
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
AbdullaAlAsif1
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
University of Maribor
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
KrushnaDarade1
 
Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.
Aditi Bajpai
 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills MN
 
Cytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptxCytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptx
Hitesh Sikarwar
 
Compexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titrationCompexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titration
Vandana Devesh Sharma
 
Equivariant neural networks and representation theory
Equivariant neural networks and representation theoryEquivariant neural networks and representation theory
Equivariant neural networks and representation theory
Daniel Tubbenhauer
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
yqqaatn0
 

Recently uploaded (20)

The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptxThe use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
 
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdfTopic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
 
Basics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different formsBasics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different forms
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
 
aziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobelaziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobel
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
 
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
 
Immersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths ForwardImmersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths Forward
 
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
 
Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.
 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
 
Cytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptxCytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptx
 
Compexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titrationCompexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titration
 
Equivariant neural networks and representation theory
Equivariant neural networks and representation theoryEquivariant neural networks and representation theory
Equivariant neural networks and representation theory
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
 

Struktur atom dan ikatan antar atom

  • 2. Nucleus: Z = # protons 2 orbital electrons: n = principal quantum number n=3 2 1 = 1 for hydrogen to 94 for plutonium N = # neutrons Atomic mass A ≈ Z + N Adapted from Fig. 2.1, Callister 6e. BOHR ATOM
  • 3. • have discrete energy states • tend to occupy lowest available energy state. 3 Increasingenergy n=1 n=2 n=3 n=4 1s 2s 3s 2p 3p 4s 4p 3d Electrons... Adapted from Fig. 2.5, Callister 6e. ELECTRON ENERGY STATES
  • 4. 4 • have complete s and p subshells • tend to be unreactive. Stable electron configurations... Z Element Configuration 2 He 1s2 10 Ne 1s22s22p6 18 Ar 1s22s22p63s23p6 36 Kr 1s22s22p63s23p63d104s24p6 Adapted from Table 2.2, Callister 6e. STABLE ELECTRON CONFIGURATIONS
  • 5. 5 • Why? Valence (outer) shell usually not filled completely. • Most elements: Electron configuration not stable. Element Hydrogen Helium Lithium Beryllium Boron Carbon ... Neon Sodium Magnesium Aluminum ... Argon ... Krypton Atomic # 1 2 3 4 5 6 10 11 12 13 18 ... 36 Electron configuration 1s1 1s2 (stable) 1s22s1 1s22s2 1s22s22p1 1s22s22p2 ... 1s22s22p6 (stable) 1s22s22p63s1 1s22s22p63s2 1s22s22p63s23p1 ... 1s22s22p63s23p6 (stable) ... 1s22s22p63s23p63d104s246 (stable) Adapted from Table 2.2, Callister 6e. SURVEY OF ELEMENTS
  • 6. 6 • Columns: Similar Valence Structure Electropositive elements: Readily give up electrons to become + ions. Electronegative elements: Readily acquire electrons to become - ions. He Ne Ar Kr Xe Rn inertgases accept1e accept2e giveup1e giveup2e giveup3e FLi Be Metal Nonmetal Intermediate H Na Cl Br I At O SMg Ca Sr Ba Ra K Rb Cs Fr Sc Y Se Te Po Adapted from Fig. 2.6, Callister 6e. THE PERIODIC TABLE
