More Related Content
PPTX
PPTX
PDF
PDF
PPTX
PDF
PDF
PDF
Rate-Distortion Function for Gamma Sources under Absolute-Log Distortion What's hot
PDF
PPTX
PPTX
PPT
PDF
PPTX
PDF
PPTX
PDF
PPTX
PDF
Stochastic complexities of reduced rank regression証明概略 PDF
【やってみた】リーマン多様体へのグラフ描画アルゴリズムの実装【実装してみた】 PPTX
【材料力学】3次元空間のひずみ (II-11 2018) PPTX
【材料力学】3次元空間のひずみ (II-08-1 2020) PDF
PDF
PPTX
PDF
PDF
PDF
Matrix Multiplication in Strassen Algorithm Similar to 曲面の面積の計算と証明
PDF
PPTX
PDF
PDF
PPTX
PDF
PDF
PDF
PDF
2014年度秋学期 応用数学(解析) 第4部・複素関数論ダイジェスト / 第13回 孤立特異点と留数 (2015. 1. 8) More from nabeshimamasataka
PDF
PPTX
PPTX
PPTX
PPTX
PPTX
PPTX
PPTX
PPTX
PPTX
PPTX
PPTX
PPTX
PPTX
PPTX
PPTX
PPTX
PPTX
PPTX
PPTX
曲面の面積の計算と証明
- 1.
円盤D={ 𝑥, 𝑦|𝑥2
+ 𝑦2
≦ 1}及び十分なめらかな2変数関数f(x,y)を用いて
E={(x,y,z)|z=f(x,y) D∋(x,y)}と定義される曲面の面積Sは2重積分
S=∬ 𝐷 1 +
𝜕𝑓
𝜕𝑥
2
+
𝜕𝑓
𝜕𝑦
2
dxdyであ耐えられる。
(1)g(r,θ)=f(rcosθ,rsinθ)と極座標表示した時
S= 0
2𝜋
𝑑𝜃 0
1
𝑑𝑟 𝑟2 + 𝑟2 𝜕𝑔
𝜕𝑟
2
+
𝜕𝑔
𝜕𝜃
2
となることを示しなさい。
(2)g(r,θ)=r+ 2𝜃である時の面積Sを求めなさい。
- 2.
円盤D={ 𝑥, 𝑦|𝑥2
+ 𝑦2
≦ 1}及び十分なめらかな2変数関数f(x,y)を用いて
E={(x,y,z)|z=f(x,y) D∋(x,y)}と定義される曲面の面積Sは2重積分
S=∬ 𝐷 1 +
𝜕𝑓
𝜕𝑥
2
+
𝜕𝑓
𝜕𝑦
2
dxdyであ耐えられる。
(1)g(r,θ)=f(rcosθ,rsinθ)と極座標表示した時
S= 0
2𝜋
𝑑𝜃 0
1
𝑑𝑟 𝑟2 + 𝑟2 𝜕𝑔
𝜕𝑟
2
+
𝜕𝑔
𝜕𝜃
2
となることを示しなさい。
証明
x=rcosθ y=rsinθとすればD∋(x,y)のとき0≦r≦1 0≦θ≦2π
𝜕 𝑥,𝑦
𝜕 𝑟,𝜃
=
𝑥 𝑟 𝑥 𝜃
𝑦𝑟 𝑦 𝜃
=𝑟 gr = fxxr + fyyr = fxcosθ+fy 𝑠𝑖𝑛𝜃 g 𝜃= fxx 𝜃 + fyy 𝜃 = −fxsinθ+fy 𝑟𝑐𝑜𝑠𝜃
fx, 𝑓𝑦について解くとfx=𝑔 𝑟 𝑐𝑜𝑠𝜃 −
𝑠𝑖𝑛𝜃
𝑟
𝑔 𝜃, 𝑓𝑦=𝑔 𝑟 𝑠𝑖𝑛𝜃 +
𝑐𝑜𝑠𝜃
𝑟
𝑔 𝜃
1 +
𝜕𝑓
𝜕𝑥
2
+
𝜕𝑓
𝜕𝑦
2
=1+
𝜕𝑔
𝜕𝑟
2
+
1
𝑟2
𝜕𝑔
𝜕𝜃
2
よって∬ 𝐷 1 +
𝜕𝑓
𝜕𝑥
2
+
𝜕𝑓
𝜕𝑦
2
dxdy= 0
2𝜋
𝑑𝜃 0
1
𝑑𝑟 𝑟2 + 𝑟2 𝜕𝑔
𝜕𝑟
2
+
𝜕𝑔
𝜕𝜃
2
(2)g(r,θ)=r+ 2𝜃である時の面積Sを求めなさい。
計算
gr=1 g 𝜃= 2
S=2 2𝜋 0
1
2𝑟2 + 1 𝑑𝑟 ルートが取れるように置換すると t=r+ 𝑟2 + 1
計算するとS= 2𝜋( 2 + log(1 + 2𝜋))となる。