ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)2(
ﻣوﺗﺴﻤﯿﺎت ﺼﻄﻠﺤﺎت
ﻟﯿﻜﻦz =x + i yﻣﺮﻛﺒﺎ ﻋﺪدا
(1اﻟﺤﻘﯿﻘﻲ ﻟﻠﻌﺪد ﯾﻘﺎلxأﻧﮫ)اﻟﺤﻘﯿﻘﻲ اﻟﺠﺰءReal part(ﺑﺎﺧﺘﺼﺎر ﻟﮫ وﯾﺮﻣﺰ:Re ( z ) = x
(2اﻟﺤﻘﯿﻘﻲ ﻟﻠﻌﺪد ﯾﻘﺎلyأﻧﮫ)اﻟﺘﺨﯿﻠﻲ اﻟﺠﺰءImaginary part(ﺑﺎﺧﺘﺼﺎر ﻟﮫ وﯾﺮﻣﺰ:Im ( z ) = y
(3إذاﻛﺎنy = 0ﻋﻨﺪﺋﺬ ﻓﯿﻜﻦz = xوﯾﺼﺒﺢzﺣﻘﯿﻘﯿﺎ ﻋﺪدا
ﺑﺎﻟﺼﻮرة ﻣﺮﻛﺒﺎ ﻋﺪدا ھﻮ ﺣﻘﯿﻘﻲ ﻋﺪد ﻛﻞ أن أيz = x + 0iاﻟﺤﻘﯿﻘﯿﺔ اﻷﻋﺪاد ﻣﺠﻤﻮﻋﺔ ﺗﻜﻮن ﻟﺬا
اﻟﻤﺮﻛﺒﺔ اﻷﻋﺪاد ﻣﺠﻤﻮﻋﺔ ﻣﻦ ﺟﺰﺋﯿﺔ ﻣﺠﻤﻮﻋﺔ ھﻲ.
(4إذاﻛﺎنx = 0ﺑﺎﻟﺸﻜﻞ اﻟﻤﺮﻛﺐ اﻟﻌﺪد ﻓﯿﺼﺒﺢz = y iاﻟﻤ اﻟﻌﺪد ﻋﻠﻰ وﯾﻄﻠﻖاﺳﻢ اﻟﺤﺎﻟﺔ ھﺬه ﻓﻲ ﺮﻛﺐ:
ﺑﺤﺖ ﻣﺮﻛﺐ ﻋﺪدPure imaginary number
(5اﻻﻋﺘﯿﺎدي أو اﻟﺠﺒﺮي اﻟﺸﻜﻞz = x + i yأﺧﺮى ﺻﯿﻐﺔ ﻟﮫھﻲz = ( x , y )ﺑﺎﻟﺼﯿﻐﺔ ﺗﺴﻤﻰ
اﻟﺪﯾﻜﺎرﺗﯿﺔﻟﯿﻤﺜﻞ اﻟﻤﺮﻛﺐ ﻟﻠﻌﺪدzﻓﻲ وﺣﯿﺪة ﻧﻘﻄﺔااﻟﻤﺮﻛ ﻟﻤﺴﺘﻮىﺐ( Complex plane).
ﻣﺜﻼ:ﺑﯿﺎﻧﯿﺎ ﻣﻤﺜﻠﺔ اﻟﺘﺎﻟﯿﺔ اﻟﻤﺮﻛﺒﺔ اﻷﻋﺪاد:2 +5i , - 5 +i , 4 – 3i , -5i
Real axis
Imaginaryaxis
- 5 i
- 5+ i
2 + 5 i
4 – 3 i
3.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)3(
ﻣﺜﻼ:اﻟﻤﺮﻛﺐ ﻟﻠﻌﺪدzﺟﺪ اﻟﺘﺎﻟﻲ:Im(z), Re(z)
1 1 11) 2 3 Re( ) 2 ; Im( ) 3z i z z
2 2 22) 2 3 Re( ) 3 ; Im( ) 2z i z z
3 3 33) 2 3 Re( ) 2 ; Im( ) 3z i a b i z a z b
4 4 44) 5 Re( ) 0 ; Im( ) 5z i z z
5 5 55) 6 Re( ) 6 ; Im( ) 0z z z
6 5 66) Re( ) ; Im( )
a
h h h
a i b b
z z z
ﺍﳌﺮﻛﺒﺔ ﺍﻷﻋﺪﺍﺩ ﻋﻠﻰ ﺍﻟﻀﺮﺏ ﻭﻋﻤﻠﻴﺔ ﺍﳉﻤﻊ ﻋﻤﻠﻴﺔ ﺧﻮﺍﺹ
أﻷﻋﺪاد ﺧﺬ, ,z w v
1(ﺗﻮﻓﺮاﻟﺠﻤﻌﻲ اﻟﻤﺤﺎﯾﺪ اﻟﻌﻨﺼﺮواﻟﻮﺣﯿﺪ)( additive unitﺣﯿﺚ اﻟﺼﻔﺮ وھﻮ:z + 0 = z.
2(ﻣﺮﻛﺐ ﻋﺪد ﻟﻜﻞzاﻟﺠﻤﻌﻲ ﻧﻈﺮﯾﮫ ﯾﻮﺟﺪ- zوﯾﺤﻘﻖ:Additive inverses z + (-z)= 0
3(ﻋﻠﻰ ﺗﺠﻤﯿﻌﯿﺔ اﻟﺠﻤﻊ ﻋﻤﻠﯿﺔﻣﺠﻤﻮﻋﺔاﻷﻋﺪاداﻟﻤﺮﻛﺒﺔ:Addition is associative
z w v z w v
4(ﻋﻤﻠﯿﺔاﻟﺠﻤﻊاﻟﻤﺮﻛﺒﺔ اﻷﻋﺪاد ﻣﺠﻤﻮﻋﺔ ﻋﻠﻰ ﺗﺒﺪﯾﻠﯿﮫAddition is commutative
z w w z
5(ﻋﻠﻰ اﻟﻀﺮب ﻋﻤﻠﯿﺔ ﻓﻲاﻷﻋﺪاداﻟﻤﺤﺎﯾﺪ اﻟﻌﻨﺼﺮ ﯾﺘﻮﻓﺮ اﻟﻤﺮﻛﺒﺔاﻟﻮﺣﯿﺪاﻟﻮاﺣﺪ وھﻮ:
Multiplicative unit z · 1 z
6(ﻣﺮﻛﺐ ﻋﺪد ﻟﻜﻞz،0z ھﻮ اﻟﻀﺮﺑﻲ ﻣﻌﻜﻮﺳﮫ ﯾﻮﺟﺪ
1
z
وﯾﺤﻘﻖ:
1 Multiplicative z · z 1inverse
7(ﺗﺠﻤﯿﻌﯿﺔ اﻟﻤﺮﻛﺒﺔ اﻷﻋﺪاد ﻋﻠﻰ اﻟﻀﺮب ﻋﻤﻠﯿﺔ:
( Multiplication is associative) z w v z ( w v).
4.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)4(
8(ا اﻷﻋﺪاد ﻋﻠﻰاﻟﻀﺮب ﻋﻤﻠﯿﺔﺗﺒﺪﯾﻠﯿﮫ ﻟﻤﺮﻛﺒﺔ:
Multiplicationis commutative z w wz
9(اﻟﺠﻤﻊ ﻋﻤﻠﯿﺔ ﻋﻠﻰ ﺗﻮزﯾﻌﯿﺔ اﻟﻀﺮب ﻋﻤﻠﯿﺔ:
Distributivity of multiplication over addition z w v z w z v
ﻣﻦ:(1 , (2 ,(3 , (4ﻧﺴﺘﻨﺞأن:( , )ﺗﺒﺪﯾﻠﯿﮫ زﻣﺮة ﺗﻤﺜﻞ....( 11 )
ﻣﻦ:(5 , (6 ,(7 , (8ﻧﺴﺘﻨﺞأن:( , )
ﺗﺒﺪﯾﻠﯿﮫ زﻣﺮة ﺗﻤﺜﻞ......(12)
ﻣﻦ(9وﻣﻊ(11)و(12)ﻧﺴﺘﻨﺘﺞ( , , ) ﺣﻘﻼواﻟﻤﺮﻛﺒﺔ اﻷﻋﺪاد ﺣﻘﻞ ﯾﺴﻤﻰ.
اﻟ اﻷﻋﺪاد ﻋﻠﻰ ﯾﻄﺒﻖ اﻟﺤﻘﯿﻘﯿﺔ اﻷﻋﺪاد ﻧﻈﺎم أن ﻧﺴﺘﻨﺘﺞ ﺳﺒﻖ ﻣﻤﺎﻤﺮﻛﺒﺔ.
21 1i i
4p اﻟﻜﺒﯿﺮة ﻟﻠﻘﻮى وﺧﺎﺻﺔ اﻟﺘﺎﻟﯿﺔ اﻟﻘﺎﻋﺪة وﺿﻊ وﻧﺴﺘﻄﯿﻊ:ﻟﺘﻜﻦ
وﻟﺘﻜﻦqﻗ ﺧﺎرج ﺗﺴﺎويﺴﻤﺔpﻋﻠﻰ4اﻟﺒﺎﻗﻲ وﻟﯿﻜﻦrاﻟﻘﻮل ﯾﻤﻜﻦ اﻟﺒﺎﻗﻲ ﻧﻈﺮﯾﺔ وﺑﻤﻮﺟﺐ
. ., 4 0 4i e p q r where r
44 4 4( ) 1 1p q r q qr r r rHence i i i i i i i i i
34 32 2 4 8 2
1: ( ) 1ex i i i i
63 4 15 3 3 2
2: ( ) 1ex i i i i i i i
1992 4 498
3: ( ) 1ex i i
ﻗﻮىiاﻟﺼﺤﯿﺤﺔ)The powers of i(
5.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)5(
18 18 1820 2
4: 1 1ex i i i i i
31 32 33 34 31 32 33 34
31 32 33 34 4
31 32 33 34 36
5 4 3 2 4
5: ( ) 1
( ) ,
( ) ; 9
1
q
ex i i i i i i i i
i i i i i q
i i i i i q
i i i i i i
2
1i i
0i i
7 7 7 7 7
4 2
6:( 4 ) ( 4 1) (2 ) 2
128 128
ex i i
i i i i
اﻟﻘﻮل ﯾﻤﻜﻦ اﻟﺴﺎﺑﻘﺔ اﻷﻣﺜﻠﺔ ﻣﻦ:إذاﻛﺎنnﻓﺎن ﺻﺤﯿﺤﺎ ﻋﺪدا 1,1, ,n
i i i
وأن:
4 4 1 4 2 4 3 mod 4
1 ; ; 1 ; ;n n n n n n
i i i i i i i i
Modulo operation finds the remainder of division of one number by another.
n mod 4ﺗﻌﻨﻲ)اﻟﺒﺎﻗﻲ(اﻟﻌﺪد ﻟﻘﺴﻤﺔnﻋﻠﻰ4ﻣﺜﻼ ، 25 mod 4 1 , 25 mod 7 4
ﯾﻠﻲ ﻟﻤﺎ اﻧﺘﺒﮫ:اﻟﺘ اﻟﻌﺒﺎرةﺧﺎﻃﺌﺔ ﺎﻟﯿﺔ
1 1 ( 1) ( 1) 1 1
واﻟﺼﺤﯿﺢ:
2
1 1 1i i i
ﻣﺮﻛﺒﯿﻦ ﻋﺪدﯾﻦ ﺗﺴﺎوي ﺗﻌﺮﯾﻒEquality of Complex Numbers
1 2,let z a bi z c di
a bi c di a c and b d
أي:1 2 1 2Re( ) Re( ) Im( ) Im( )z z and z z
6.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)6(
Ex:
ﻗﯿﻤﺔ ﺟﺪx ,yاﻟﻌﻼﻗﺔ ﺗﺤﻘﻖ واﻟﺘﻲ اﻟﺤﻘﯿﻘﯿﯿﻦ:x2
- 2xy i – y2
= 4i – 3
اﻟﺤﻞ:(1اﻟﻘﯿﺎﺳﯿﺔ ﻟﻠﺼﯿﻐﺔ اﻟﻤﻌﺎدﻟﺔ ﻃﺮﻓﻲ ﺣﻮل a b iاﻟﻤﺮﻛﺐ ﻟﻠﻌﺪدﯾﻠﻲ وﻛﻤﺎ:
2 2
( – ) ( 2 ) – 3 4 x y xy i i
(2ﻣﺮﻛﺒﯿﻦ ﻋﺪدﯾﻦ ﺗﺴﺎوي ﺗﻌﺮﯾﻒ ﻃﺒﻖ:
2 2
1 2Re( 3 ..........( 1) Re( ) )x y ez z q
1 2 2 4
2
.......
Im( ) Im( )
...( 2)
xy
y eq
x
z z
ﻗﯿﻤﺔ ﺗﻌﻮضyاﻷوﻟﻰ اﻟﻤﻌﺎدﻟﺔ ﻓﻲ:
2
( )
2 4 2
2
4 2
2 2
4
3 ..........( 1) 4 3
3 4 0
( 4)( 1)
x
x eq x x
x
x x
x x
2 2
4 0 4 4 4 1 2x x x i ﻞ ﺗﮭﻤ or
2 2
1 0 1 1
2
1 2
1 2
x x x
but y
x
When x y
When x y
ﻣﺮﻛﺒﲔ ﻋﺪﺩﻳﻦ ﻭﻃﺮﺡ ﲨﻊ:AAddddiittiioonn aanndd SSuubbttrraaccttiioonn ooff CCoommpplleexx NNuummbbeerrss
ﻋﺪدا ﻣﺮﻛﺒﺎ ﻓﺈن a + b i , c +d i ﻛﺎن إذاﻣﻦ ﻛﻞ
( ) ( ) = (a+c)+(b+d) a b i c d i i Sum:اﻟﻤﺠﻤﻮع
7.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)7(
( ) ( ) = ( )+( - ) ﺮح اﻟﻄ
= ( ) ( )
:a bi c di a bi c di
a c b d i
subtraction
ﺍﳌﺮﻛﺒﺔ ﺃﻷﻋﺪﺍﺩ ﺿﺮﺏ)Multiplying Complex Numbers:(
اﻟﺤﻘﯿﻘﯿﺔ ﻟﻸﻋﺪاد اﻟﺤﺪود ﻛﺜﯿﺮات ﻓﻲ اﻟﻀﺮب ﻋﻤﻠﯿﺔ ﻧﻔﺲ ھﻲ اﻟﻤﺮﻛﺒﺔ ﻟﻸﻋﺪاد اﻟﻀﺮب ﻋﻤﻠﯿﺔ إن.
1:Ex
2
( )( ) ( ) ( )
( ) ( )
a b i c d i a c d i b i c d i
ac ad i b c i b d i
ac ad i b c i b d
ac b d ad b c i
2
2 : ( 2 4 )(3 2 ) 6 4 1 2 8
6 4 1 2 8
2 1 6
E x i i i i i
i i
i
2
( 4 1)(3 9) ( 2 1)(3 3 ) 6 6 3 3 9 3i i i i i i 2 :Ex
2 2
3 : ( 2 4 ) 4 16 16 12 16E x i i i i
2 24 4 2 2
2 2
4 : (1 4 ) (1 2 ) (1 2 ) 1 4 4
( 3 4 ) 9 2 4 16 7 24
E x i i i i
i i i i
16 8
21 1 1
5: ( )
1 1
i i
Ex
i i
2
2i i
1 2
2i i
8
8 82
( ) ( 1) 1
2
i
i
2
1i
3 3 2 2
2 2
2 2
6 : (1 2 ) (1 2 ) (1 2 ) (1 2 ) (1 2 ) (1 2 )
(1 4 4 )(1 2 ) (1 4 4 )(1 2 )
( 3 4 )(1 2 ) ( 3 4 )(1 2 )
3 6 4 8 3 6 4 8
11 2 11 2 4
E x i i i i i i
i i i i i i
i i i i
i i i i i i
i i i
8.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)8(
2
7 : (2)( ) 3Ex i x iy
i
22 2
(2 )( ) 3 2 2 2i x i y x y i x i y i
i i
2
( i )
2 2
( ........ ) ( ...... )
( )2 2)
2 3
3 ( 2
x yy i x i i
x
i
y x iy
1 2 7
1 2 7 1 2 7 4 3 7 8
9 : ,
( ) ( )
1
n
n n n
E x i n
i i i i i i
i i
ﺍﳌﺮﻛﺐ ﺍﻟﻌﺪﺩ ﻣﺮﺍﻓﻖComplex conjugate
ﺗﻌﺮﯾﻒ:
ﻛﺎن إذاz x yi ﻣﺮاﻓﻖ ﻓﺈنzﺑﺎﻟﺼﻮرة ﯾﻜﺘﺐz z x yi
وأن:
1) ; 2)z z z z
اﻟﻌﺪد أن ھﻮ ﻟﻠﻤﺮاﻓﻖ اﻟﮭﻨﺪﺳﻲ واﻟﺘﻔﺴﯿﺮوﻣﺮاﻓﻘﮫ اﻟﻤﺮﻛﺐﻣﺤﻮر ﻣﻊ ﻣﺘﻨﺎﻇﺮانx-axisاﻟﺘﺎﻟﻲ اﻟﺸﻜﻞ ﻓﻲ ﻛﻤﺎ
اﻟﺘﺮاﻓﻖ ﺧﻮاص واﻟﯿﻚ:
9.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)9(
7(zﺣﻘﯿﻘﯿﺎ ﻋﺪداإذاوإذاﻓﻘﻂ
8(ﺑﺎﻟﻌﻼﻗﺔ ﯾﺮﺗﺒﻄﺎنواﻟﺘﺨﯿﻠﻲ اﻟﺤﻘﯿﻘﻲ اﻟﺠﺰأﯾﻦ:Re( ) ; Im( )
2 2
z z z z
z z
i
9(إذاﻛﺎن z x y i ﻓﺈن:
2 2
z z x y
ﻣﺜﺎل ﻣﻦ اﻟﺘﺎﻟﯿﺔ اﻷﻣﺜﻠﺔ9ﻣﺜﺎل اﻟﻰ19اﻻﻋﺘﯿﺎدﯾﺔ ﺑﺎﻟﺼﯿﻐﺔ ﻣﻘﺎدﯾﺮھﺎ أﻛﺘﺐ)اﻟﻘﯿﺎﺳﯿﺔ(اﻟﻤﺮﻛﺐ ﻟﻠﻌﺪد:
2
2
2 3
9 :
3
2 3 3 2(3 ) 3 (3 ) 6 2 9 3
3 3 9 9 1
9 7 9 7
10 10 10
i
E x
i
i i i i i i i i
i i i
i
i
S am ple
3 2 3 2
10:
2 2
i i
Ex
i i
2
( i
2
3 2 2 3 3
) 1
2 2 2
i i i
i
وا اﻟﺒﺴﻂ ﺑﻀﺮب اﻟﺴﺆال ﺣﻞ ﯾﻤﻜﻦ واﻟﻤﻘﺎم ﺑﻤﺮاﻓﻖ ﻟﻤﻘﺎم.