  • 11.
  • 12. 7 • Ranges from 0.7 to 4.0, Smaller electronegativity Larger electronegativity He - Ne - Ar - Kr - Xe - Rn - F 4.0 Cl 3.0 Br 2.8 I 2.5 At 2.2 Li 1.0 Na 0.9 K 0.8 Rb 0.8 Cs 0.7 Fr 0.7 H 2.1 Be 1.5 Mg 1.2 Ca 1.0 Sr 1.0 Ba 0.9 Ra 0.9 Ti 1.5 Cr 1.6 Fe 1.8 Ni 1.8 Zn 1.8 As 2.0 • Large values: tendency to acquire electrons. Adapted from Fig. 2.7, Callister 6e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University. ELECTRONEGATIVITY
  • 13. Na (metal) unstable Cl (nonmetal) unstable electron + - Coulombic Attraction Na (cation) stable Cl (anion) stable 8 • Occurs between + and - ions. • Requires electron transfer. • Large difference in electronegativity required. • Example: NaCl IONIC BONDING
  • 14. 9 • Predominant bonding in Ceramics Give up electrons Acquire electrons He - Ne - Ar - Kr - Xe - Rn - F 4.0 Cl 3.0 Br 2.8 I 2.5 At 2.2 Li 1.0 Na 0.9 K 0.8 Rb 0.8 Cs 0.7 Fr 0.7 H 2.1 Be 1.5 Mg 1.2 Ca 1.0 Sr 1.0 Ba 0.9 Ra 0.9 Ti 1.5 Cr 1.6 Fe 1.8 Ni 1.8 Zn 1.8 As 2.0 CsCl MgO CaF2 NaCl O 3.5 Adapted from Fig. 2.7, Callister 6e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University. EXAMPLES: IONIC BONDING
  • 15. 10 • Requires shared electrons • Example: CH4 C: has 4 valence e, needs 4 more H: has 1 valence e, needs 1 more Electronegativities are comparable. shared electrons from carbon atom shared electrons from hydrogen atoms H H H H C CH4 Adapted from Fig. 2.10, Callister 6e. COVALENT BONDING
  • 16. 11 • Molecules with nonmetals • Molecules with metals and nonmetals • Elemental solids • Compound solids (about column IVA) He - Ne - Ar - Kr - Xe - Rn - F 4.0 Cl 3.0 Br 2.8 I 2.5 At 2.2 Li 1.0 Na 0.9 K 0.8 Rb 0.8 Cs 0.7 Fr 0.7 H 2.1 Be 1.5 Mg 1.2 Ca 1.0 Sr 1.0 Ba 0.9 Ra 0.9 Ti 1.5 Cr 1.6 Fe 1.8 Ni 1.8 Zn 1.8 As 2.0 SiC C(diamond) H2O C 2.5 H2 Cl2 F2 Si 1.8 Ga 1.6 GaAs Ge 1.8 O 2.0 columnIVA Sn 1.8 Pb 1.8 Adapted from Fig. 2.7, Callister 6e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University. EXAMPLES: COVALENT BONDING
  • 17. 12 • Arises from a sea of donated valence electrons (1, 2, or 3 from each atom). • Primary bond for metals and their alloys + + + + + + + + + Adapted from Fig. 2.11, Callister 6e. METALLIC BONDING
  • 18. 13 Arises from interaction between dipoles • Permanent dipoles-molecule induced • Fluctuating dipoles + - secondary bonding + - H Cl H Cl secondary bonding secondary bonding HH HH H2 H2 secondary bonding ex: liquid H2asymmetric electron clouds + - + -secondary bonding -general case: -ex: liquid HCl -ex: polymer Adapted from Fig. 2.13, Callister 6e. Adapted from Fig. 2.14, Callister 6e. Adapted from Fig. 2.14, Callister 6e. SECONDARY BONDING
  • 20. 15 • Bond length, r • Bond energy, Eo F F r • Melting Temperature, Tm Eo= “bond energy” Energy (r) ro r unstretched length r larger Tm smaller Tm Energy (r) ro Tm is larger if Eo is larger. PROPERTIES FROM BONDING: TM
  • 21. 16 • Elastic modulus, E • E ~ curvature at ro cross sectional area Ao ∆L length, Lo F undeformed deformed ∆LF Ao = E Lo Elastic modulus r larger Elastic Modulus smaller Elastic Modulus Energy ro unstretched length E is larger if Eo is larger. PROPERTIES FROM BONDING: E
  • 22. 17 • Coefficient of thermal expansion, α • α ~ symmetry at ro α is larger if Eo is smaller. ∆L length, Lo unheated, T1 heated, T2 = α (T2-T1) ∆L Lo coeff. thermal expansion r smaller α larger α Energy ro PROPERTIES FROM BONDING: α
  • 23. 18 Ceramics (Ionic & covalent bonding): Metals (Metallic bonding): Polymers (Covalent & Secondary): secondary bonding Large bond energy large Tm large E small α Variable bond energy moderate Tm moderate E moderate α Directional Properties Secondary bonding dominates small T small E large α SUMMARY: PRIMARY BONDS
  • 24. 2 • Non dense, random packing • Dense, regular packing Dense, regular-packed structures tend to have lower energy. Energy r typical neighbor bond length typical neighbor bond energy Energy r typical neighbor bond length typical neighbor bond energy ENERGY AND PACKING