2 2
2 2
2 1
11:
3 1
2 2 3 4 2 12 6 4 2
3 3 4 2 4 2 16 4
10 10 10 10 1 1
20 20 20 2 2
i i
Ex
i i
i i i i i i i i
i i i i i i
i
i i
2
2
7 3
12:
1 12
7 3 1 7 3 1 2 3 7 14 3 3 2 3
1 2 31 12 1 1 2 3 1 2 3
13 13 3
1 3
13
Ex
i i i i i
ii i
i
i
10.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)10(
3
2
3 3 33
2
2 2
2
3
13:( )
1
3 1 3 3 2 4
( ) ( ) ( ) (1 2 )
1 1 1 2
(1 2 )(1 2 ) (1 2 )(1 4 4 ) (1 2 )( 3 4 )
3 4 6 8 11 2
i
Ex
i
i i i i i i
i
i i i
i i i i i i i
i i i i
1
2
2
14: (4 3 ) (2 1)
4 3 1 2 4 8 3 6 10 5
2
1 2 1 2 1 4 5
Ex i i
i i i i i i
i
i i i
2 2
2 2
1 1
15 :
(2 ) (2 )
1 1 1 1
4 4 4 4 3 4 3 4
3 4 (3 4 ) 3
(3 4 )(3 4 )
Ex
i i
i i i i i i
i i
i i
4 3i
2
4 8
0
9 16 25
i
i
i
2 2
(1 ) (1 )
16:
1 1
1
i i
Ex
i i
2
2i i 1
1 i
2
2i i 2 2
1 1 1
2 (1 ) 2 (1 ) 2
(1 )(1 )
i i
i i i
i i i i i
i i
2
2 2i i 2
2
2 4
2 0
1 2
i
i
i
2 2
2 2
2 3
1 7 )
1 2
2 3 2 1 3 2
. ( ) ( )
1 2 1 1 2 2
2 2 6 3 2 1 3 5 5
1 4 2 5
1 3 5 5 3
( ) ( )
2
1
2
1
2
2 5 5 2
3
( ) ( )
2
i i
E x x y
i i
i i i i i i
an s x y x y
i i i i i i
i i i i i i i i
x y x y
i i
i x i y x i y i
xy i
x y
x y
11.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)11(
7 1
6 9
71 7 0 1 70
69 70 1
7 0
2
1
18 :
1
1 1 1 1
: 1 1
11 1 1
1 1 1
(1 )
1 1
i
E X A M PL E
i
i i i i
S o lutio n i i
ii i i
i i
i
i i
2
2i i
7 0
2
70
7 0 m o d 4 2
2
1
2
2 2 2 2 2 0
2
i
i
i i i
2 73
2 73
2 3 4 5 6 7 68 69 70 71 72 73
19:1 .....
: 1 .....
(1 ) ( ) ..... ( )
EXAMPLE i i i
Solution i i i
i i i i i i i i i i i i i
ھﻮ اﻟﺤﺪود ﻋﺪد ان73+1=74ﻋﻠﻰ ﺗﻘﺴﻢ ﺣﺪا4ﻓﯿﻨﺘﺞ18واﻟﺒﺎﻗﻲ2اﻟﻰ اﻟﻤﻘﺪار ﯾﻘﺴﻢ ﻟﺬا ،18
اﻟﺤﺪ ﻣﻦ ﺑﺪءا ﻣﺘﺘﺎﻟﯿﺔ ﻟﺤﺪود ﻣﺠﻤﻮﻋﺔﻧﺎﺗﺞ اﻷولاﻷﺧﯿﺮﯾﻦ اﻟﺤﺪﯾﻦ ﻟﯿﺒﻘﻰ ﺻﻔﺮ ﺗﺴﺎوي ﻣﺠﻤﻮﻋﺔ ﻛﻞ.
ﯾﺴﺎوي اﻟﻨﺎﺗﺞ:
18 1872 73 4 4
1i i i i i i
آﺧﺮ ﻧﻮع ﻣﻦ أﻣﺜﻠﺔ:ﺟﺬراھﺎ اﻟﺘﻲ اﻟﺜﺎﻧﯿﺔ اﻟﺪرﺟﺔ ﻣﻦ اﻟﻤﻌﺎدﻟﺔ ﺟﺪM , Lأن ھﻞ ﺑﯿﻦ ﺛﻢM , Lﻣﺘﺮاﻓﻘﺎن.
2
: 3 4 1 4 4
(3 4 ) (1 4 ) 3 12 4 16 19 8
,
20: 3 4 ; 1
4
Ex
solution M L i i
M L i i i i i i
M L ﺘﺮاﻓﻘﯿﻦ ﻏﯿﺮﻣ
M i L i
ھﻲ اﻟﺜﺎﻧﯿﺔ اﻟﺪرﺟﺔ ﻣﻦ اﻟﻤﻌﺎدﻟﺔ:
2
( ) 0x M L x M L
ھﻲ اﻟﻤﻄﻠﻮﺑﺔ ﻓﺎﻟﻤﻌﺎدﻟﺔ ﻟﺬا:
2
4 19 8 0x x i
12.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)12(
2 1 :5 1 ; 5 1
: 5 1s o lu tio n M
E x M i L i
L i
5 1i
2
2
1 0
,
(5 1) (5 1) 2 5 1 2 6
1 0 2 6 0
i
M L ﺘﺮاﻓﻘﯿﻦ ﻏﯿﺮﻣ
M L i i i
X i X T h e e q u atio n
5 5 9 2
22 : ,
1 3 4
i i
Ex M L
i i
اﻟﺤﻞ:ﻣﻦ ﺑﺎﻟﺘﺨﻠﺺ اﻟﺠﺬرﯾﻦ ﻧﺒﺴﻂiﺑﺎﻟﻤﻘﺎم
2
2
5 5 1 3 5 15 5 15 20 10
1 3 1 3 1 9 10
20 10
2
10 10
i i i i i i
M
i i i
i i
2
2
9 2 4 36 9 8 2 34 17
4 4 16 17
34 17
2
17 17
i i i i i i
L
x i i
i i
1) 2M L i 2 i
2
4
2) (2 )(2 ) 4 5M L i i i
M , Lھﻲ واﻟﻤﻌﺎدﻟﺔ ، ﻣﺘﺮاﻓﻘﺎن:
2
4 5 0x x
اﻷﺳﺌﻠﺔ ﻣﻦ آﺧﺮ ﻧﻮع:
ﻣﺜﺎل23:ﯾﺴﺎوي ﻣﺠﻤﻮﻋﮭﻤﺎ اﻟﻠﺬﯾﻦ اﻟﺘﺮﺑﯿﻌﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﺟﺬرا ﺟﺪ2ﺿﺮﺑﮭﻤﺎ وﺣﺎﺻﻞ=17.
اﻟﺤﻞ:اﻟﺠﺬرﯾﻦ ﻟﯿﻜﻦm , n
أن وﺑﻤﺎ:2 ; 17 ,m n m n m n are conjugate
:Let m a bi n a bi
m n a bi
a bi
2 2 2 2 2
2 2
2 2 2 1
( )( )
17 1 4
1 4 , 1 4
a a a
m n a bi a bi a b i a b
b b
i i ﺔ ﺟﺬرااﻟﻤﻌﺎدﻟ
13.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)13(
ﻣﺜﺎل24(ﺟﺬرﯾﮭﺎ أﺣﺪ واﻟﺘﻲاﻟﺤﻘﯿﻘﯿﺔ اﻟﻤﻌﺎﻣﻼت ذات اﻟﺘﺮﺑﯿﻌﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﺟﺪ5 2i
اﻟﺤﻞ:ﻓﺈن ﻟﺬا ﺣﻘﯿﻘﯿﺔ أﻋﺪاد اﻟﻤﻌﺎﻣﻼت أن ﺑﻤﺎﻣﺘﺮاﻓﻘﺎن اﻟﺠﺬرﯾﻦ
إذناﻟﺠﺬرانھﻤﺎ:5 2 , 5 2i i اﻟﺤﻞ أﻛﻤﻞ.
25:Ex
أن ﺑﺮھﻦ3 iاﻟﻤﻌﺎدﻟﺔ ﺟﺬري أﺣﺪ ھﻮ:
2
8 16 2 0x x i اﻵﺧﺮ اﻟﺠﺬر ﺟﺪ ﺛﻢ.
اﻟﺤﻞ:اﻟﺠﺬرﯾﻦ ﻧﻔﺮض:m , nوأنm = 3 + iأن ﻓﯿﺠﺐ ﻟﻠﻤﻌﺎدﻟﺔ ﺟﺬرا ھﻮ ﻋﺪد أي ﯾﻜﻮن وﻟﻜﻲ ،
ﯾﺤﻘﻘﮭﺎ:
أن أي3 + iﺟﺬرﯾﮭﺎ أﺣﺪ ﻓﮭﻮ اﻟﻤﻌﺎدﻟﺔ ﺣﻘﻖ.
أن ﻧﻼﺣﻆ اﻟﻘﯿﺎﺳﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﻣﻊ اﻟﻤﻌﻄﺎة اﻟﻤﻌﺎدة ﻣﻘﺎرﻧﺔ وﻣﻦ:
2
2
8 16 2 0
( ) 0
8 ; 16 2 3
3 8 5
x x i
x m n x m n
m n m n i But m i
i n n i ﺬراﻵﺧﺮ اﻟﺠ
26:Eq
اﻟﻤﻌﺎدﻟﺔ ﺟﺬري أﺣﺪ ﻛﺎن إذا
2
12 6 0x x x i c ﻗﯿﻤﺔ ﻓﺠﺪ اﻵﺧﺮ أﻣﺜﺎل ﺛﻼﺛﺔ ھﻮc
اﻟﺤﻞ:اﻟﺠﺬرﯾﻦ ﻧﻔﺮض:m , nوأنm = 3nاﻟﻘﯿﺎﺳﯿﺔ ﻟﻠﺼﯿﻐﺔ اﻟﻤﻌﺎدﻟﺔ ﻧﺤﻮل ،:
2
2
(12 16 ) 0
( ) 0 12 16
3 12 16 4 12 16 3 4
3(3 4 ) 9 12
x i x c
x m n x m n m n i
n n i n i n i ﺬراﻻول اﻟﺠ
m i i ﺬراﻟﺜﺎﻧﻲ اﻟﺠ
ﻃﺮﯾﻘﺘﯿﻦ اﻟﺤﻞ ﻟﺒﺎﻗﻲ:ﻓﻨ اﻟﻤﻌﺎدﻟﺔ ﯾﺤﻘﻖ اﻟﺠﺬرﯾﻦ أﺣﺪ اﻷوﻟﻰﻗﯿﻤﺔ ﻋﻠﻰ ﺤﺼﻞc
واﻟﺜﺎﻧﯿﺔ:اﻟﺠﺬرﯾﻦ ﺿﺮب ﺣﺎﺻﻞ=cاﻟﺜﺎﻧﯿﺔ وﻟﻨﻄﺒﻖ:
2
(3 4 )(9 12 ) 27 36 36 48 21 72c i i i i i i
2
2
( ? ) 8( ? ) 16 2 0
(3 ) 8( 3 ) 16 2 0
9 6
i
i i i
i
2
24 8i i 16 2i 0
9 1 24 16 0 0 0 ﺎﺋﺒﺔ ﻋﺒﺎرةﺻ
14.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)14(
اﺧﺮ ﻧﻮع:ﻟﻠﻌﺪد أﻟﻀﺮﺑﻲاﻟﻨﻈﯿﺮ اﻟﻤﺮﻛﺐ ﻟﻠﻌﺪد اﻻﻋﺘﯿﺎدﯾﺔ وﺑﺎﻟﺼﯿﻐﺔ ﺟﺪ:
1
2
27 : 2 4
1 4 2 4 2 4 2
: 4 2
4 2 4 2 16 4 20
1 1
5 10
Ex i
i i i
solution let z i z
i i i
i ﺮﺑﻲ اﻟﻨﻈﯿﺮاﻟﻀ
2
.
2 8 :
1
2
1E x z
i
so l z
i
2
( i 1
2
1 1 2 1 2
) 1 2
1 2 1 2 1 4
1 2 1 2
5 5 5
i i
i z
i i i
i
i ﺮﺑﻲ اﻟﻨﻈﯿﺮاﻟﻀ
1
2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2
.
9 :
2
2
2 2
a bi a bi
sol z
a bi a bi
a abi b i a
a bi
Ex z
a b
abi b a b ab
i
a b i a b a b a b
i
ﻧﻮعاﺧﺮ:30:Ex
ﻟﺘﻜﻦ:
7 11
,
1
i x i
a b
i x y i
ﻣﻦ ﻛﻼ وﻟﯿﻜﻦa , bﻗﯿﻤﺔ ﺟﺪ ، ﻣﺘﺮاﻓﻘﯿﻦx , y
اﻟﺤﻞ:
2
2
7 1 7 7 6 8
3 4
1 1 1 2
i i i i i i
a i
i i i
b = 3- 4iﻷنbﻟـ ﻣﺮاﻓﻖa
11
3 4
x i
i
x yi
2
(3 4 )( ) 11 3 3 4 4 11
3 3 4 4 11
2 3 4 4 11 0
( 2 4 ) (3 4 11) 0 0
i x yi x i x yi xi yi x i
x yi xi y x i
x yi xi y i
x y y x i i
15.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)15(
ﻋﻠﻰ ﻧﺤﺼﻞ ﻣﺮﻛﺒﯿﻦﻋﺪدﯾﻦ ﺗﺴﺎوي ﺗﻌﺮﯾﻒ وﻣﻦ:
ﺗﺪرﯾﺐ 1 1
ﻣﻦ اﻷﺳﺌﻠﺔ1اﻟﻰ14ﻟﻠﺼﯿﻐﺔ اﻟﻤﻘﺪار ﺣﻮل:
18(أن ﺑﺮھﻦ:
w w
c
z z
[Hint: ﺐ اﻛﺘz =a+b i , w = c+d i
ﻟﻠﺼﯿﻐﺔ ﺣﻮلa b iاﻟﻤﻘﺎدﯾﺮﻣﻦ19اﻟﻰ31
3
19 (2 )(3 2 ) 6 1
1
20
3
x y i x y i i
i
i
4 4
1 2 3 49
39
37
8 7 8 7 7 8
2 3
(21)
1 2
(22) 2 2
(23) 1 .....
1
(24)
1
(25) ,n n n
i i
x y
i i
i i
i i i i
i
i
i i i n
2
1
24 4 2
25 1 3
26 3
27 3
28
1
29
2
i
i
i
i
x iy
x iy
i
i
2 2
7 3
30
1 12
2 2
31
1 2 1 2
i i
i i
2 4 0 .........( . 1) 2
3 4 11 0 .......( .2)
8 4
x y eq
y x eq
y x
0
3 4y x
11 0
11 11 0 1
2 4 0 2
y y
x x
16.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)16(
.(32)أن ﺑﺮھﻦ2 4iاﻟﻤﻌﺎدﻟﺔ ﺟﺬري أﺣﺪ ھﻮ
2
4 20 0x x
33ﻛﺎن إذا
7 13
,
2 4
i i
m n
i i
1(أن ﺑﺮھﻦ,m nﻣﻦ ﻛﻼ ﺟﺪ ﺛﻢ ﻣﺘﺮاﻓﻘﺎن:
2 2 3 3
, , ,m n m n m n m n
2(ﺟﺬراھﺎ اﻟﺘﻲ اﻟﺘﺮﺑﯿﻌﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﺟﺪ,m n
.(34)ﺑﺎﻟﺼﯿﻐﺔ اﻟﺘﺎﻟﯿﺔ ﻟﻸﻋﺪاد اﻟﻀﺮﺑﻲ اﻟﻨﻈﯿﺮ ﺟﺪa b iﻣﻦ ﻛﻼ:
1
, 1 3i i i
: 35اﻟﻤﺘﻄﺎﺑﻘ ﺻﺤﺔ ﺑﺮھﻦﺔ:
1 tan
cos2 sin 2
1 tan
i
i
i
ﺣﯿﺚ
2
,
2
n
n
أﻣﺜﻠﺔ:ﻳﻠﻲ ﳑﺎ ﻛﻼ ﺃﻛﺜﺮ ﺃﻭ ﻣﺮﻛﺒﲔ ﻋﺪﺩﻳﻦ ﺿﺮﺏ ﳊﺎﺻﻞ ﺣﻠﻞ:
ﯾﺴﺘﻐﻞ أﺳﺌﻠﺔﻓﯿﮭﺎ2
1i اﻟﺤﺪﯾﻦ أﺣﺪ ﯾﻀﺮب ﻓﺮق اﻟﻰ ﻣﺠﻤﻮع ﻓﻠﺘﺤﻮﯾﻞ× 2
i
2
2
2
31: 9 2
. 9 25 (3 5 ) 3
5
( 5 )
E
sol z x i x i
x z x
x i
2
2 2 2
2
. 4 9 (2 3 )(2 3
32: 9
)
4E
sol z x y i x yi x y
x z x y
i
4
2 2 2 2 2
2
. ( 9)
33: 5 36
( 4) ( 9)( 4 ) ( 3)( 3)( 2 )( 2 )sol z x x x x i x x x i x
Ex z x x
i
2
2 2
. (4 ) 9 (4 3
34: (4
)(4
) 9
3 )sol z x i x i
Ex z x
x i
2
. 16 9 16 9
35: 25
(4 3 )(4 3 )sol z i
Ex z
i i
2
2
. 81 36 81 36 (9 6 )(9 6 )
9 13 9(9 4) 9(9 4 ) 9(3 2
36:
)(3 2 )
117
sol z i i i
or z i
Ex z
i i
17.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)17(
3 3 22
3
2 2
. 8 (2 )(
37: 8
4
4 2 )
(2 )(4 2 1) ( 12 )( 2 )
sol z x i x i x x i i
x i x x i x i x
x
i
E z x i
x
3 3
3
3 3 3 2
3
2
21 1 1
. (216 ) (216
1
38: 5
) (6 )(36 6 )
4 4 4
1
(6 )( 6 )
4
1
4
4
36
sol z x i y x i
Ex
y x y i x xy i i
x y i x y
z x i y
x i
2
2
2
39: 6
. 6 16 ( 8 )( 2 )
16E
s
x z x
ol z x
xi
xi i x i x i
2 2
2
2
2
2 2
1
. 6 25 ( 6) 9
2
6 9 9 25
( 3) 16
( 3) 16 ( 3 4 )( 3 4
40: 6 25
)
sol z x x added and subtract
x
E
x
x
x i x i x
x z x x
i
2 2
2
2
2 2
2
1
. 8 ? 52 ( 8)
41
16
2
8 16 16 52
( 4) 36
( 4) 36 ( 4 6 )
: 8
( 4 )
2
6
5
sol z x x Added and subtract
x x
x
x i x i
Ex z x x
x i
2 2
2
2
1 1
. 1 ( 1)
42 :
2 4
1 1
1
4 4
1
sol z x x Added and su
Ex a z x x
btract
x x
18.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)18(
2
2 2
2 22 2 2
2 2 2
2
4
1 3
( )
2 4
1 3 1 3 1 3
( ) ( )( )
3: 4 9 25
2 4 2 2 2 2
. 4 9 25 (2 3 25 )(2 3 25 )
Ex z x
x
x i x i x i
sol z x i Sin y x i Sin y x i Sin y
Sin y
اﻷوﻟﻰ اﻟﺪرﺟﺔ ﻣﻦ ﻋﻮاﻣﻞ ﺿﺮب ﻟﺤﺎﺻﻞ ﺣﻠﻞ:
3
44 : 8Ex b x
23 2 2
2 2
.: 8 2 2 4 2 2 1 1 4 2 1 3
2 1 3 2 1 3 1 3
Sol x x x x x x x x x
x x i x x i x i
أﺧﺮى ﻓﻜﺮة:ﺑﺎﳌ ﺍﻟﻀﺮﺏ ﺑﺪﻭﻥﺑﺼﻴﻐﺔ ﺍﻛﺘﺐ ﺮﺍﻓﻖa + biﺍﳌﺮﻛﺐ ﺍﻟﻌﺪﺩ:
2
5
44:
3
i
Ex z
i
اﻟﺤﻞ:اﻟﻤﻘﺎم ﻟﯿﻜﻦz = 3 + i;2 2
9 1 10z z a b
وﺗﻨﺲ ﻻﻣﻦاﻟﻤﺮﻛﺐ اﻟﻌﺪد وﺣﺪة ﺗﻌﺮﯾﻒ
2 2
1 1i i
ﻧﻀﺮبوﻣﻘﺎم ﺑﺴﻂاﻟﻌﺪد)5i(ﻓﻲ10
25
(10) (9 1) (9 ) (3 ) (3 )
10 2 2
3 3 3
i i i
i i i
z
i i i
2
3
i
i
21 1 1 3
(3 ) (3 ) (3 1)
2 2 2 2 2
i
i i i i i
4
45:
2 4 3
i
Ex z
i
اﻟﺤﻞ:اﻟﻤﻘﺎم z = 4 + 3 i
2 2
16 9 25 z z a b
19.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)19(
24 4
(25) (169) (4 3 ) (4 3 )(16 9 )
25 25 2
4 3 4 3 4 3
i i i
i ii
z
i i i
4
25
4 3
i
i
24 4 4 12 16
(4 3 ) (4 3 ) (4 3)
25 25 25 25 25
i
i i i i i
ﻧﻮعﻣﺮﻛﺒﯿﻦ ﻋﺪدﯾﻦ ﺗﺴﺎوي ﺗﻌﺮﯾﻒ ﻋﻠﻰ آﺧﺮ:
ﻗﻴﻤﺔ ﺟﺪx , yﺍﳊﻘﻴﻘﻴﲔﺍﳌﻌﺎﺩﻟﺔ ﳛﻘﻘﺎﻥ ﻭﺍﻟﻠﺬﻳﻦ:
2 1 3 2 1
.: (
2 3
) ( )
1 1 2 2
1
46:
1 2
i
i i
Ex x
i i i
sol x y
i i i i i
y
i i i
2
( i )
2 2
2 2
2 2 6 3 2
( ) ( )
1 4
i i i i i i
x y i
i i
1 3 5 5 1 3
( ) ( ) ( ) (1 )
2 5 2 2
1 3
2 2
i i
x y i i x i y i
x x i y y i i
ﻟﻠﺼﯿﻐﺔ اﻟﻤﻌﺎدﻟﺔ ﻃﺮﻓﻲ ﻧﺤﻮل:a + b i
3
2
3
( ) ( ) 0
2
1
1
( )
2
1
2
x y
x
x i y i i
x y iy i
ﺗﻌﺮﯾﻒ وﻣﻦﻋﻠﻰ ﻧﺤﺼﻞ ﻣﺮﻛﺒﯿﻦ ﻋﺪدﯾﻦ ﺗﺴﺎوي:
2
1 2
1
Re ( . . )
Im ( . .
1
Re ( . . ) 0 .....( 1)
2
3
Im ( . . ) 1 .....( 2)
2
1
1
)
1
2
z
z
z
z
R H S x y eq
R H S x y eq
x x
y
L H S
L H S
20.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)20(
2
2 21 1
.
1
.47 : (1 3
(1 6 9 ) 1 3 3
1 1
) (1 )(1 3 )
1
i
Ex x
i i
sol x i i y i
i
i i
i i
y i i
i
1
2
2i i
1 2
1 2
( 8 6 ) 4 2
2
6 4 2 ( 8 ) ( 6 ) 4 2
1
Re Re 4
2
1
Im Im
8
6 2 6( ) 2 5
2
8z z
z z
x i y i
i x i y i y x y i i
y
and x x
y
y
y x
2
2
2
3
6 3 2
. (1 ) (1 )
2 2
6 6 3 2
(
6 3
.48: (1 )
2
1
4
i i
sol i i
x yi i i
i i i
x yi i
i
Ex i
x yi i
2
2i i
2
) (1 )
6 5 5
2 2
5
6 6
1 2 2 1
6 6 1
1 1 1
6 6
3 3 3 ; 3
2
i
i
i i
x yi
i i i
x yi x yi
i
x yi x yi
i i i
i
x yi i x y
ﻟﻠﻨﺘﺎﺋﺞ ﺟﺪوﻻ ﻧﻈﻢ:اﻟﻄﺒﻊ ﻟﻤﺴﺎﺣﺔ اﺧﺘﺼﺎرا ﻟﻠﻨﺘﺎﺋﺞ ﺟﺪاول اﻧﻈﻢ وﻟﻢ
-3x
3y
21.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)21(
1 2
1 2
2
2
. 2 2 4 1 8
2 2 8 2 2 3 8
(2 2 ) 3 8
Re Re 3 ......( 1)
Im Im 2 2 8 4 ....(
.49: ( 2 )(
2
2 ) 1
4 .
8
3
)
z z
z z
sol x y x i i y i i
x i i y i xy x i i y i
x y x y i i
Ex x i
x y eq
an
y i i
x
d x y x
y
y xy eq
اﻟﻤﻌﺎد ﺗﺤﻞﺑﺎﻷوﻟﻰ اﻟﺜﺎﻧﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﺑﺘﻌﻮﯾﺾ آﻧﯿﺎ ﻟﺘﯿﻦ:
2 2
(4 ) 3 4 3 4 3 0
( 3)( 1) 0 3 1 4
1 4 1 3 ; 3 4 3 1
x x x x x x
x x x or x But y x
when x y when x y
5
2 2 3 2 23
0
2 2 2 2 5
2 4 2 6 3 2 23
0
5 5 5
2 4 2 (6 3 2
2 3 23
50: 0
2 2
) 23 0
4 3 2
5
2 2 6 0
8 2
3
2
6
x y i i x y i i
i i i i
x x i y i y x x i y i y
x x
x yi x yi
i y i y x xi y i y
x i yi x i y i y
x y y i x i
Ex
i i
x y x
23 0 ( 8 23) ( 6 2 ) 0 0x y y x i i
1 2
1 2
(2)
Re Re 8 23 0 ......( 1)
Im Im 6 2 0 3 .....( 2)
8(3 ) 23 0 23 23 0 1 3
z z
z z
x y eq
and y x x y eq
y y y y then x
2
51: ( ) 4
4 2 0 2x yi x yi i
Ex
x and y
x yi
2
4 4 0
52 :( ) 16
x yi x and y
Ex x yi
22.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)22(
2 2 22
2
2
2 2
2 8 2 8
( ) (2 ) 0
53:( ) 8
8
x xyi y i i x
Ex x yi
xyi y i
i
x y xy i i
1 2
1 2
2 2
Re Re 0 ......( 1)
4
Im Im 2 8 .....( 2)
z z
z z
x y eq
and xy y eq
x
2
2 4 2 2
2
16
0 16 0 ( 4)( 4) 0
2 2
x
ﻞ ﯾﮭﻤ
x x x x
x
x y
1 2
1 2
2
2
2 2
2 2
2 2 2 2 2
( )
2 4 2 4 2
2
2 2
2 12 16 2 12 16
( ) (2 ) 16
Re Re ......( 1)
8
Im Im 2 16 .....( 2)
64
12 64 12 12 64 0
5
( 16
4 : ( ) 12 16
12
12
)( 4
z z
z z
x
ي
x xy i y i i x xy i y i
xy i i
eq
and xy y eq
Ex x yi
x
x x x x x
x
x
x
x
x
i
y
y
8
) 0 4
4 2 ; 4 2
ﻞ ھﻤ
x but y
x
when x y when x y
- 44x
2- 2y
2
2 2
2
3 3 (3 )
. ( ) ( )
3 3 10
3 3 1
( )
10 10 10
3 1 3 1
10
3
.55 : ( )
3
10 10 10
i
Ex
i i i
sol x y i x y i
i i
i
x y i x y i
x y i
i
W hen x y or W e x y
i
h n
23.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)23(
2
2 2 2
2
.2
.56: 2 (2 )( 4
(2 )( 4 ) 2
)Ex x yi i x y
sol x yi i x y i x yi
(2 ) ( 2 )i x yi ( 2 )
1 2
1 (2 )( 2 ) 2
2 2
2 2 1 2 1
2 2 ;
5 5 5 5 10
x yi
i
i x yi x yi
i i
i
x yi x yi i x y
1
2
2 2
2 2 2 2 2
2 2
7 4 2 14 7 8 4 10 15
. 2 3
2 2 5 5
2 3 2 3
( ) 2 ( ) 4 3
2 4 3 2 4 3
( ) (
7 4
.57 : ( ) 2
2 ) 4 3
Re
2
z
i i i i i
sol m n i i
i i
m n i i m and n
i
Ex x y i m n i W hen m
B ut x y i m n i x y i i
x
n
x yi y i i x xyi y i
x y i
i
i
i
x y
2
1 2
2
2 2
(4 )
2 4 2 4 2
2
2 2
Re 4 ......( 1)
3
Im Im 2 3 .....( 2)
2
9
4 4 9 16 4 16 9 0
4
3 3
(2 9)(2 1)
2 2
0
3 3
2
z
z z
x
ﻞ ﯾﮭﻤ
x y eq
and x y y eq
x
x x x x x
x
x x x but y
x
w hen x y
2 2
3
2
1
;
2
3 1
2 2
w hen x y
24.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)24(
ﻛﻞiﺍﻟﻔﺮﺿﻴﺔ ﻃﺮﻳﻘﺔ ﻧﺴﺘﻌﻤﻞﺍﳉﺬﺭﺍﻟﱰﺑﻴﻌﻲ ﲢﺖ
10
.
.58: ( )
6 8
10
6 8
sol x y
E y i
i
x x
i
i
ﻧﻔﺮض:8 6 ,i a bi a b ﻋﻠ ﻧﺤﺼﻞ اﻟﻄﺮﻓﯿﻦ وﺑﺘﺮﺑﯿﻊﻰ:
1 2
1 2
2
2 2 2 2 2
2 2
( )
2 4 2 4 2 2 2
2
( ) 8 6 2 8 6 ( ) (2 ) 8 6
Re Re 8 ......( 1)
3
Im Im 2 6 .....( 2)
9
8 9 8 8 9 0 ( 1)( 9) 0
z z
z z
a
ﻞ ﯾﮭﻤ
a bi i a abi b i a b ab i i
a b eq
and ab b eq
a
a a a a a a a
a
3
1
1 3 ; 8 6 1 3
1 3 ; 8 6 1 3
a but b
a
when a b then i i
when x b then i i
اﻷوﻟﻰ اﻟﺤﺎﻟﺔ:ﻋﻨﺪﻣﺎ8 6 1 3i i ﺗﺼﺒﺢ اﻟﻤﻌﺎدﻟﺔ:
10
1 3
x yi
i
10 1 3 10
1 3 1 3
i
x yi
i i
(1 3 )
10
i
1 3 1 , 3i then x y
اﻟﺜﺎﻧﯿﺔ اﻟﺤﺎﻟﺔ:ﻋﻨﺪﻣﺎ8 6 1 3i i ﺗﺼﺒﺢ اﻟﻤﻌﺎدﻟﺔ:
10
1 3
x yi
i
10 1 3 10
1 3 1 3
i
x yi
i i
( 1 3 )
10
i
1 3 1 , 3i then x y
2
2 14 53
59: 1
2 7
x x
EXAMPLE x xy i
x i
2 2
2 2 2
.: 14 53 14 49 49 53
7 4 7 4
7 2 7 2
sol x x x x
x x i
x i x i
25.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)25(
ﺑﺎﻟﻤﻌﺎدﻟﺔ ﯾﻌﻮض اﻟﺘﺤﻠﯿﻞﻧﺎﺗﺞ:
2
7 2
1
x i
x xy i
7 2
2 7
x i
x i
2 2
2
2 2
1 7 2 6 2
6 2
Re : 6 6 0 3 2 0
3 2
Im : 2
2 1
3 2 / 3
x xy i x i x xy i x i
x xy i x i
x x x x x x
x or x
xy
when x y
when x y
( . 60Exﻟﻠﻌﺪﺩ ﺍﻟﱰﺑﻴﻌﻴﺎﻥ ﺍﳉﺬﺭﺍﻥ ﺟﺪ:
8
1 3
اﻟﺤﻞ:اﻟﻤﺮﻛﺐ ﻟﻠﻌﺪد اﻟﻘﯿﺎﺳﯿﺔ ﻟﻠﺼﯿﻐﺔ اﻟﻌﺪد ﻧﺤﻮل:
8 8 8 1 3 8(1 3)
2 2 3
41 3 1 1 3 1 3 1 3
i i
i
i i
ﻧﻔﺮض2 2 3 i x yi اﻟﻄﺮﻓﯿ وﺑﺘﺮﺑﯿﻊﻦﻋﻠﻰ ﻧﺤﺼﻞ:
2
( ) 2 2 3x yi i
2 2 2 2 2
2 2
2 2 2 3 2 2 2 3
( ) (2 ) 2 2 3
x xyi y i i x xyi y i
x y xy i i
1 2
1 2
2
2 2
( )
2 4 2 4 2
2
2 2
Re Re 2 ......( 1)
3
Im Im 2 2 3 .....( 2)
3
2 3 2 2 3 0
3
( 3)( 1) 0 3
3 1 ; 2 2 3 3
3 1 ; 2 2 3 3
z z
z z
x
ﻞ ﯾﮭﻤ
x y eq
and x y y eq
x
x x x x x
x
x x x but y
x
w hen x y then i i
w hen w hen x y then i i
ﻣﻼﺣﻈﺔ1:ﻋﺎﻣﺔ ﺑﺼﻮرة اﻟﺠﺬور انﻻﺣﻘﺎ دﯾﻤﻮاﻓﺮ ﻣﺒﺮھﻨﺔ ﺑﻤﻮﺟﺐ ﺳﺘﺤﻞ.
26.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)26(
ﻣﻼﺣﻈﺔ2:ﻟﻠﻌﺪد اﻟﺘﺮﺑﯿﻌﻲ اﻟﺠﺬرﻧﺠﺪ أن ﯾﻤﻜﻦz x yi اﻟﻄﺮﯾﻘﺔ ھﺬه وﺗﺴﺘﻌﻤﻞﻟﻠﺘﺤﻘﻴﻖﻏﯿﺮ ﻷﻧﮭﺎ
اﻟﺒﺎﺋﺲ ﻣﻨﮭﺠﻨﺎ ﻓﻲ ﻣﻮﺟﻮدةﻛﺴﺆال اﺳﺘﻨﺘﺎﺟﮭﺎ ﯾﻤﻜﻦ ﺣﯿﺚ.وھﻲﻟﻸﻃﻼﻉ
The modulus or absolute value of a complex number z ﻧﺠﺪﺍﳌﺮ ﺍﻟﻌﺪﺩ ﻣﻘﻴﺎﺱﻛﺐ
ﻟﯿﻜﻦ=r=|z|ﺣﯿﺚ2 2
r x y ،ر=اﻟﻤﻘﯿﺎس
اﻟﺘﺮﺑﯿﻌﻲ اﻟﺠﺬر ﻹﯾﺠﺎد اﻟﻘﺎﻋﺪة ﻧﻄﺒﻖ
2 2( )
r x y
x iy i
r x
ﻣﺜﻼ:8 6i
اﻟﺤﻞ:2 2
64 36 10r x y ﺣﯿﺚ8, 6x y
10 8 6 6
8 6 9 3
2 2(10 8) 36
i i i i
.61Ex:ﻟﻠﻌﺪﺩ ﺍﻟﱰﺑﻴﻌﻴﺎﻥ ﺍﳉﺬﺭﺍﻥ ﺟﺪ4 3i
اﻟﺤﻞ:اﻟﻤﻘﯿﺎس=16 9 5 r ﺣﯿﺚx = 4 , y = 3
5 4 3 3 1
4 3 ( ) ( )
2 2(5 4) 2 2
i i i
آﺧﺮ ﺗﻄﺒﯿﻖﺗﺴﺎ ﻓﻲﻣﺮﻛﺒﯿﻦ ﻋﺪدﯾﻦ وي
62(EX.اﻟﻤﺮﻛﺐ اﻟﻌﺪد ﻛﺎن إذا 1 , 2اﻟﻤﻌﺎدﻟﺔ ﺟﺬري اﺣﺪ ھﻮ2
2 2 7 0x x bx a
ﻗﯿﻤﺔ ﻓﺠﺪa , bاﻟﺤﻘﯿﻘﯿﯿﻦ.