  • 25. • atoms pack in periodic, 3D arrays • typical of: 3 Crystalline materials... -metals -many ceramics -some polymers • atoms have no periodic packing • occurs for: Noncrystalline materials... -complex structures -rapid cooling Si Oxygen crystalline SiO2 noncrystalline SiO2"Amorphous" = Noncrystalline Adapted from Fig. 3.18(b), Callister 6e. Adapted from Fig. 3.18(a), Callister 6e. MATERIALS AND PACKING
  • 26. 4 • tend to be densely packed. • have several reasons for dense packing: -Typically, only one element is present, so all atomic radii are the same. -Metallic bonding is not directional. -Nearest neighbor distances tend to be small in order to lower bond energy. • have the simplest crystal structures. We will look at three such structures... METALLIC CRYSTALS
  • 27. 5 • Rare due to poor packing (only Po has this structure) • Close-packed directions are cube edges. • Coordination # = 6 (# nearest neighbors) (Courtesy P.M. Anderson) SIMPLE CUBIC STRUCTURE (SC)
  • 28. 6 APF = Volume of atoms in unit cell* Volume of unit cell *assume hard spheres • APF for a simple cubic structure = 0.52 APF = a3 4 3 π (0.5a)31 atoms unit cell atom volume unit cell volume close-packed directions a R=0.5a contains 8 x 1/8 = 1 atom/unit cell Adapted from Fig. 3.19, Callister 6e. ATOMIC PACKING FACTOR
  • 29. • Coordination # = 8 7 Adapted from Fig. 3.2, Callister 6e. (Courtesy P.M. Anderson) • Close packed directions are cube diagonals. --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing. BODY CENTERED CUBIC STRUCTURE (BCC)
  • 30. a R 8 • APF for a body-centered cubic structure = 0.68 Close-packed directions: length = 4R = 3 a Unit cell contains: 1 + 8 x 1/8 = 2 atoms/unit cell Adapted from Fig. 3.2, Callister 6e. ATOMIC PACKING FACTOR: BCC APF = a3 4 3 π ( 3a/4)32 atoms unit cell atom volume unit cell volume
  • 31. 9 • Coordination # = 12 Adapted from Fig. 3.1(a), Callister 6e. (Courtesy P.M. Anderson) • Close packed directions are face diagonals. --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing. FACE CENTERED CUBIC STRUCTURE (FCC)
  • 32. APF = a3 4 3 π ( 2a/4)34 atoms unit cell atom volume unit cell volume Unit cell contains: 6 x 1/2 + 8 x 1/8 = 4 atoms/unit cell a 10 • APF for a body-centered cubic structure = 0.74 Close-packed directions: length = 4R = 2 a Adapted from Fig. 3.1(a), Callister 6e. ATOMIC PACKING FACTOR: FCC
  • 33. 11 • ABCABC... Stacking Sequence • 2D Projection A sites B sites C sites B B B BB B B C C C A A • FCC Unit Cell A B C FCC STACKING SEQUENCE
  • 34. 12 • Coordination # = 12 • ABAB... Stacking Sequence • APF = 0.74 • 3D Projection • 2D Projection A sites B sites A sites Bottom layer Middle layer Top layer Adapted from Fig. 3.3, Callister 6e. HEXAGONAL CLOSE-PACKED STRUCTURE (HCP)
  • 35. 13 • Compounds: Often have similar close-packed structures. • Close-packed directions --along cube edges. • Structure of NaCl (Courtesy P.M. Anderson) (Courtesy P.M. Anderson) STRUCTURE OF COMPOUNDS: NaCl
  • 36. 14 Example: Copper ρ = n A VcNA # atoms/unit cell Atomic weight (g/mol) Volume/unit cell (cm3/unit cell) Avogadro's number (6.023 x 1023 atoms/mol) Data from Table inside front cover of Callister (see next slide): • crystal structure = FCC: 4 atoms/unit cell • atomic weight = 63.55 g/mol (1 amu = 1 g/mol) • atomic radius R = 0.128 nm (1 nm = 10 cm)-7 Vc = a3 ; For FCC, a = 4R/ 2 ; Vc = 4.75 x 10-23cm3 Compare to actual: ρCu = 8.94 g/cm3 Result: theoreticalρCu = 8.89 g/cm3 THEORETICAL DENSITY, ρ
  • 37. 15 Element Aluminum Argon Barium Beryllium Boron Bromine Cadmium Calcium Carbon Cesium Chlorine Chromium Cobalt Copper Flourine Gallium Germanium Gold Helium Hydrogen Symbol Al Ar Ba Be B Br Cd Ca C Cs Cl Cr Co Cu F Ga Ge Au He H At. Weight (amu) 26.98 39.95 137.33 9.012 10.81 79.90 112.41 40.08 12.011 132.91 35.45 52.00 58.93 63.55 19.00 69.72 72.59 196.97 4.003 1.008 Atomic radius (nm) 0.143 ------ 0.217 0.114 ------ ------ 0.149 0.197 0.071 0.265 ------ 0.125 0.125 0.128 ------ 0.122 0.122 0.144 ------ ------ Density (g/cm3) 2.71 ------ 3.5 1.85 2.34 ------ 8.65 1.55 2.25 1.87 ------ 7.19 8.9 8.94 ------ 5.90 5.32 19.32 ------ ------ Crystal Structure FCC ------ BCC HCP Rhomb ------ HCP FCC Hex BCC ------ BCC HCP FCC ------ Ortho. Dia. cubic FCC ------ ------ Adapted from Table, "Charac- teristics of Selected Elements", inside front cover, Callister 6e. Characteristics of Selected Elements at 20C