اﻟﺤﻞ:أن ﺑﻤﺎاﻟﻤﺮﻛﺐ اﻟﻌﺪد1 – 2iاﻟﻤﻌﺎدﻟﺔ ﯾﺤﻘﻖ ﻓﮭﻮ ﻟﺬا اﻟﻤﻌﺎدﻟﺔ ﺟﺬري أﺣﺪ ھﻮ:
2 2
2
2 2 7 0 2( ? ) 2( ? ) ( ? ) 7 0
2(1 2 ) 2(1 2 ) (1 2 ) 7 0
2(1 4 4 ) 2(1 2 ) (1 2 ) 7 0
6 8 2 4 2 7 0 15 4 2 0
( 15 ) ( 4 2 ) 0 0
4 2 0 2 15 0 15 2 0
x x bx a b a
i i b i a
i i b i a
i i b bi a b a i bi
b a b i i
b b and b a a a
17
.63Ex:ﻟﻠﻌﺪﺩ ﺍﻟﱰﺑﻴﻌﻴﺎﻥ ﺍﳉﺬﺭﺍﻥ ﺟﺪ32
اﻟﺤﻞ:
4 2 32 1 32 32z i z z z
27.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ)27(
اﻟﺴﺆاﻟﯿﻦ ﻓﻲ)1-2(اﻟﻤﺮﻛﺐ اﻟﻌﺪدﺟﺪzﯾﺤﻘﻖ واﻟﺬي:
1:4 7 3 ( ) ; 2:3 2 4 ( ) :3 4Q z i i z Q z z i z ans i
ﺑﺎﻟﺼﯿﻐﺔ اﻛﺘﺐ ﺑﺎﻟﻤﺮاﻓﻖ اﻟﻀﺮب ﺑﺪوناﻟﻌﺪد اﻟﻤﺮﻛﺐ ﻟﻠﻌﺪد اﻻﻋﺘﯿﺎدﯾﺔ:
25
3 :
2 4
i
Q
i
ﻣﻦ ﻛﻼ أﻛﺜﺮ أو ﻣﺮﻛﺒﯿﻦ ﻋﺪدﯾﻦ ﺿﺮب ﻟﺤﺎﺻﻞ ﺣﻠﻞ:4:Q
4 4 4 2
2 2 3 3
90 45 - 16y + 12x
8
- 27 +
25
a b c x d x
e x x f x g x i h x
; ; ; -64
- 8 +12 ; -6x + 25 ; ; 5 i
اﻷﺳﺌﻠﺔﻣﻦ5اﻟﻰ16ﻗﯿﻤﺔ ﺟﺪx , yاﻟﺘﺎﻟﯿﺔ ﺗﺤﻘﻖ واﻟﺘﻲ: 2
5: 2 3 4Q x y i i
2 2 2
2
2
2 1 2
6:( ) 16; 7: 1 8:
3
8 4 2
9: 10: 4 1 8
8 4
12 52
11: 6 ; 12: (
4 6
i
Q x yi Q x y i Q x y a bi x y i
i
i
Q x y i Q x y i x y i i
i i
x x
Q x y i x Q xy
x i
2 2
2
4 8
2 )
1 1
5 25 4(1 5 )1 200
13: 3 2 8 14: 3 2 ; 15:
4 3 2
16: 2 7 5 whene z = -1= 2i
x y i
i i
i
Q x i y i Q x y Q x y i
i i
Q z z x y i i
ﻣﻦ ﻟﻜﻞ اﻟﺘﺮﺑﯿﻌﯿﺎن اﻟﺠﺬران ﺟﺪ:17 : Q
100 7 3
: ; B: ; : 11-24 3 ; E : -i
16 3 1 12
: 4 3 ; : 16 12 ; : 4 2 3 2
A D
F i G i H i
ﺗﺴﺘﻄﯿﻊ ھﻞإﺟﺎﺑﺔاﻟﻔﺮﻋﯿﻦG , HﺑﺎﻻﻋﺘﻤﺎدﻋﻠﻰإﺟﺎﺑﺔF؟
ﺗﺪﺭﻳﺐ)1 - 2(
28.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ
28
ﺍﳌﻌﺎﺩﻻﺕ ﺣﻞ
ﻓﻲاﻟﺘﺎﻟﯿﺔ اﻟﻤﻌﺎدﻻتﻣﻦ ﻛﻞ ﺣﻞ ﺟﺪ:
2
2
. 8 8 2 2
2 2 , 2 2
.58: 8 0
sol x x i
S i
Ex
i
x
2
2
.59: 8
. 8 8
0
ﯿﺔ ﻓﺮﺿ
sol x
Ex x i
i x i
2
2 2
2 2
: 8 ( ) 8
( ) (2 ) 8
0 ...(1)
4
2 8 ...(2)
ﺎﻟﻄﺮﻓﯿﻦ ﺑﺘﺮﺑﯿﻌ
L et i a bi a bi i
a b ab i i
a b
ab b
a
ﻋﻠﻰ ﻧﺤﺼﻞ وﺑﺎﻟﺘﻌﻮﯾﺾ:
2
2 4 2 2
2
, 2 2
16
0 16 0 ( 4)( 4) 0 2
4 4
2
2
8 (2 2 )
2 2
ﻞ ﯾﮭﻤ
a
i
a a a a a
a
but b b
a
Hence i i
Hence S i
4
2 2 2 2
2
. ( 64)( 9) 0 (
.60
64 8) (
: 55 576 0
9 3)
8, 8, 3, 3
sol z z z z or z z i
S
q z
i i
E z
2
.61: 4 8 4 0Ex i z i z i
ﻓﻲ ﻃﺮﻓﯿﮭﺎ ﺑﻀﺮب اﻟﺜﺎﻧﯿﺔ اﻟﺪرﺟﺔ ﻣﻌﺎﻣﻞ ﻣﻦ ﻧﺘﺨﻠﺺ ﻟﻠﺤﻞ)-i(ﻋﻠﻰ ﻓﻨﺤﺼﻞ:
2
4 8 4 0z z i
ﺑﺎﻟﻘﺎﻧﻮن ﺗﺤﻞ اﻟﺜﺎﻧﯿﺔ اﻟﺪرﺟﺔ ﻣﻦ ﻣﻌﺎدﻟﺔ ﻛﻞ)اﻟﺪﺳﺘﻮر: (
29.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ
29
2
2
1 , 4, 8 4 ; 4 16 4(8 4) 32
4 4 32 4 4 2
2 2 2
2 2 2 ﯿﺔ ﻓﺮﺿ
a b c i D b ac i i
b b ac i i
z i
a
اﻟﺘﺮﺑﯿﻌﻲ اﻟﺠﺬر أوﻻ ﻧﺠﺪ:
2
2 2
2 2
: 2 ( ) 2
( ) (2 ) 2
0 ...(1)
1
2 2 ...(2)
ﺎﻟﻄﺮﻓﯿﻦ ﺑﺘﺮﺑﯿﻌ
L et i a bi a bi i
a b ab i i
a b
ab b
a
2
2 4 2 2
2
( )
1
0 1 0 ( 1)( 1) 0 1
1 1
1 2 (1 )
1
ﻞ ﯾﮭﻤ
a
a a a a a
a
but b b hence i i
a
اﻟﻔﺮﺿﯿﺔ ﻗﺒﻞ ﻟﻤﺎ ﻧﻌﻮد ﺛﻢ:2 2 2z i
2 2 2 2 2(1 )
2 2 2 4 2 (1) 2 2 2 2 (2)
4 2 , 2
z i i
z i i The root or z i i The root
Hence S i i
.(62)Exaأن اﺛﺒﺖ1ﺟ أﺣﺪ ھﻮﺬوراﻟﻤﻌﺎدﻟﺔ
3
2 1 0z z اﻵﺧﺮﯾﻦ اﻟﺠﺬرﯾﻦ ﺟﺪ ﺛﻢ.
اﻟﺤﻞ:اﻟﻌﺪد ﯾﻜﻮن ﻟﻜﻲ1ﯾﺤﻘﻘﮭﺎ أن ﻓﯿﺠﺐ اﻟﻤﻌﺎدﻟﺔ ﺟﺬور أﺣﺪ.
ﺻﺎﺋﺒﺔ ﻋﺒﺎرة
3
1: 2 1 0 1 2 1 0 0 0z z z
z = 1.
أﺻﺒﺢx – 1اﻟﺤﺪود ﻣﺘﻌﺪد ﻋﻮاﻣﻞ أﺣﺪ ھﻮﺗﺮﺗﯿﺐ ﺑﻌﺪ اﻟﻄﻮﯾﻠﺔ اﻟﻘﺴﻤﺔ ﻧﺴﺘﻌﻤﻞ اﻷﺧﺮى اﻟﻌﻮاﻣﻞ وﻹﯾﺠﺎد
ﺗﻨﺎزﻟﯿﺎ ﺗﺮﺗﯿﺒﺎ اﻟﺤﺪود.
اﻟﻘﺴﻤﺔ ﺧﺎرج أن ﻧﻼﺣﻆ اﻟﻄﻮﯾﻠﺔ اﻟﻘﺴﻤﺔ ﺑﻌﺪ
ھﻮ2
2 2 1z z
اﻟﻤﻌﺎدﻟﺔ ﺗﻜﻮن ﻟﺬا: 2
1 2 2 1 0Z z z
اﻣﺎZ – 1= 0اﻟﻰ ﯾﺆديZ = 1اﻷول اﻟﺠﺬر
2
3
2 2 1
21
z z
zZ
3
1
2
z
z
2
2
2
2 z
z
2
1
2 z
z
2
1
1
0
z
Z
Z
30.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ
30
ﺃﻭ
2
2 2 10z z اﻟﺜﺎﻧﯿﺔ اﻟﺪرﺟﺔ ﻣﻦ ﻣﻌﺎدﻟﺔ وھﺬه
اﻟﻄﺮﻓﯿ ﯾﻀﺮبﻦ×( - 1 )ﻋﻠﻰ ﻓﻨﺤﺼﻞ:
2
2 2 1 0z z
ﺑﺎﻟﺪﺳﺘﻮر ﺗﺤﻞ.a = 2 , b = 2 , c = 1
واﻟﺜﺎﻟﺚ اﻟﺜﺎﻧﻲ اﻟﺠﺬران
2
2 4 4(2)(1)4 2 4 2 2 1 1
2 2(2) 4 4 2 2
b b ac i
z i
a
ﺍﻟﺘﻜﻌﻴﺒﻴﺔ ﺍﳉﺬﻭﺭ
( .62Exﺟﺪاﻟﺘﻜﻌﯿﺒﯿﺔ اﻟﺠﺬور8 iﺑﯿﺎﻧﯿﺎ اﻟﺠﺬور وﻣﺜﻞ.
2
( )
3 3 3 3
2 2
2
2
0
1
8 8 8 0
( 2 ) ( 2 4 ) 0
2 0 2 (1)
2 4 0 1 , 2 , 4
4 2 4 16 2 12 2 2 3
3
2 2 2 2
: 2 ( 2, 0) 1
3 (
i
L et z i z i z i
z i z z i i
z i z root
Or z z i a b i c
b b ac i i i
z i
a
T HE roots z root
z i
2
2 2
3,1) 2
3 ( 3 ,1) 3
| | 2
root
z i root
z r a b
ﺑﺪاﯾﺘﮫ ﻣﺘﺠﮭﺎ ﺗﺸﻜﻞ اﻷﺻﻞ ﻧﻘﻄﺔ ﻣﻊ ﻧﻘﻄﺔ وﻛﻞ أرﻛﺎﻧﺪ ﻣﺴﺘﻮى ﻓﻲ ﻧﻘﺎط ﺛﻼث ھﻮ اﻟﺠﺬور ﻟﮭﺬه اﻟﺒﯿﺎﻧﻲ اﻟﺘﻤﺜﯿﻞ
وﻃﻮﻟﮫ اﻷﺻﻞ ﻧﻘﻄﺔ2ﻣﺘﺘ ﻣﺘﺠﮭﯿﻦ ﺑﯿﻦ اﻟﺰاوﯾﺔ وﻗﯿﺎس ، ﻃﻮل وﺣﺪةﺗﺴﺎوي ﺎﻟﯿﯿﻦ
2
3
ﻗﻄﺮﯾﺔ ﻧﺼﻒ زاوﯾﺔ
ﻧﻘﻄﺔ ﻣﺮﻛﺰھﺎ داﺋﺮة ﻣﻦ ﻧﻘﻂ ھﻲ اﻟﺜﻼﺛﺔ واﻟﻨﻘﺎطاﻷﺻﻞاﻟﻤﻌﺎدﻟﺔ ﺟﺬور ﻣﻦ ﺟﺬر ﻛﻞ ﻣﻘﯿﺎس ﻗﻄﺮھﺎ وﻧﺼﻒ
ﯾﺴﺎوي واﻟﺬي2 2
| | 2z a b .
ﻣﻼﺣﻈﺔ:ﺑﺎﺳﺘﺨﺪام اﻟﺠﺬور ھﺬه إﯾﺠﺎد ﯾﻤﻜﻦ
اﻟﺘﻲ دﯾﻤﻮاﻓﺮ ﻣﺒﺮھﻨﺔﻻﺣﻘﺎ ﺳﺘﺄﺗﻲ.x
x = 1
r = 2
y
2z
0z
1z
2
3
2
3
2
3
31.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ
31
ﻣﻦ اﻷﺳﺌﻠﺔQ1اﻟﻰQ6ﻓﻲ اﻟﻤﻌﺎدﻻتﺣﻞ ﺟﺪ
2 2 2
2 3
2
2 2
4 5 6
1: 8 7 1 0 ; : 5 5 3i ; Q : 7 13 1 0
3
:z 2 4 3 0 ; : 4 1 3 0 ; : 12 5 0
1
Q x i x Q i z i z i
i
Q z i z Q z z i Q z i
i
7:Qﻛﺎن اذا2اﻟﺜﻼﺛﺔ اﻟﺠﺬور أﺣﺪ ھﻮﻟﻠﻤﻌﺎدﻟﺔ3 2
8 4 8 0z Z Z اﻵﺧﺮﯾﻦ اﻟﺠﺬرﯾﻦ ﻓﺠﺪ.
8:Qﺟﺪ55 48i ا ُوﻓﻲ اﻟﻨﺎﺗﺞ ﺳﺘﺨﺪمإﯾﺠﺎداﻟﻤﻌﺎدﻟﺔ ﺟﺬري:2
(1 2 ) 13(1 ) 0z i z i
9:Qاﻟﻤﺮﻛﺐ اﻟﻌﺪد ﺟﺪzﯾﺤﻘﻖ واﻟﺬي
22
18 24 0z z i
: 10Qا اﻟﺠﺬور ﺟﺪﻟﺘﻜﻌﯿﺒﯿﺔﻟﻠﻌﺪدiﺑﯿﺎﻧﯿﺎ اﻟﺠﺬور وﻣﺜﻞ.
1
.: 1 , ; 2 1 , 4 ; 3 4 ,3 ; 4 1 , 1 5 ;
8
5 3 , 2 ; 6 2 3 , 2 4 ; (7) 3 ; (8) 38- , 1 5 ,
Ans i i i i i i i i
i i i i i i i
2 3
1 3
9 4 3 , 4 3 ; 10 ,
2 2
i
i i i i
ﺗﺪﺭﻳﺐ( 1 – 3 )
32.
ALNASSIRYKAMIL32
ﺍﻟﺼﺤﻴﺢ ﻟﻠﻮﺍﺣﺪ ﺍﻟﺘﻜﻌﻴﺒﻴﺔﺍﳉﺬﻭﺭ
3 3 2
2
2
1 1 0 ( 1)( 1) 0
1 0 1
1 0 ; 1
4 1 1 4 1
2
3
2
13
2 2
Let x x x x x
Either x x
or x x a b c
b b a ic
x
a
1 1z 0 1z 0 1z
2
1 3
2 2
z i 1z 2
1z
3
1 3
2 2
z i
2
2z 2z
2
1 , ,
1 3
2 2
i 2 1 3
2 2
i
1 3
2 2
i 2 1 3
2 2
i
Omegaw
1
2
,
2
2 2
1
2
2
1 3
( ) ( )
2 2
1 3 3 1 3
4 2 4 2 2
z i
i i i z
KAMIL ALNASSIRY43
ﺍﳌﺮﻛﺒﺔ ﻟﻸﻋﺪﺍﺩﺍﳍﻨﺪﺳﻲ ﺍﻟﺘﻤﺜﻴﻞGeometrical representation of Complex Numbers
ﺃﺭﮔﺎﻧﺪ ﳐﻄﻂArgand diagram
Real axis
Imaginary axis
ﺍﻟﻘﻄﺒﻲ ﺍﶈﻮﺭPolar axis
ﺍﳌﺴﺘﻮﻱ ﰲ ﻗﻄﺒﻴﺔ ﺇﺣﺪﺍﺛﻴﺎﺕPolar coordinate in the plane
r
Polar axis
za , bz( , )r
r
2 22 2 2
cos ; sin
1tan so t
so
na
a r b r or
r a r a b
b b
a a
b
44.
KAMIL ALNASSIRY44
Example6 2, 3 4
1 2
z i z i
1 2 1 2,z z z z
1 21) z z
1 2 (6 2 ) (3 4 ) (6 3) (2 4) 9 2z z i i i i
1 26 2 (6 , 2) , 3 4 (3, 4)z i m z i n
Om1z
n2z
m , n , O , hh
h = ( 9 , - 2 )1 2 9 2z z i
1 22) z z
1 2 1 2( ) (6 2 ) ( 3 4 ) (6 3) (2 4) 3 6z z z z i i i i
1
2
6 2 (6,2)
3 4 ( 3,4)
m z i
n z i
h
1 2(3,6) 3 6 3 6h i z z i
45.
KAMIL ALNASSIRY45
ﺍﳌﺮﻛﺐ ﻟﻠﻌﺪﺩﺍﻟﻘﻄﺒﻴﺔ ﺍﻟﺼﻮﺭﺓPolar form of the complex number
(cos sin )z r i
z r cis ccosinessine
r( )z x y i
2 2
| |z r x y r > 0|z|
complex numberThe modulus of
1 2,z z
1 2 1 2
1 1
2 2
1 2 1 2
1) | | | | | |
| |
2)
| |
3) | | | | | |
z z z z
z z
z z
z z z z
ﺍﳌﺮﻛﺐ ﺍﻟﻌﺪﺩ ﻣﺴﺘﻮﻯ ﰲ ﺑﻨﻘﻄﺔ ﳝﺜﻞ ﺍﳌﺮﻛﺐ ﺍﻟﻌﺪﺩ ﺃﻥﻫﻲ ﳐﺘﻠﻔﺔ ﺻﻴﻎ ﻭﻟﻪ:
1ﺩﻳﻜﺎﺭﺗﻴﺔ ﺻﻴﻐﺔrectangular co-ordinates( , )x yArgand
2ﺍﻋﺘ ﺻﻴﻐﺔﺟﱪﻳﺔ ﺃﻭ ﻴﺎﺩﻳﺔRectangular or Cartesian formz x i y
3ﺻﻴﻐﺔﺍﺣﺪﺍﺛﻴﺎﺕﻗﻄﺒﻴﺔ( , )
ﺮة اﻟﻤﺨﺘﺼ
r 1
tan
y
x
4ﻗﻄﺒﻴ ﺻﻴﻐﺔﺔﻭﻣﺜﻠﺜﻴﻪ(cos sin )z r i
5ﺃﺳﻴﺔ ﺻﻴﻐﺔEuler's formula
i
z r e
e
46.
KAMIL ALNASSIRY46
ﺍﳌﺮﻛﺐ ﺍﻟﻌﺪﺩﺳﻌﺔAmplitude (Argument)of Complex Number
A nti clockwise rotatin
ﺍﳌﺮﻛﺐ ﻟﻠﻌﺪﺩ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺴﻌﺔz a bi (Principal value of an argument )
( )Arg zz
, 20
( )arg z( ) 2 ;arg z n n
AAa
Principal value of an argument
The principal value of anargument is the valuewhich lies between and
ﺍﻷﻭﻝ ﺍﻟﺮﺑﻊ ﰲ( )Arg z ﺍﻟﺜﺎﻧﻲ ﺍﻟﺮﺑﻊ ﰲ( )Arg z
ﺍﻟﺮﺍﺑﻊ ﺍﻟﺮﺑﻊ ﰲ( )Arg z ﺍﻟﺜﺎﻟﺚ ﺍﻟﺮﺑﻊ ﻭﰲ( )Arg z
47.
KAMIL ALNASSIRY47
, 0, 0z a bi a b
1( , )z a b
2
2 2
z r a b
cos , sin
a a
r r
tan
b
a
3, ,
3 4 6
(cos ,sin )
1 3
( , )
2 2
3 1
( , )
2 2
1 1
( , )
2 2
3
6
4
z
Z
z
Z
z
Z
z
Z
2
48.
KAMIL ALNASSIRY48
4a orb
a = b = 0
z = 0
ﺇﺣﺪﺍﺛﻴﺎﺗﻪﺍﻟﻘﻄﺒﻴﺔﺍﳌﺜﻠﺜﻴﺔ
: 89)Example2 2 3i
1
2 3 2 ( 2 3 , 2 ) 2ed
z i quadrant
Then
22 2 2 2
( 2 3) 2 4r x y
3
( 2 3 , 2 ) 3 1
( , )
4 2 2
z
r
co s , sin
2 3 3 2 1
co s , sin
4 2 4 2
3 1
,
2 2 6
5
( )
6 6
x y
r r
B u t A rg z
5 5
(4, ) (4, 2 ) , k
6 6
z or z k
5 5
4(cos sin )
6 6
z i
(1,0)
0
(1,0)
(0,1)
2
3
(0,-1)
2
49.
KAMIL ALNASSIRY49
2 :(90)z i Example
a = 0
2 2
2 (0, 2)
4 2
z o i
z r x y
2
cos 0 , sin 1
2
3
(cos ,sin ) (0, 1) int
2
x y
r r
circle
u
3 3
2 , or 2 , 2
2 2
z z k
3 3
2(cos sin )
2 2
z i
7 3
: ( 91)
1 12
Examplez
2
2 2
7 3 7 1 3 7 3 1 2 3
1 12 1 1 12 1 2 3 1 2 3
7 14 3 3 6 13 13 3
1 3
1 12 13
1 3 (1 , 3 ) ( , ) 4 2
| | 1 3 2
th
i i
i i
i i i
i
i
z i Quadrant
z r x y
z
cos , sin
1 3
cos , sin
2 2
1 3
,
2 2 3
5
( ) 2 2
3 3
x y
r r
But A rg z
50.
KAMIL ALNASSIRY50
5
arg( )2 2 ,
3
z n k k
5 5
2 , 2 , 2
3 3
z or z k
5 5
2 cos sin
3 3
z i
42 14
: ( 92)
2
i
Example
i
z
2
2 2
42 14 2 84 42 28 14 70 70
14 14
2 2 4 1 5
| | 196 196 196 2 14 2
14 14 ( 14,14 ) ( , ) 2ed
i i i i i i
i
i i
z r x y
z i Quadrant
z
cos , sin
14 1 14 1
cos , sin
14 2 2 14 2 2
1 1
,
42 2
3
( )
4 4
x y
r r
But A rg z
ﺍﺍﻻﻋﺘﻴﺎﺩﻳﺔ ﺃﻭ ﺍﳉﱪﻳﺔ ﻟﺼﻴﻐﺔﺍﻟﻘﻴﺎﺳﻴﺔ ﺃﻭ:14 14z i
ﺍﻟﺪﻳﻜﺎﺭﺗﻴﺔ ﺍﻟﺼﻴﻐﺔ: 14 ,14z
ﺍﻟﻘﻄﺒﻴﺔ ﺍﻻﺣﺪﺍﺛﻴﺎﺕ:
3 3
14 2 , 14 2 , 2
4 4
z or z k
ﺍﳌﺜﻠﺜﻴﺔ ﺍﻟﺼﻴﻐﺔ)ﺍﻟﻘﻄﺒﻴﺔ(:
3 3
14 2 cos sin
4 4
z i
ﺍﻷﺳﻴﺔ ﺍﻟﺼﻴﻐﺔ
3
4
14 2
i
z e
51.
KAMIL ALNASSIRY51
.(93)Ex
11
6
8
11
6
3 1
(cos,sin ) ( , )
2 2
11 11 3 1
(cos sin ) 8(cos sin ) 8( ( ) )
6 6 2 2
4 3 4
z r i i i
i
.(94)Ex
3
4
12
3
4
1 1
(cos ,sin ) ( , )
2 2
3 3 1 1
(cos sin ) 12(cos sin ) 12( ( ) )
4 4 2 2
1 1 1 1 1
12 2 ( ( ) ) 12 2( ) 6 2 6 2
2 22 2 2
z r i i i
i i i
.(95)Ex
27
2
7
mod (2 )
27 24 3 3 3
rg( ) : 12
2 2 2 2
A z
3
( ) (0, 1) (cos ,sin )
2
(cos sin ) 7(0 1 ) 7
Arg z
z r i i i
6a i2
3
a
2
3
1 3
( , ) (cos ,sin )
2 2
2 2 1 3 1 3
(cos sin ) ( )
3 3 2 2 2 2
: 6
1 3
6
2 2
z r i r i r r i
z a i
hence r r i a i
B ut
52.
KAMIL ALNASSIRY52
1 2
12
3
Im( ) Im( ) 6 2 2
2
1 1
Re( ) Re( )
2 2
z z r r
z z r a a
2 2 2
ﻣﻬﻤﺔ ﻗﻮﺍﻋﺪ:
1 2
1 2 1 2
1
1 2
2
1) arg( ) arg( ) arg( ) mod 2
2) arg arg( ) arg( ) mod 2
3) If 0 and is any integer then
arg( ) arg( ) mod 2
If z and z are two non zero complex numbers then
z z z z
z
z z
z
z n
nz n z
7
mod 2
11 77
2) arg ( 3 ) 7
:96
2 2 3 5 5 5
1) arg arg (2 2 3 ) arg( 1 )
1 3 4 12
arg( 3 ) 7
6 6
5 5
(12 )
6 6
i
E
i
i
i
x
i
i
KAMIL ALNASSIRY54
ﺍﻟﻘﻄﺒﻴﺔ ﺑﺎﻟﺼﻴﻐﺔﻋﺪﺩﻳﻦ ﻭﻗﺴﻤﺔ ﺿﺮﺏ
Products and Quotients of Complex Numbers in Polar Form
Let z1 and z2 be complex numbers, where
1 2 1 2 1 2 1 2 1 2 1 2
1 2 1 21 2
cos sin1 2 1 2
cos cos sin sin (sin cos cos sin
cos( ) sin( )
:
z z r r i
r r
This mean
i
s
ﻣﺮﻛﺒﲔ ﻋﺪﺩﻳﻦ ﻗﺴﻤﺔ
1 1 1 2 2 2
1 2 1 2 1 2
: (cos sin ) / (cos sin )
/ [cos ( ) sin ( )]
ﻤﺔ ﻗﺴ
r i r i
r r i
The quotient
1 1 1
2 2 2
1
1 2 1 2
2
:
| |
1.
| |
2. arg arg( ) arg( ).
This means
z z r
z z r
z
z z
z
55.
KAMIL ALNASSIRY55
ﻣﱪﻫﻨﺔﺩﳝﻮﺍﻓﲑDe Moivre’stheorem
n
cos sin cos sin .
n
i n i n
97 : Prove that (cos sin ) cos sin ,n
Ex i n i n n
cos( ) cos( ) sin( ) sin ( )n n and n n
. . (cos sin ) cos sin( )
nn
L H S i i
cos sin( ) cos sin( )
n
i n i n
cos sin( ) cos sin( ) . .n i n n i n R H S
(cos sin )z r i
(cos sin )n n
z r n i n
56.
KAMIL ALNASSIRY56
6
2 2
6
66 6
98 : Prove that (1 3 ) 64
. W rite z in polar form : z = r(cos + i sin )
r = 1 3 2
5
arg( ) 2 use De M oivre's Theorem
3 3
5 5 5 5
(1 3 ) ( ) 2(cos sin 2 cos( 6) sin( 6)
3 3 3 3
Ex i
S ol
a b
z then
i z i i
mod 2
64( cos10 sin 10 ) 64( cos 0 sin 0) 64i i
6
66 6 3 21 3
(1 3 ) 2( ) 2( ) 64 64( ) 64
2 2
i i
24
1 1 1 1 1
2 2 2 2 2
1
1 2
2
1 3
.99) Pr 1
3
: 1 3 | | 2 ; arg( )
3
3 | | 2 ; arg( )
6
| | 2
| | 1 ; arg( ) arg( ) arg( )
| | 2 3 6 3
i
Ex If z ove that z
i
Sol let z i z r z
let z i z r z
z
z z z z
z
1
1 2 1 2
2
24
24
mod 2
| |
cos( ) sin( ) cos sin
| | 6 6
cos sin cos 24 sin 24
6 6 6 6
cos4 sin 4 cos0 sin 0 1 (0) 1
z
z i i
z
then z i i
i i i
( .100)Ex
6 4
( 2 6 ) ( 1)i i
57.
KAMIL ALNASSIRY57
11 1 1
1
6 4
6 6
6
6
1
.:
5
2 6 | | 2 6 2 2 ; arg( ) 2
3 3
5 5
(cos sin ) 2 2 (cos sin )
3 3
5 5 5 5
( ) 2 2 (cos sin ) 2 2 cos sin
3 3 3 3
5 5
512 cos( *6) sin(
( 2 6 ) ( 1
*6) 512(cos10
3 3
)Sol Let z
Let z i z z
z r i i
z i
i
i
i
i
mod 2
sin10 ) 512(cos0 sin0) 512i i
2 2 2 2
2
3
1 1 | | 1 1 2 ; arg( )
4 4
3 3
(cos sin ) 2 (cos sin )
4 4
Let z i i z z
z r i i
4
4
4
2
mod 2
6 4
1 2
3 3 3 3
( ) 2 (cos sin ) 2 cos 4 sin 4
4 4 4 4
4(cos3 sin3 ) 4(cos sin ) 4
( ) ( ) 512( 4) 2048
z i i
i i
z z z
.102: cos sin :
1 1
1) 2cos 2) 2 sin
1 1
3) 2cos 4) 2 sinn n
n n
Ex If z i then prove that
z z i
z z
z n z i n
z z
1 11
1) cos sin (cos sin )
cos sin cos( ) sin( )
cos sin
z z z i i
z
i i
i
cos sini 2cos
58.
KAMIL ALNASSIRY58
1 11
2 ) cos sin (cos sin )
cos sin cos( ) sin( )
cos sin cos sin
cos
z z z i i
z
i i
i i
sin cosi 2 sin
1
3 ) (cos sin ) (cos sin )
cos sin cos ( ) sin ( )
cos sin
n n n n n
n
i
z z z i i
z
n i n n i n
n i n
cos sinn i n 2cos n
1
4 ) (cos sin ) (cos sin )
cos sin cos ( ) sin ( )
cos sin cos sin
cos
n n n n n
n
z z z i i
z
n i n n i n
n i n n i n
n
sin cosi n n sin 2 sini n i n
ﺗﻌﺮﻳﻒ:ﻛﺎﻥ ﺍﺫﺍzﻋﺪﺩﺍﻭﺃﻥ ﻣﺮﻛﺒﺎnﻓﺈﻥ ﻣﻮﺟﺒﺎ ﺻﺤﻴﺤﺎ ﻋﺪﺩﺍ
1
n
zﻟﻠﻌﺪﺩ ﺍﻟﻨﻮﻧﻲ ﺍﳉﺬﺭ ﻫﻮz
n(cos sin )z r i
1 1 1
2 2
(cos sin ) cos ( ) sin( )n n n k k
z r i r i
n n
k0 , 1 , 2 , 3 , ….., (k -1 )ﺣﻴﺚkﺍﳉﺬﺭ ﺭﺗﺒﺔ
k0 , 1 , 2
k0 , 1 , 2 , 3 , 4 , 5
59.
KAMIL ALNASSIRY59
Ex103)- 32
5
1 1 1
5 5 5
1
5
(cos sin ) , , 32 32 , arg( )
32 32(cos sin )
2 2
32 (cos sin ) (2 ) cos ( ) sin( )
5 5
2 2
2 cos ( ) sin( )
5 5
L et z r i z z r z
T hen z i
k k
z i i
k k
z i
123
2
n
n
( 104)Ex4 4 3i
4 4 3i z
1
3
z
2 2
4 4 3 (4, 4 3 ) 4 2
| | 16 48 8
4 1 5
cos 2
8 2 3 3 3
5 5
(cos sin ) 2 (cos sin )
3 3
th
i Quadrant
z r a b
a
r
z r i z i
0
1
2
3
4
0 : 2(cos sin )
5 5
3 3
1: 2(cos sin ) 2
5 5
2 : 2(cos sin ) 2 3
7 7
3 : 2(cos sin ) 4
5 5
9 9
4 : 2(cos sin ) 5
5 5
w hen k z i ﺬراﻷول اﻟﺠ
w hen k z i root
w hen k z i root
w hen k z i root
w hen k z i root
60.
KAMIL ALNASSIRY60
0
1
1 1
33
1
3
5 5
2 2
5 5 3 38 (cos sin ) 2 cos ( ) sin ( )
3 3 3 3
5 6 5 6
2 cos ( ) sin ( )
9 9
5 5
: 2 (cos sin ) (1)
9 9
11 11
: 2 (cos sin ) (2)1
9
0
9
when k
when k
wh
k k
z i i
k k
z i
z i Root
z ot
e
i Ro
2
17 17
: 2 (cos sin ) (3)
9
2
9
n z i Rootk
( 105)Exu
2
3
( 2 2 3)u i
(cos sin ) ; 2 2 3
( 2, 2 3) 2 .
| | 4 4 3 4
2 1 2
cos
4 2 3 3 3
2 2
4 ( cos sin )
3 3
nd
Let z r i z i
z qua
z r
z i
1 1
22 1 3 3
2 23 3
3
3
3
0
1
2
3
2 2 4 4
4 ( cos sin ) 4 ( cos( ) sin( )
3 3 3 3
4 4
2 2
3 316 cos sin
3 3
4 6 4 6
16 cos sin
9 9
4 4
0 : 16 (cos sin )
9 9
1: 16
z z i i
k k
i
k k
z i
when k z i ﺬراﻷول اﻟﺠ
when k z
3
3
2
10 10
(cos sin )
9 9
16 16
2 : 16(cos sin )
9 9
i ﺬراﻟﺜﺎﻧﻲ اﻟﺠ
when k z i ﺬراﻟﺜﺎﻟﺚ اﻟﺠ
61.
KAMIL ALNASSIRY61
( 106)Ex
6
640z i
1
6 6
664 0 64 64z i z i z i
2 2
1
11 6
66
1
2
3 3 3
64 ; 64 ; arg( ) 64(cos sin )
2 2 2
3 3 3 3 1 3
64 64(cos sin ) 2(cos sin ) ,,, ( 2 )
2 2 2 2 6 2
3 4 3 4
2(cos sin )
12 12
2(cos sin ) 2 2
4 4
7
2(cos sin
1
0
1
2
i g r a b g i
z i i i k
k k
i
z i i
z i
let k
let k
3
4
5
6
7
)
12
11 11
2(cos sin )
12 12
5 5
2(cos sin ) 2 2
4 4
1
2
3
4
9 19
2(cos sin )
12 12
23 23
2(cos sin )5
12 12
z i
z i i
z
let k
let k
let k
let k
i
z i
2 2
6 3n
60ه
0z
5z
4z
1z
2z
3z
Real axis
Imaginary axis
62.
KAMIL ALNASSIRY62
3
1
:(106)
1 3
i
Let z Ex
i
z
5 5
sin , cos
12 12
3 2
. : 1 1 (1Sol i i 2
2i i
2
3
1
1 1
1
2 2
1 1
1
2
)(1 ) 2 2 2 2
1 2 2 1 3 2 2 3 2 2 3 2 3 2 2 3 2
4 4 41 3 1 3 1 3
2 2
2,2 2 .
3
tan 1
4 4 4
| | 2 2
3 3
2 2(cos sin )
4 4
1 (1, 3 ) 1 .
nd
st
i i i i
i i i i i
z i ﺔ ﺟﺒﺮﯾ
i i i
Let z i
z Quad
r z a b
z i
Let z i Quad
2
2 2
2 2
2 2
2
1
2
| | 2
3
tan 3
1 3
2(cos sin )
3 3
3 3
2 2(cos sin )
3 3 5 54 4 2 cos( ) sin( ) 2(cos sin )
4 3 4 3 12 122(cos sin )
3 3
r z a b
z i
iz
z i i
z i
2 3 2 2 3 2
4 4
5 2 3 2 5 2 3 2 6 2
: 2 cos cos
12 4 12 44 2
5 2 3 2 3 1 2
5 5
2(cos sin )
12
6 2
: 2 sin
12 4 42
12
2
Re.
Im.
2
ﺔ ﻣﺜﻠﺜﯿ
But
z i
parts
parts
z i ﺔ ﺟﺒﺮﯾ
63.
KAMIL ALNASSIRY63
( 107)Ex
9 4
cos sin cos sini i
9 4 5 4 4
45
: cos sin cos sin cos sin cos sin cos sin
cos sin cos sin cos sin
cos5
Solution i i i i i
i i i
2 2
sin5 cos sin cos5 sin5i i
sin sin ; cos cos
49 4 9
cos sin cos sin cos sin cos( ) sin( )
cos9 sin9 cos( 4 ) sin( 4 ) cos(9 4 ) sin(9 4 )
cos5 sin5
i i i i
i i i
i
( 108)Ex
5
3
cos2 sin 2
cos3 sin 3
i
i
5
3
cos2 sin2 cos10 sin10
cos(10 9) sin(10 9) cos sin
cos9 sin9cos3 sin3
i i
i i
ii
( 109)Ex1 26 cos sin ; 8 cos sin
4 4 2 2
z i z i
1 2z z
1
2
6
cos( ) sin(
8 4 2 4 2
z
i
z
3 3
cos( ) sin( ) = cos( ) sin( )
4 4 4 4 4 4
i i
( 109)Ex
3 2
1 0z z z
4 3 2
1 1 1z z z z z 4
1 0z 1
4 2 2 2 2 2
1 1 1 1 1 1 0z z z z z i z z z i z i
1 ,z z i 11, ,i i
4 2
1 0z z 6 2 4 2
1 1 1 0z z z z
64.