  • 38. ρmetals ρceramics ρpolymers 16 ρ(g/cm3) Graphite/ Ceramics/ Semicond Metals/ Alloys Composites/ fibers Polymers 1 2 20 30 Based on data in Table B1, Callister *GFRE, CFRE, & AFRE are Glass, Carbon, & Aramid Fiber-Reinforced Epoxy composites (values based on 60% volume fraction of aligned fibers in an epoxy matrix).10 3 4 5 0.3 0.4 0.5 Magnesium Aluminum Steels Titanium Cu,Ni Tin, Zinc Silver, Mo Tantalum Gold, W Platinum Graphite Silicon Glass-soda Concrete Si nitride Diamond Al oxide Zirconia HDPE, PS PP, LDPE PC PTFE PET PVC Silicone Wood AFRE* CFRE* GFRE* Glass fibers Carbon fibers Aramid fibers Why? Metals have... • close-packing (metallic bonding) • large atomic mass Ceramics have... • less dense packing (covalent bonding) • often lighter elements Polymers have... • poor packing (often amorphous) • lighter elements (C,H,O) Composites have... • intermediate values Data from Table B1, Callister 6e. DENSITIES OF MATERIAL CLASSES
  • 39. 17 • Some engineering applications require single crystals: • Crystal properties reveal features of atomic structure. (Courtesy P.M. Anderson) --Ex: Certain crystal planes in quartz fracture more easily than others. --diamond single crystals for abrasives --turbine blades Fig. 8.30(c), Callister 6e. (Fig. 8.30(c) courtesy of Pratt and Whitney).(Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.) CRYSTALS AS BUILDING BLOCKS
  • 40. 18 • Most engineering materials are polycrystals. • Nb-Hf-W plate with an electron beam weld. • Each "grain" is a single crystal. • If crystals are randomly oriented, overall component properties are not directional. • Crystal sizes typ. range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers). Adapted from Fig. K, color inset pages of Callister 6e. (Fig. K is courtesy of Paul E. Danielson, Teledyne Wah Chang Albany) 1 mm POLYCRYSTALS
  • 41. 19 • Single Crystals -Properties vary with direction: anisotropic. -Example: the modulus of elasticity (E) in BCC iron: • Polycrystals -Properties may/may not vary with direction. -If grains are randomly oriented: isotropic. (Epoly iron = 210 GPa) -If grains are textured, anisotropic. E (diagonal) = 273 GPa E (edge) = 125 GPa 200 µm Data from Table 3.3, Callister 6e. (Source of data is R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., John Wiley and Sons, 1989.) Adapted from Fig. 4.12(b), Callister 6e. (Fig. 4.12(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC [now the National Institute of Standards and Technology, Gaithersburg, MD].) SINGLE VS POLYCRYSTALS
  • 42. d=nλ/2sinθc x-ray intensity (from detector) θ θc 20 • Incoming X-rays diffract from crystal planes. • Measurement of: Critical angles, θc, for X-rays provide atomic spacing, d. Adapted from Fig. 3.2W, Callister 6e. X-RAYS TO CONFIRM CRYSTAL STRUCTURE reflections must be in phase to detect signal spacing between planes d incom ing X-rays outgoing X-rays detector θ λ θ extra distance travelled by wave “2” “1” “2” “1” “2”
  • 43. 21 • Atoms can be arranged and imaged! Carbon monoxide molecules arranged on a platinum (111) surface. Photos produced from the work of C.P. Lutz, Zeppenfeld, and D.M. Eigler. Reprinted with permission from International Business Machines Corporation, copyright 1995. Iron atoms arranged on a copper (111) surface. These Kanji characters represent the word “atom”. SCANNING TUNNELING MICROSCOPY
  • 44. 22 • Demonstrates "polymorphism" The same atoms can have more than one crystal structure. DEMO: HEATING AND COOLING OF AN IRON WIRE Temperature, C BCC Stable FCC Stable 914 1391 1536 shorter longer! shorter! longer Tc 768 magnet falls off BCC Stable Liquid heat up cool down
  • 45. • Atoms may assemble into crystalline or amorphous structures. • We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP). • Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but properties are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains. 23 SUMMARY