KAMIL ALNASSIRY64
: 1Q
31
2 2
z i
32
z
: 2Qsin3 , cos3 sin , cos
: 3Q
1 3 1 3
3 2
1 2 2
i
z i i
i
zz 4
a + b i
: 4Qa
a+ b i
1 1 2 2 = 2 2 ; 2 1 3 4 3 4 8 3 8
1 4 4 3
3 ; 4 2 3 2
1 3
i i i i i
i i
i i
i i
b
5 5 5 5
45
8 6
(1) 1 3 1 3 32 ; (2) 1 3 1 3 32 3
3 2 cos6 sin 6 16 3 16 ; 4 2 cos75 sin75 2 2 3
5 1 16 ; 6 1 8 ;
i i i i i
i i i i
i i i
20
3 3
9
4 3
1 3 1 3
7
2 2 2 2
1 3 1 33 1
8 ; 9 ; 10 1
2 2 82 2 1 3
i i
i i ii
i i
i i
: 5Q
9 11
11
9
1 cos sin cos sin cos2 sin 2
cos sin
2 cos20 sin 20
cos sin
i i i
i
i
i
: 6Q
2
2
1
(1, ) Prove that : tan
1
z
If z i
z
ﺗﺪﺭﻳﺐ1 – 5
65.
KAMIL ALNASSIRY65
: 6Q
20 24
25 1 3 3
1 ; ; (c) 1
1 2
i i
a i b
i
15 15
20 20
1 3 1 3
1 1
i i
d
i i
: 6Q 3 3 6 6
; 2 2 ; 1 27a i b i c d
1
1 3
2 2
i 23 3
cos3 4cos 3cos ; sin3 3sin 4sin
3
2 2
3 cos sin
3 3
z i
81 81 3
2 2
i
6
12
12 9
2 1 ; 2 1 3 ; 2 3 ; 64a i b i c d
7
3 1 3 1
, , -
2 2 2 2
a i i i
1 3 3 1 1 3 3 1
1 , ,
2 2 2 2
b i i i
1 3 1 3 1 3 1 3
1 , 1 , , , , .
2 2 2 2 2 2 2 2
d i i i i
3 3 3 3 3 3 3 3
3 , - 3 , , , - , -
2 2 2 2 2 2 2 2
e i i i i i i
67
D
directrix
B
B
v
F
L
L
M
( ,)x y
( , 0)p
x p
the discriminant2
4B A C
12
4 0B A C
22
4 0B A C
32
4 0B A C
(2.1)( Parabola )
focusdirectrix
The axis of parabola
DF
DFVertex
( distinct points )Cord
Latus rectum
V
F
B B
L L
D F
B( x , y )
F(a , o)x = - a
BF
2 2
...( ) ( ... 1)0) (BF x p y
BM
( ) .....(2)BM x x p x p
68.
68
BF = BM
22
( ) ( 0)x p y x p
2
x 2
2p x p 2 2
y x 2
2px p 2
4y p x
( p , 0 )x = - p
4p
pa
http:www.alnassiry.com
v.b.
69.
69
x
y
( 2,0)
22
x=2
1
2
8y x
a
21
8
x y
bx
c
2
4y p x 2 8 4p p
( 2,0)2x
( d
0x x = - 12
8 8y y
P = 24p8
2, 2p 2, 4
2
2
2 5x ya
22
5
y x
b
2 5
2
x yy
c
2
2
5
2
4
x y
x p y
5 5 5
4 0 ,
2 8 8
5
:
8
p p focus
directrix y
70.
70
x
y
5
(0, )
8
5
8
y
( d
0y2y 2
5 5x x
1( 3,0)
( 3,0)(0,0)0y
3 ( ,0) ( 3,0)p p
( 3,0)(0,0)2 2
12 4y x y px
2
1
2
y
1
0,
2
1
2
p
2 2
2 4x y x py
3 1, 8
1, 8
2
4y px 1, 82
4y px
2 2
64 4(16) 16 64 4 ( 1)y x y x p p
4 2,10 , 2,10
2
4x py
2,10
2 21
2 4 (10) 4
10
p p x py
71.
71
x
y
2
x=2
8
8
2 2 221
4 4
5 10
x y x y x py
52x 16
16
16
8
2
2, 8
2
4y px
2
8 8 4 (2)p p
2
4y px
2 2
32 4 8y x y x
2
4 12 0y a x x (-3,5)a
2
...y
2
4y pxx p
x p (-3,5)3 3p p
2
12y x2
4(3 )y a x
a = 0 12 4(3 )a
(2,-8)
2
(0, )
3
a
a
(2,-8)
2
4x p y (2,-8)
2
4x p y
21
2 4 8
8
p p
72.
72
2 21 1
4
28
x y x y
0, p
1
0,
8
2
(0, )
3
a
19 1 2
8 8 3
a
a
Shifting Conic Sections
(h , k)x , y
x-h , y-k
Horizontal
Orientations
Horizontal OrientationsVertical OrientationsentationsVertical Ori
2
4y k p x h
2
4y k p x h
2
4x h p y k
2
4x h p y k
Vertex k,hVertex k,hVertex k,hVertex k,h
Focus:
kph ,
Focus:
kph ,
Focus:
pkh ,
Focus:
pkh ,
Directrix:
phx
Directrix:
phx
Directrix:
pky
Directrix:
pky
1k
2h
3
1 2 1 2
,
2 2
v vx y
x x y y
ﺑﺆﺭﺓ ﳓﺘﺎﺝ ﺍﳌﻜﺎﻓﺊ ﺍﻟﻘﻄﻊ ﺗﻌﺮﻳﻒ ﻧﺴﺘﺨﺪﻡ ﺣﱴﻭﺩﻟﻴﻞ
73.
73
2
1
2 2
4 DD
v
F
Dx
x x x
x
ﻣﺜﺎﻝ:ﺍﳌﻜﺎﻓﺊ ﻟﻠﻘﻄﻊ ﺍﻟﺪﻟﻴﻞ ﻭﻣﻌﺎﺩﻟﺔ ﻭﺍﻟﺒﺆﺭﺓ ﺍﻟﺮﺃﺱ ﺟﺪﻣﻌﺎﺩﻟﺘﻪ ﺍﻟﺬﻱ:
12
( 2) 8(3 )y x
2
( 2) 8( 3)y x
1(3,2)2y = 23
42 4 8p p
52(3,2)( 2)shifted
(3 2,2)
(1,2)
6x = ?
1
2
5 3
2
D v
D D Fx x x
x x
x = 5
77
1
1 0, 82, 0h35y
42 3 0x 5 1, 4
6 1, 47 2,8 , 2, 8
8 1, 6 , 1, 6
9 4, 8
10 4, 8
114x 16
122
12 0x y 12
2
2 2 2
2 22
2
1) 2 ; 2) 4 0 ; 3) 4 ;
4) 12 5) 2 12 3 ; 6) 1 5 ;
7) 2 12 25 0 ; 8)
x y y x x y
y x x x x y
y y x
= 0
;
2
12 2 0y x x
3
1 0, 322 3 0x
3 1, 6
42
6x k y y 8y k
5 2 2
2 1 18k y k x x k x
k
2 , 5, 0 , : 5k f D x
62
4 0y x 10
96±
Exercises ( 2 -1)
78.
KAMIL MOSA ALNASSIRY78
Ellipses
ﺍﻟﻨﺎﻗﺺﺍﻟﻘﻄﻊ
ﻣﻨﮭﺎ ﻧﻘﻄﺔ أﯾﺔ ﺑﻌﺪي ﻣﺠﻤﻮع ﯾﻜﻮن اﻟﺘﻲ اﻟﻤﺴﺘﻮي ﻓﻲ اﻟﻨﻘﻂ ﻣﺠﻤﻮﻋﺔ ھﻮP(x , y )ﺛﺎﺑﺘﺘﯿﻦ ﻧﻘﻄﺘﯿﻦ ﻋﻦ
F1(c, 0 ),F2( c, 0 )ﺛﺎﺑﺘﺎ ﻋﺪدا ﯾﺴﺎوي ﺑﺎﻟﺒﺆرﺗﯿﻦ ﺗﺴﻤﯿﺎن( 2 a ).
اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ ﻣﻌﺎدﻟﺔ ﺗﻤﺜﻞاﻟﺴﯿﻨﺎت ﻣﺤﻮر ﻋﻠﻰ وﺑﺆرﺗﺎه اﻷﺻﻞ ﻧﻘﻄﺔ ﻣﺮﻛﺰه اﻟﺬي.
ﯾﻠﻲ وﻛﻤﺎ اﻟﻨﺎﻗﺺ ﻟﻠﻘﻄﻊ اﻟﻌﺎﻣﺔ اﻟﻤﻌﻠﻮﻣﺎت وﺿﻊ وﯾﻤﻜﻦ:
اﻟﺘﻌﺮﯾﻒ ﻣﻦ اﻟﻘﯿﺎﺳﯿﺔ اﻟﻤﻌﺎدﻟﺔ اﺷﺘﻘﺎق:
PF1+PF2 = 2aأن و0 < a
اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ رﺳﻢ ﻃﺮق إﺣﺪى ﯾﻤﺜﻞ اﻟﻤﺠﺎور اﻟﺸﻜﻞ ﻻﺣﻆاﻟﺘﻲ
ﺧﯿ ﻓﯿﮭﺎ ﯾﺴﺘﻌﻤﻞﺛﺎﺑﺖ ﻃﻮﻟﮫ ﻂ2aﺑﻤﺴﻤﺎرﯾﻦ ﺑﻄﺮﻓﯿﮫ ﻣﺜﺒﺖﯾﻤﺜﻼن
اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ ﻋﻠﻰ ﻧﺤﺼﻞ اﻟﺨﯿﻂ ﺑﺸﺪ و اﻟﻘﻠﻢ ﺣﺮﻛﺔ وﻣﻦ اﻟﺒﺆرﺗﯿﻦ.
2 2 2 2
( ) ( ) 2x yx y cc a
2 2 2 2
( ) 2 ( )x cx a yc y
2 2
( )x c y 2 2 2 2
4 4 ( ) ( )a a x c y x c y
4 2 2
( ) 4a x c y 4cx 2
a
2 2 2 2 2 2 2 4
( 2 ) 2a x xc c y c x a cx a
2 2 2
2a x a cx 2 2 2 2 2 2 2
2a c a y c x a cx 4
a
2 2 2 2 2 2 2 2 2 2 2
( ) ( )a c x a y a a c Let b a c
2 2 2 2 2 2 2 2
b x a y a b a b
2 2
2 2
1 Standard equation
of an ellipse
x y
a b
79.
KAMIL MOSA ALNASSIRY79
Notationﻣﻼﺣﻈﺎت
A', A: verticesاﻟﺮأﺳﺎن ; ( ,0)a
d', d: directrices ;اﻟﺪﻟﯿﻼن 0
a
x
e
F = focusاﻟﺒﺆرة ; ( ,0)c
A'A = 2a = major axis أﻷ اﻟﻤﺤﻮرﻛﺒﺮ
PF1 + PF2 = 2a; M =center اﻟﻤﺮﻛﺰ
B'B = 2b = minor axis اﻷﺻﻐﺮ اﻟﻤﺤﻮر
F1F2 = 2c =اﻟﺒﺆرﺗﯿﻦ ﺑﯿﻦ اﻟﻤﺴﺎﻓﺔ
ﺑﯿﻦ اﻟﻤﺴﺎﻓﺔاﻟﻤﺮﻛﺰواﻟﺒﺆرة = c = 2 2
a b
Eccentricity اﻟﻤﺮﻛﺰي اﻻﺧﺘﻼف
(e =
اﻟﻌﻤﻮدي اﻟﺒﺆري اﻟﻮﺗﺮ
) < 1
اﻟﺪﻟﯿﻠﯿﻦ ﻣﻦ وأي اﻟﻤﺮﻛﺰ ﺑﯿﻦ اﻟﻤﺴﺎﻓﺔ = a
e
Area a b
p = اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ ﻣﺤﯿﻂ
اﻟﻌﺎﻣﺔ اﻟﻤﻌﺎدﻟﺔ:اﻟﻘﻄﻊ ﻣﺤﻮري ﻋﻨﺪﻣﺎ
ﯾﻮازﯾﺎنا ﻣﺤﻮريﻹﺣﺪاﺛﯿﯿﻦ
Ax2
+ Cy2
+Dx + Ey +F = 0 ; AC > 0
ﻃﻮلاﻟﻌﻤﻮدي اﻟﺒﺆري اﻟﻮﺗﺮ(*)
2
2b
a
Ellipse Circumferenceاﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ ﻣﺤﯿﻂإﯾﺠﺎدهﺗﺠﺪ ﻣﻮﻗﻌﻲ وﻓﻲ ﺟﺪا ﻣﻌﻘﺪ وھﻮ اﻟﺘﻜﺎﻣﻞ ﻃﺮﯾﻖ ﻋﻦ
اﻟﻤﺤﯿﻂ ﺑﺤﺴﺎب ﺧﺎﺻﺔ ﺑﺮﻣﺠﺔ.
80.
KAMIL MOSA ALNASSIRY80
1(اﻷﺻﻞﻧﻘﻄﺔ اﻟﻤﺮﻛﺰ
أﻓﻘﻲ اﻷﻛﺒﺮ اﻟﻤﺤﻮرﺷﺎﻗﻮﻟﻲ اﻷﻛﺒﺮ اﻟﻤﺤﻮر
اﻟﻤﻌﺎدﻟﺔ:
2 2
2 2
1
x y
a b
Vertices , 0aاﻟﺮأﺳﺎن
Foci , 0cاﻟﺒﺆرﺗﺎن
y-intercepts 0, bاﻟﺼﺎدات ﻣﻊ ﺗﻘﺎﻃﻊ
اﻟﻤﻌﺎدﻟﺔ:
2 2
2 2
1
x y
b a
Vertices 0, aاﻟﺮأﺳﺎن
Foci 0, cاﻟﺒﺆرﺗﺎن
x-intercept , 0bاﻟﺴﯿﻨﺎت ﻣﻊ اﻟﺘﻘﺎﻃﻊ
2(اﻟﻤﺮﻛﺰ( h , k )
أﻓﻘﻲ اﻷﻛﺒﺮ اﻟﻤﺤﻮرMajor Axis Horizontalﺷﺎﻗﻮﻟﻲ اﻷﻛﺒﺮ اﻟﻤﺤﻮرMajor Axis Vertical
2 2
2 2
1
x h y k
a b
Vertices ,h a kاﻟﺮأﺳﺎن
Foci ,h c kاﻟﺒﺆرﺗﺎن
2 2
2 2
1
x h y k
b a
Vertices ,h k aاﻟﺮأﺳﺎن
Foci ,h k cاﻟﺒﺆرﺗﺎن
اﻻﻧﺴﺤﺎ ﻓﻜﺮة ﺗﻮﺿﯿﺢب:
KAMIL MOSA ALNASSIRY87
8(ﻣﺪاه=8 , 8ﻣﺠﺎﻟﮫ ،= 6 , 6اﻟﻤﺪى=ﻣﻦ ﯾﻘﻄﻊ اﻟﻘﻄﻊ أن ﯾﻌﻨﻲ ص ﻗﯿﻢ ﻣﺠﻤﻮﻋﺔ
ﻃﻮﻟﮭﺎ ﻗﻄﻌﺔ اﻟﺼﺎدات=16اﻟﻤﺠﺎل ،=اﻟﺴﯿﻨﻲ اﻟﻤﻘﻄﻊ أن ﯾﻌﻨﻲ وھﺬا س ﻗﯿﻢ ﻣﺠﻤﻮﻋﺔ=12
أﺣﺪھﻤﺎ اﻟﻤﻘﻄﻌﯿﻦ=2 aواﻵﺧﺮ ، اﻷﻛﺒﺮ وھﻮ=2 bاﻷﺻﻐﺮ وھﻮ
2 a=16a = 8،2 b=12b = 6
9(ﻛﻨﺴﺒﺔ ﻣﺤﻮرﯾﮫ ﻃﻮﻟﻲ ﺑﯿﻦ اﻟﻨﺴﺒﺔ2:5
2 2 2
2 5 5
b
b a
a
ﻣﺜﺎﻝ:ﻳﻠﻲ ﳑﺎ ﻛﻼ ﳛﻘﻖ ﺍﻟﺬﻱ ﺍﻟﻨﺎﻗﺺ ﺍﻟﻘﻄﻊ ﻣﻌﺎﺩﻟﺔ ﺟﺪ:
: 1Qﺑﺆرﺗﺎه(0,6) , (0, 6)ﯾﺴﺎوي اﻟﺜﺎﺑﺖ اﻟﻌﺪد وأن20.
اﻟﺤﻞ:ﻧﺴﺘﻨ اﻟﺒﺆرﺗﯿﻦ ﻣﻦأن ﺘﺞ:1(اﻷﺻﻞ ﻧﻘﻄﺔ اﻟﻤﺮﻛﺰ2(اﻟ ﻣﺤﻮر ھﻮ اﻟﻘﻄﻊ ﻣﺤﻮرﺼﺎدات3(6c
اﻟﺜﺎﺑﺖ اﻟﻌﺪد=20 = 2 aa = 10وﻓﯿﺜﺎﻏﻮرس ﻣﺒﺮھﻨﺔ ﺗﻄﺒﯿﻖ ﻣﻦﻋﻠﻰ ﻧﺤﺼﻞb
2 2 22
100 36 8b ba b c
اﻟﻤﻄﻠﻮﺑﺔ اﻟﻤﻌﺎدﻟﺔ
2 2 2 2
2 2
1 1
64 100
x y x y
b a
: 2Qو اﻷﺻﻞ ﻧﻘﻄﺔ ﻣﺮﻛﺰهإﺣﺪىاﻟﻤﻜﺎﻓﺊ اﻟﻘﻄﻊ ﺑﺆرة ھﻲ ﺑﺆرﺗﯿﮫ2
24y x اﻟﻨﻘﻄﺘﯿﻦ ﻣﻦ وﯾﻤﺮ 0, 10
اﻟﺤﻞ:2
24y x ، ﻟﻠﯿﺴﺎر اﻟﻤﻜﺎﻓﺊ اﻟﻘﻄﻊ4 24p 6p اﻟﻤﻜﺎﻓﺊ ﺑﺆرة( 6,0)
اﻟﻨﺎﻗﺺ ﺑﺆرﺗﺎ( 6,0)6c اﻟﺴﯿﻨﺎت وﻋﻠﻰأﯾﻀﺎ اﻟﺴﯿﻨﺎت ﻋﻠﻰ اﻟﺮأﺳﺎن
ﻣﻦ ﯾﻤﺮ 0, 1010b ﻟﻠﺒﺆرة اﻟﻤﻌﺎﻛﺲ اﻟﻤﺤﻮر ﻋﻠﻰ ﻷﻧﮭﺎ
2 2 2 22 2
2 2 2 2
2 2
10 6 136
1 1
136 36
a a
x y
a b
b
y
c
x
َََََQ3:اﻟﻤﻜﺎﻓﺊ اﻟﻘﻄﻊ ﺑﺆرة ھﻲ رأﺳﯿﮫ وأﺣﺪ اﻷﺻﻞ ﻧﻘﻄﺔ ﻣﺮﻛﺰة2
40x y ﯾﺰﯾﺪ اﻷﺻﻐﺮ ﻣﺤﻮره وﻃﻮل
ﺑﻤﻘﺪار ﺑﺆرﺗﯿﮫ ﺑﯿﻦ اﻟﻤﺴﺎﻓﺔ ﻋﻠﻰ4وﺣﺪات.
اﻟﺤﻞ:2
40x y ﻣﻦوأن اﻟﺼﺎدات ﻣﺤﻮر ھﻮ اﻟﻘﻄﻊ ﻣﺤﻮر أن ﻧﺴﺘﻨﺘﺞ اﻟﻤﻌﺎدﻟﺔ ھﺬه4 40p
10p ھﻲ اﻟﻤﻜﺎﻓﺊ اﻟﻘﻄﻊ ﺑﺆرة(0, 10)ھﻤﺎ اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ رأﺳﺎ(0, 10)
10a اﻟﺼﺎدات وﻋﻠﻰ.
اﻟﺜﺎﻧﻲ اﻟﻤﻌﻄﻰ:
(2)
2 2 4 2 2b c b c b c
2 2 2
2 2 2 2
2 2
100 ( 2) 100 4 4
2 4 96 0 2 48 0 ( 8)( 6)
a b c c c c c c
c c c c c c
88.
KAMIL MOSA ALNASSIRY88
إﻣﺎc= - 8ﻷن ﻣﻤﻜﻦ ﻏﯿﺮ, ,a b cﻣﻮﺟﺒﺔ أﻋﺪاد.
أو6c 6 2 8b ھﻲ اﻟﻤﻌﺎدﻟﺔ
2 2
1
64 100
x y
Q4:ﺑﺆرﺗﺎه( 6 , 0 )اﻟﻤﻜﺎﻓﺊ اﻟﻘﻄﻊ ﺑﺆرة ﻣﻦ وﯾﻤﺮ2
12 2 11 0y x y اﻟﻘﻄﻊ ﻣﻤﺎس ﻣﻌﺎدﻟﺔ ﺟﺪ ﺛﻢ
اﻟﻤﻜﺎﻓﺊ اﻟﻘﻄﻊ ﺑﺆرة ﻓﻲ اﻟﻨﺎﻗﺺ.
اﻟﺤﻞ:ﺑﺆرﺗﺎه( 6 , 0 )6c اﻟ وﻋﻠﻰﺴﯿﻨﺎت
أوﻻ اﻟﻘﯿﺎﺳﯿﺔ ﻟﻠﺼﯿﻐﺔ اﻟﻤﻌﺎدﻟﺔ ﻓﻨﺤﻮل اﻟﻤﻜﺎﻓﺊ اﻟﻘﻄﻊ ﺑﺆرة ﻟﻨﺠﺪ:
2 2
2 2
12 2 11 0 2 ? 12 11 ?
2 1 12 11 1 ( 1) 12( 1)
12 4 3 ( 1 3 , 1
( 1, 1)
2 )) ( , 1
y x y y y x
y y x y x
p p F
V
F
اﻟﻤﻜﺎﻓﺊ اﻟﻘﻄﻊ ﺑﺆرة ﻣﻦ ﯾﻤﺮ اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ ﻟﻜﻦ:(2 , 1)F اﻟﻨﺎﻗﺺ ﻣﻌﺎدﻟﺔ ﻓﺘﺤﻘﻖ:
2 2
2 2
1
x y
a b
2 2
2 2 2 2
2 2
( )
4 1
1 4 ......(1)
a b
b a a b
a b
2 2 2 2 2
: ........6 .(2)a b c bBut a
اﻟﻤﻌﺎدﻟﺔ ﺗﻌﻮض)2(اﻟﻤﻌﺎدﻟﺔ ﻓﻲ)1(:
2
2
2 2
2
2
2
6
2 2 2 2 2 2 2 4 2
4 2 2
4 4 ( ) 5 6 6
6 0 ( 3)( 2) 0
6 6
2 8
a b
a b a b b b b b b
b b b
b
b a
b
b
ھﻲ اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ ﻣﻌﺎدﻟﺔ:
2 2
1
8 2
x y
اﻟﻤﻤﺎس ﻣﻌﺎدﻟﺔ إﯾﺠﺎد:ﻓﻲ اﻟﻤﻌﺎدﻟﺔ ﻃﺮﻓﻲ ﻧﻀﺮب82 2
4 8x y ﻟﻠﻤﺘﻐﯿﺮ ﺑﺎﻟﻨﺴﺒﺔ اﻟﻄﺮﻓﯿﻦ ﻧﺸﺘﻖx
2 8 0
4
dy dy x
x y
dx dx y
اﻟﻤﻤﺎس ﻣﯿﻞ
2 1
4 2(2, 1)
dy
dx at
اﻟﻤﻤﺎس ﻣﻌﺎدﻟﺔ1
1
1 1
2 4 0
2 2
y y y
m x y
x x x
Q5:ﺑﺆرﺗﺎه( 8.0)ﯾﺴﺎوي اﻟﻤﺮﻛﺰي واﺧﺘﻼﻓﮫ
4
5
.
اﻟﺤﻞ:اﻟﺒﺆرﺗﯿﻦ ﻣﻦ8c اﻟﺴﯿﻨﺎت وﻋﻠﻰ
89.
KAMIL MOSA ALNASSIRY89
22 2 2 2
2 2
4 8
10
5
100 64 36 : 1
100 36
c
e a
a a
x y
a b c b b the equation
Q6:ﺑﺆرﺗﺎه( 8.0)ﻛﻨﺴﺒﺔ ﻣﺤﻮرﯾﮫ ﻃﻮﻟﻲ ﺑﯿﻦ واﻟﻨﺴﺒﺔ
3
5
.
اﻟﺤﻞ:اﻟﺒﺆرﺗﯿﻦ ﻣﻦ8c اﻟﺴﯿﻨﺎت وﻋﻠﻰ
ﻛﻨﺴﺒﺔ ﻣﺤﻮرﯾﮫ ﻃﻮﻟﻲ ﺑﯿﻦ اﻟﻨﺴﺒﺔ
3
5
3 2 3
5 2 5
b
b a
a
2 2 2 2 2 2
2 2
25 9 16 4
64 64 8
25 25 25 5
1
100 36
a b c a a a a
x y
a b
Q7:إﺣﺪىاﻟﻤﻜﺎﻓﺊ اﻟﻘﻄﻊ ﺑﺆرة ھﻲ ﺑﺆرﺗﯿﮫ2
24y x ﻣﻦ وﯾﻤﺮ( 10,0)اﻷﺻﻞ ﻧﻘﻄﺔ وﻣﺮﻛﺰه.
اﻟﺤﻞ:6 4 24p p اﻟ واﻟﻘﻄﻊﻟﻠﯿﺴﺎر ﻓﺘﺤﺘﮫ ﻤﻜﺎﻓﺊھﻲ اﻟﻤﻜﺎﻓﺊ اﻟﻘﻄﻊ ﺑﺆرة( 6,0)
ھﻤﺎ اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ ﺑﺆرﺗﺎ( 6,0)6c اﻟﺴﯿﻨﺎت ﻋﻠﻰ
ﻣﻦ ﯾﻤﺮ اﻟﻨﺎﻗﺺ( 10,0)10a اﻟﻤﺤﻮر ﻧﻔﺲ ﻋﻠﻰ واﻟﺮأﺳﯿﻦ اﻟﺒﺆرﺗﯿﻦ ﻷن اﻟﺴﯿﻨﺎت ﻋﻠﻰ
2 2 2 2 2
2 2
100 36 64 1
100 64
x y
a b c b b the equation
Q8:اﻟﻤﻜﺎﻓﺊ اﻟﻘﻄﻊ ﺑﺆرة ھﻲ ﺑﺆرﺗﯿﮫ إﺣﺪى2
24x y ﻣﻦ وﯾﻤﺮ( 10,0)ﻧﻘﻄﺔ وﻣﺮﻛﺰهاﻷﺻﻞ
اﻟﺤﻞ:6 4 24p p ﻟﻸﺳﻔﻞ ﻓﺘﺤﺘﮫ اﻟﻤﻜﺎﻓﺊ واﻟﻘﻄﻊھﻲ اﻟﻤﻜﺎﻓﺊ اﻟﻘﻄﻊ ﺑﺆرة(0 , 6)
ھﻤﺎ اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ ﺑﺆرﺗﺎ(0, 6)6c ﻋﻠﻰاﻟﺼﺎدات
ﻣﻦ ﯾﻤﺮ اﻟﻨﺎﻗﺺ( 10,0)10b ﻟﻠﺒﺆرﺗ اﻟﻤﻌﺎﻛﺲ اﻟﻤﺤﻮر ﻋﻠﻰ ﻷﻧﮭﺎﯿﻦ.
2 2 2 2 2
2 2
100 36 136 1
100 136
x y
a b c a a the equation
Q9:ﺑﺎﻟﺒﻌﺪﯾﻦ اﻟﺮأﺳﯿﻦ ﻋﻦ ﺗﺒﻌﺪ اﻟﺒﺆرﺗﯿﻦ وإﺣﺪى اﻟﺴﯿﻨﺎت ﻣﺤﻮر ﻋﻠﻰ ﺑﺆرﺗﺎه2،8ﻃﻮل وﺣﺪةﻧﻘﻄﺔ وﻣﺮﻛﺰه
اﻷﺻﻞ.
اﻟﺤﻞ:اﻟﻔﻜﺮة ﯾﻮﺿﺢ اﻟﺮﺳﻢ.
اﻟﺒﻌﺪﯾﻦ ﻣﺠﻤﻮع=8+2=102 10a 5a
ﻓﺮقاﻟﺒﻌﺪﯾﻦ=8–2=63 2 6c c
8
2
2
90.
KAMIL MOSA ALNASSIRY90
x
B
CD
2 ( 2,0)F 1(2,0)F
(2,3)A
A
y
2 2 2 2 2
2 2
25 9 16
1
25 16
a b c b b
x y
the equation
Q10:اﻟﻤﻜﺎﻓﺌﯿﻦ اﻟﻘﻄﻌﯿﻦ ﺑﺆرﺗﻲ ھﻤﺎ ﺑﺆرﺗﺎه2 2
24 , 24x y x y ﻣﻨﻄﻘﺘﮫ وﻣﺴﺎﺣﺔ80ﻣﺮﺑﻌﺔ وﺣﺪة
اﻟﺤﻞ:6 4 24p p اﻟﺼ وﻋﻠﻰ اﻟﺒﺆري اﻟﺒﻌﺪﺎداتاﻟﻤﻜﺎﻓﺌﯿﻦ ﺑﺆرﺗﺎ(0, 6)اﻟﻘﻄﻊ ﺑﺆرﺗﻲ وھﻤﺎ
اﻟﻨﺎﻗﺺc = 6اﻟﺼﺎدات ﻋﻠﻰ.
2 2 2 2
4 2 4 2
2
2 2
2 2 2
80
80
2
6400
36 6400 36 36 6400 0
80
100 64 0 100 10 8 1
10 64 100
A a b a b b
a
a
a b c a a a a a
a
x y
a a a a b the equation
-----------------------
Q11:اﻷﺻﻐﺮ ﻣﺤﻮره ﻧﺼﻒ ﻃﻮل=5اﻟﻤﺮﻛﺰي واﺧﺘﻼﻓﮫ ، اﻟﺴﯿﻨﺎت وﻋﻠﻰ=
11
6
اﻻ ﻧﻘﻄﺔ وﻣﺮﻛﺰهﺻﻞ.
اﻟﺤﻞ:b = 5اﻟﺴﯿﻨﺎت وﻋﻠﻰa , cاﻟﺼﺎدات ﻋﻠﻰ
2 2 2 2 2 2 2
2
2 2
11 11
6 6
36 11 25
25 25 36
36 36 36
36 6 5 1
25 36
c c
e c a
a a
a b c a a a a
the equation of th
x y
e ellia a but psb e
Q12:ﺑﺆرﺗﺎه1 2(2,0) , ( 2,0)F F وأن1FﻣﻨﺘﺼﻒADوأن2FﻣﻨﺘﺼﻒCBاﻟﻤﺴﺘﻄﯿﻞ ﻣﺤﯿﻂ وأن
ABCDﯾﺴﺎوي20ﻃﻮل وﺣﺪة.
اﻟﺤﻞ:2c اﻟﺴﯿﻨﺎت وﻋﻠﻰ
اﻟﺒﺆرﺗﯿﻦ ﺑﯿﻦ اﻟﻤﺴﺎﻓﺔ=2 c=4ﻃﻮل وﺣﺪة
ﻓﺎن ﻟﺬا:AB=4أﯾﻀﺎ
اﻟﻤﺤﯿﻂ) =ﻃﻮل+ﻋﺮض(×2
20=2)AB AD(
10=4 AD
AD = 6
1 3AF ﺑﺎﻟﺘﻨﺼﯿﻒوﯾﻤﺜﻞ
91.
KAMIL MOSA ALNASSIRY91
ﻟﻠﻨﻘﻄﺔﺻﺎدي إﺣﺪاﺛﻲAاﻟﺮأس ﻓﺎن ﻟﺬا(2,3)A
اﻟﺴﺆال ﻣﻦ اﻟﻤﺘﺒﻘﻲ ﻟﻠﺤﻞﻃﺮق ﺛﻼث:
اﻟﺘﻌﺮﯾ ﻧﺴﺘﺨﺪم اﻷوﻟﻰ اﻟﻄﺮﯾﻘﺔﻒ:1 3AF
2 2
2 (2 2) (3 0) 5A F
اﻟﺘﻌﺮﯾﻒ:
1 2
2 2
2 2 2 2
2
2 2
2 2
2 3 5 2 4
1 6 4 1 2
1 1
1 6 12
A F A F a a a
b b
x y x y
a b
a b c
T h e eq uatio n
اﻟﺜﺎﻧﯿﺔ اﻟﻄﺮﯾﻘﺔ:اﻟﻨﻘﻄﺔ 2,3اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ ﻣﻌﺎدﻟﺔ ﺗﺤﻘﻖ
2 2
2 2
1
x y
a b
2 2
2 2 2 2
2 2
2 2
2 3
1 4 9 .........(1)
a b
b a a b
a b
ﻟﻜﻦ:2 2 22 2
....... ..(4 . 2)ba b c a
ﻋﻠﻰ ﻧﺤﺼﻞ آﻧﯿﺎ اﻟﻤﻌﺎدﻟﺘﯿﻦ ﺣﻞ ﻣﻦ2 2
,a bاﻟﺤﻞ أﻛﻤﻞ.
اﻟﻄﺮﯾﻘﺔاﻟﺜﺎﻟﺜﺔ:اﻟﺒﺆري اﻟﻮﺗﺮ ﻃﻮلاﻟﻌﻤﻮديAD=6اﻟﻌﻤﻮدي اﻟﺒﺆري اﻟﻮﺗﺮ ﻃﻮل ﻟﻜﻦ=
2
2b
a
ﻋﻠﻰ ﻧﺤﺼﻞ ﻣﻨﮭﻤﺎ
2
2 2
3 ...(1) 6
b
b a
a
2 2 2 2 2 2
2 2
3 4 3 4 0 ( 4)( 1) 0 4 12
1
16 12
a a a a a a a b
x
a b c
the equation of ellpise
y
Q13:اﻟﻨﻘﻄﺘﯿﻦ ﻣﻦ ﯾﻤﺮ
6
( 2,2) , (3, )
2
اﻟﺴﯿﻨﺎت ﻣﺤﻮر ﻧﻘﻂ ﻣﻦ وﺑﺆرﺗﺎهاﻻﺻﻞ ﻧﻘﻄﺔ وﻣﺮﻛﺰه.
اﻟﺤﻞ:1(( 2,2)اﻟﻤﻌﺎدﻟﺔ ﺗﺤﻘﻖ
2 2
2 2
1
x y
a b
22
4
1 ......... 1
4
( )
ba
2(
6
(3, )
2
اﻟﻤﻌﺎدﻟﺔ ﺗﺤﻘﻖ
2 2
2 2
1
x y
a b
22
6
1 ....... .(2)
4
9
.
a b
92.
KAMIL MOSA ALNASSIRY92
اﻟﺤﻞاﺟﻞ ﻣﻦآﻧﯿﺎاﻟﻤﻌﺎدﻟﺔ ﻃﺮﻓﻲ ﻧﻀﺮباﻷوﻟﻰﻓﻲ9ﻓﻲ اﻟﺜﺎﻧﯿﺔ اﻟﻤﻌﺎدﻟﺔ وﻃﺮﻓﻲ)- 4: (
2
36
a 2
36
9 .........(1)
b
2
36
a
2
6
4 .........(2)
b
2
2
30
5 6b
b
اﻻوﻟﻰ اﻟﻤﻌﺎدﻟﺔ ﻗﻲ ﻧﻌﻮض:
2 2
2
2 2
4 4 4 2
1 12 1
6 6 12 6
the equation
x y
a
a a
أﺧﺮى أﻣﺜﻠﺔ:
Q1:ﻟﺘﻜﻦ( 6, 0)A وﻟﺘﻜﻦ(6, 0)BوﻟﺘﻜﻦC(x , y )ﺑﺤﯿ اﻟﻤﺴﺘﻮي ﻓﻲ ﻣﺘﺤﺮﻛﺔ ﻧﻘﻄﺔﺚاﻟﻤﺜﻠﺚ ﻣﺤﯿﻂ أن
ABCﯾﺴﺎوي32ﻃﻮل وﺣﺪة،ﻧﻘﻂ ﻣﺠﻤﻮﻋﺔ ﺗﻤﺜﻞ ﻣﺎذاC.
اﻟﺤﻞ:
اﻟﻤﺤﯿﻂ=1 2 3L L L
2 312 32L L
2 3 20L L اﻟﻘﻄﻊ ﺗﻌﺮﯾﻒ ﯾﻤﺜﻞ اﻟﻨﺎﺗﺞاﻟﺜﺎﺑﺖ اﻟﻌﺪد ﺣﯿﺚ اﻟﻨﺎﻗﺺ=20واﻟﻨﻘﻄﺘﯿﻦA ,Bاﻟﺒﺆرﺗﯿﻦ ﺗﻤﺜﻞ.
اﻟﻤﺮﻛﺰ: 0, 0
2 20 10a a ،12 2 12 6AB c
2 2 2 2 2
2 2
100 36 64 : 1
100 64
the equation
x y
a b c b b
Q2:ﻟﺘﻜﻦ10 sin , 6 cosy x اﻟﻤﺠﻤﻮﻋﺔ ﺗﻤﺜﻠﮭﺎ اﻟﺘﻲ اﻟﻤﺠﻤﻮﻋﺔ ﺟﺪ ،( )y f x
اﻟﺤﻞ:2
2
coscos
6 36
x x
2
2
sinsin
10 100
y y
2
2 2
2
1 1
100 3
sin
6
cos
y x
but
وﺑﺆرﺗﺎه اﻷﺻﻞ ﻧﻘﻄﺔ ﻣﺮﻛﺰه اﻟﺬي اﻟﻨﺎﻗﺺ ﻗﻄﻊ ﻣﻌﺎدﻟﺔ ﺗﻤﺜﻞﻣﺤﻮر ﻋﻠﻰاﻟﺼﺎدات.
( 6, 0)A (6, 0)B3L
1L 2L
( , )C x y
93.
KAMIL MOSA ALNASSIRY93
Q3:اﻟﻨﺎﻗﺺاﻟﻘﻄﻊ2 2
4 8x w y ﺑﺆرﺗﺎه 0 , 6ﻗﯿﻤﺔ ﺟﺪw.
اﻟﺤﻞ:اﻟﺒﺆرﺗﺎن 0, 6ﻋﻠﻰ ﻧﺤﺼﻞ ،6cواﻟﺼﺎدات ﻋﻠﻰ
اﻟﻘ ﻟﻠﺼﯿﻐﺔ ﻧﺤﻮﻟﮭﺎ ﻟﺬا واﺣﺪ ﻣﺠﮭﻮل اﻟﻤﻌﺎدﻟﺔ ﻓﻲﻋﻠﻰ ﻃﺮﻓﯿﮭﺎ ﺑﻘﺴﻤﺔ ﯿﺎﺳﯿﺔ8
2 2 2
2 2 2
4 8 1 1
8 2 82
x w x
w
y
x w y y
ﻓﺎن ﻟﺬا اﻟﺼﺎدات ﻋﻠﻰ اﻟﺒﺆرﺗﺎنa 2
ﺗﺤﺖ ﻣﻮﺟﻮدة ﺗﻜﻮنy2
أي
2 2 8
2b a
w
2 2 2 8
2 6 1a b c w
w
Q4:اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ2 2
32h x k y ﻣﺤﻮر ﻋﻠﻰ ﺑﺆرﺗﺎهyﺗﺴﺎوي ﺑﯿﻨﮭﻤﺎ واﻟﻤﺴﺎﻓﺔﺑﺆرة ﺑﯿﻦ اﻟﻤﺴﺎﻓﺔ
اﻟﻤﻜﺎﻓﺊ اﻟﻘﻄﻊ2
4 6 0y x ﯾﺴﺎوي ﻣﺤﻮرﯾﮫ ﻃﻮﻟﻲ ﻣﺮﺑﻌﻲ وﻣﺠﻤﻮع ودﻟﯿﻠﮫ ،40ﻗﯿﻤﺔ ﺟﺪm , n.
اﻟﺤﻞ:2
4 6y x ، ﻟﻠﯿﺴﺎر ﻓﺘﺤﺘﮫ ﻣﻜﺎﻓﺊ ﻗﻄﻊ6 4 4 6p p =اﻟﺒﺆري اﻟﺒﻌﺪ
ودﻟ ﻣﻜﺎﻓﺊ أي ﺑﺆرة ﺑﯿﻦ اﻟﻤﺴﺎﻓﺔﺗﺴﺎوي ﯿﻠﮫ2 p
ﺗﺴﺎوي ودﻟﯿﻠﮫ اﻟﻤﻌﻄﻰ اﻟﻤﻜﺎﻓﺊ ﺑﺆرة ﺑﯿﻦ اﻟﻤﺴﺎﻓﺔ2 6أي6 2 2 6c c
ﯾﺴﺎوي ﻣﺤﻮرﯾﮫ ﻃﻮﻟﻲ ﻣﺮﺑﻌﻲ وﻣﺠﻤﻮع40:
2 22 2
2 102 ......(1)40b ba a
ﻟﻜﻦ
2 2 2 2 2
6a b a b c اﻷوﻟ اﻟﻤﻌﺎدﻟﺔ ﻓﻲ ﺗﻌﻮضﻋﻠﻰ ﻓﻨﺤﺼﻞ ﻰ:
2 2 2 2 2 2 2
10 6 10 2 4 2 8a b b b b b a
اﻟﻤﻌﺎدﻟﺔ ﻓﺘﻜﻮن:
2 2 2 2 32
2 2
2 2
2 2
1 1 16 4 32
2 8
32
:
x y x y
x y
b a
But h x k y
Hence h k
Q5:اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ:2 2
4h x y k ﻣﺠﺎﻟﮫ= 6,6وﻣﺪاه ،= 9,9
ﻗﯿﻤﺔ ﺟﺪh , k ,اﻟﺤﻘﯿﻘﯿﺔ
اﻟﺤﻞ:اﻗﯿﻢ ﻣﺠﻤﻮﻋﺔ ﯾﻤﺜﻞ ﻟﻤﺠﺎلxﻣﻦ ﯾﻤﺮ اﻟﻨﺎﻗﺺ ﻓﺎﻟﻘﻄﻊ 6, 0
ﻗﯿﻢ ﻣﺠﻤﻮﻋﺔ ﯾﻤﺜﻞ اﻟﻤﺪىyﻣﻦ ﯾﻤﺮ اﻟﻨﺎﻗﺺ ﻓﺎﻟﻘﻄﻊ 0, 9
94.
KAMIL MOSA ALNASSIRY94
9aاﻟﺼﺎدات وﻋﻠﻰ اﻷﻛﺒﺮ ﻷﻧﮫ
6b اﻟ ﻋﻠﻰﺴﯿﻨﺎت
اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ ﻣﻌﺎدﻟﺔ:
2 2
2 2
2 2
81 4
9 31 4
36 81
24
: 4
9 ; 324
x y
x y
But we have the equation x yh k
Then h k
Q5:ﻗﻄﻊﻧﺎﻗﺺﻛﻨﺴﺒﺔ ﻣﺤﻮرﯾﮫ ﻃﻮﻟﻲ ﺑﯿﻦ واﻟﻨﺴﺒﺔ اﻷﺻﻞ ﻧﻘﻄﺔ ﻣﺮﻛﺰه ﺻﺎدي
1
2
اﻟﻤﻜﺎﻓﺊ اﻟﻘﻄﻊ وﯾﻘﻄﻊ
2
8y xﻋﻨﺪx = 2اﻟﻌﺎﻣﺔ ﺑﺎﻟﺼﯿﻐﺔ ﻣﻌﺎدﻟﺘﮫ ﺟﺪ.
اﻟﺤﻞ:2 22 1
2
2 2
4
b
a b a
a
b
2
8y xﻟﻜﻦ 2
y = 4 y = 8 2 2x ھﻲ اﻟﺘﻘﺎﻃﻊ ﻧﻘﻂ 2, 4
ﻣﻌﺎدﻟﺘﮫ ﻓﺘﺤﻘﻖ اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ ﻋﻰ ﺗﻘﻊ اﻟﺘﻘﺎﻃﻊ ﻧﻘﻂ:
22
2 2 2 2 2 2
2 2
2
4 16 4 4
1 1 1
4
8
1 = 4 88 = 32
yx
b a b b b b
b a
b
اﻟﻘﯿﺎﺳﯿﺔ اﻟﺼﯿﻐﺔ ﺗﻜﻮن ﻟﺬاھﻲ:
22
1
8 32
yx
ﻓﻲ اﻟﻤﻌﺎدﻟﺔ ﻃﺮﻓﻲ ﺿﺮب وﻣﻦ32ﻋﻠﻰ ﻧﺤﺼﻞ:
2 2
4 32 0x y اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ ﻣﻌﺎدﻟﺔ وھﻲ
ﺑﺎﻟﺼﯿﻐﺔاﻟﻌﺎﻣﺔ
2 , 4
2 , 4
2
8y x
KAMIL MOSA ALNASSIRY97
س21:ﻣﻌﺎدﻟﺘﮫﺻﺎدي ﻧﺎﻗﺺ ﻗﻄﻊ2 2
6h x y k ﺑﺎﻟﺒﻌﺪﯾﻦ اﻟﺮأﺳﯿﻦ ﻋﻦ ﺗﺒﻌﺪ ﺑﺆرﺗﯿﮫ إﺣﺪى2,12ﺟﺪي
ﻗﯿﻤﺔh , k
س22:ﻧﻘﻄﺔ ﻣﺮﻛﺰه اﻟﺬي اﻟﻨﺎﻗﺺ اﻟﻘﻄﻊ ﻣﻌﺎدﻟﺔ ﺟﺪاﻷﺻﻞﯾﻤﺮ واﻟﺬي اﻻﺣﺪاﺛﯿﯿﻦ ﻣﺤﻮري ﻋﻠﻰ ﻣﻨﻄﺒﻘﯿﻦ وﻣﺤﻮرﯾﮫ
اﻟﻨﻘﻄﺘﯿﻦ ﻣﻦ 4, 2 , 1, 3
س23:وارﺳﻤﮫ اﻟﺘﺎﻟﻲ اﻟﻘﻄﻊ ﻋﻨﺎﺻﺮ ﺣﺪد:
2 2 2 2
1 9 25 18 100 116 0 9 25 9x y x y b x y
98.
ﺍﻟﻨﺎﺻﺮﻱ ﻣﻮﺳﻰ ﻛﺎﻣﻞ98
Hyperbolaااا
Foci
1 2( ,0) ( ,0)F c and F c
2 a
( , )P x y
1 2 2 – PF PF a 1 2d d 2a
1 2 , d d
2 2 2 2
1 2( ) ; ( )d x c y d x c y
2 2 2 2
( ) ( ) 2x c y x c y a
2 2 2 2
( ) ( ) 2x c y x c y a
2 2 2 2
( ) ( ) 2x c y x c y a
2 2
2 2 2 2
( ) ( ) 2x c y x c y a
2 2 2 2 2 2 2
( ) ( ) 4 ( ) 4x c y x c y a x c y a
y2
Subtract y 2
and square the binomials
2 2 2 2 2 2
2 2 4 ( ) 4xc c x xc c a x c y a
2 2 2
4 4 4 ( )xc a a x c y
4
2 2 2
( )xc a a x c y
222 2 2
( )xc a a x c y
2 2 2 4 2 2 2 2
2 2x c xca a a x xc c y
2 2 2 4 2 2 2 2 2 2 2
2 2x c xca a a x xca a c a y
2 2 4 2 2 2 2 2 2
x c a a x a c a y
x’s and y’s2 2 2 2 2 2 2 2 4
x c a x a y a c a
2 2 2 2 2 2 2 2
x c a a y a c a
99.
ﺍﻟﻨﺎﺻﺮﻱ ﻣﻮﺳﻰ ﻛﺎﻣﻞ99
a2
(c2
–a2
)
2 2 2 2 2 22 2
2 2 2 2 2 2 2 2 2
x c a a c aa y
a c a a c a a c a
2 2
2 2 2
1
x y
a c a
b2
= c2
– a2
2 2
2 2
1
x y
a b
2 2 2
c a b
1foci ,0c2vertices ,0a
3asymptotes
b
y x
a
4directrices
a
x
e
xy
2a
2 b
2 c
2 2 2
c b c a ba c
b
y x
a
x-axis
a
y x
b
y-axis
2
a
c
100.
ﺍﻟﻨﺎﺻﺮﻱ ﻣﻮﺳﻰ ﻛﺎﻣﻞ100
2
a
x
c
2
a
y
c
Length of latus rectum
2
2b
a
Major Axis Horizontal Major Axis Vertical
Equation:
2 2
2 2
1
x y
a b
Equation:
2 2
2 2
1
y x
a b
Center: 0,0 Center: 0,0
Vertices: 0,a Vertices: a,0
Foci: 0,c Foci: c,0
y-intercepts: b,0 x-intercepts: 0,b
Asymptotes
b
y x
a
Asymptotes
a
y x
b
a
x
e
Directrices
a
y
e
Directrices
2(h , k )Shifted
Major Axis Horizontal
Major Axis Vertical
2 2
2 2
1
x h y k
a b
2 2
2 2
1
y k x h
a b
Center: k,h Center: k,h
Vertices: k,ah Vertices: ak,h
Foci: k,ch Foci: ck,h
Asymptotes
( )
b
y k x h
a
Asymptotes
( )
a
y k x h
b
directrices
a
x h
e
directrices
a
y k
e
101.
ﺍﻟﻨﺎﺻﺮﻱ ﻣﻮﺳﻰ ﻛﺎﻣﻞ101
conjugateaxis2 b
transverse axis2 a
b
a
a
b
ca
2 2 2
a b c
Standard form
2 2 2 2
2 2 2 2
( ) ( ) ( ) ( )
1 1
y k x h x h y k
or
a b a b
The general form of the equation is
2 2 2
Ax Cy Dx Ey F 0 , 4 > 0B AC
a
x h
e
x
a
y k
e
y
1Q2 2
9 16 144x y
144
2 2
1
16 9
x y
( 0 , 0 )
a2
= 16a = 4 4 , 0
b2
= 9b = 3 0, 3
2 2 2 2
16 9a b c c c
8 = 2a
10 = 2c
6 = 2b
3
4
y x
102.
ﺍﻟﻨﺎﺻﺮﻱ ﻣﻮﺳﻰ ﻛﺎﻣﻞ102
22
9 4 72 8 176 0 : 2x y x y Q
2 2 2 2
2 2 2 2
2 2( 1) 36
2 2
9 16 9 1
9 72 4 8 176 9( 8 ) 4( 2 ) 176
( 8 ) 4( 2 1) 176 4 1 9( 4) 4( 1) 36
( 1) ( 4)
4( 1) 9( 4) 36 1
9
6
4
x x y y x x y y
x x y y x y
y x
y x
(4,1)4x
4
a2
= 93 = a1 2(4,2) , (4, 2) (4,1 3)V V
b2
= 42 = b(4 2,1)
2 2 2 2
1 2
9 4 13
: 4 ,1 13 (4,1 13) , (4,1 13)
a b c c c
the foci F F
2 6a
2 4b
( )
a
y k x h
b
3
1 ( 4)
2
y x
13
1
3
c
e
a
Q1 0, 12 0x y
0, 11a
2y x2
a
b
2
a
b
1
2
b
2 2
2 2
2 2
4 1 1
y x
y x
a b
(4,1 13)
(4,1 13)
103.
ﺍﻟﻨﺎﺻﺮﻱ ﻣﻮﺳﻰ ﻛﺎﻣﻞ103
Q2 10,0
3
4
10,010c
x
b
a
3 3
4 4
b
b a
a
2 2 2 2 2 225 16 9
8 100
16 16 16
a a a a a b c
3 3
8
4 4
b b b a
2 2
1
64 36
x y
: 3Q 0 , 10
5
4
c = 10
5
4
e
c
e
a
5
4
c
a
c = 10
5 10
4 a
a = 8
2 2 2 2
6 64 100b b a b c
2 2
1
64 36
y x
: 4Q 0 , 3 0 , 1
3 ; 1c a
2 2 2 2
8 1 9b a b c b =
2 2
1
1 8
y x
: 5Q 6 , 0 4 , 0
6 ; 4c a
2 2 2 2
20 16 36b a b c b =
2 2
1
16 20
x y
Q6y 2 , 2 , 4 , 13
(2 , 2 )
2 2
2 2
1
y x
a b
2 2
4 4
(1)........ 1
a b
( 4)
4 , 13
2 2
2 2
1
y x
a b
2 2
13 16
(2)........ 1
a b
2 2
16 16
(1)........ 4
a b
2 2
13 16
(2)........ 1
a b
2
2
3
3 1a
a
12 4
3
b
2 2
3
1
1 4
y x
104.
ﺍﻟﻨﺎﺻﺮﻱ ﻣﻮﺳﻰ ﻛﺎﻣﻞ104
Q7 2 15 , 0 4 , 3
2 15c ;
2 2 22
60 60a a bb (1)....
2 2
2 2
1
x y
a b
4 , 3
2 2
2 2
2 2
2 2
16 3
(2)..... 16 3 1
a b
b a a b
a b
2 22 2
16 3 ( )60 60( )b bb b
2 2 2 4 2 2 2 2 4
45 45 4 180 0 16 180 3 60b b b b b b b b b =0 -41
2 2 2 2
15 60 45 60a a a b
2 2
1
15 45
x y
Q8x
1
7
2
4 3
2 4 2 3 3 bb
2 2 2 2 2
2
7 7 12
2 4
a b a b a
e
a a a
122 22
4 48 16a a 7 a
2 2
1
16 12
x y
Q92 2
12m x y n ,
2 2
4 4x y m , n
2 2
4 4x y y
2 2
1
1 4
x y
2
4a a = 2 1 20,4 , 0, 4V V
2
1b b = 1
2 2 2 2
1 20, 3 , 0, 3 3 4 1F F c c a b c
105.
ﺍﻟﻨﺎﺻﺮﻱ ﻣﻮﺳﻰ ﻛﺎﻣﻞ105
3a
c = 2
2 2 2 2
3 4b a b c
b =1
2 2 2 236
2 2
2 2
2 2
1 1
3 1
12
y x y x
a b
x
m x y n ﻦ ﻟﻜ
- 36 +12 y = 36 :
m = -36 , n = 36
1
1 4, 0 14, 24
2 0, 43y x
3x 4, 3 , 2,1
27
8P (x , y )1 2 (0,3) , F (0, 3)F
1 2 10PF PF
ca
y
1(0,2)V
1(0, 3)F
1(0, 3)F
2 (0, 2)V
ac
Exercises 2.3
108
1
1 0 a constant 2 a real number
3 ( ) ( ) a constant
4 ( ) ( )
5 Chain Rule ( ) '( )
n nd d
c c x n x n
dx dx
d d
cf x c f x c
dx dx
d d d
f x g x f x g x
dx dx dx
d du dy dy
f u f u OR
dx dx dx
2 2
1
6 Product Rule ( ) ' '
' '
7 Quotient Rule
8
9
( )
du dv
d x
n
x d
n n
du
du dx
d du dv
uv v u OR u v uv
dx dx dx
v ud u u v uv
OR
dx
d a a n
dx bx b
v v v
d a a n
dx xx b g
2
1
( )
( )
( )
10 ( )
2 ( )
11 sin cos 12 cos sin
13 tan sec 14 cot csc
n
g x
b g x
d g x
g x
dx g x
d du d du
u u u u
dx dx dx dx
d du d
u u u
dx dx dx
15 sec sec tan 16 csc csc cot
1
17 ln 18 log
ln
1
19 ln 20
u u
a
u u
du
u
dx
d du d du
u u u u u u
dx dx dx dx
d du d du
a a a u
dx dx dx u a dx
d du d du
u e e
dx u dx dx dx
1
ln lnln
log ln 1 = 0 ln = 1
ln
ln
19
; ; ; ;
= ln x -ln y ; ln = ln x + ln y ln x ;
= n ln x
a
n n
x
n
x a x ax
x
d
x n
e
a
x
x y
x
y
x
d
a e e
109.
KAMIL ALNASSIRY109
اﻟﺘﻔﺎﺿﻞ ﻋﻠﻰﺗﻄﺒﯿﻘﺎت
Application of the Derivative
ﺍﻟﻌﻠﻴﺎ ﺍﻟﺮﺗﺐ ﺫﺍﺕ ﺍﳌﺸﺘﻘﺎﺕHigher-order derivative
ﻛﺎﻧﺖ إذا( )y f xﻣﺸﺘﻘﺘﮭﺎ ﻓﺎن اﻻﺷﺘﻘﺎق ﺷﺮوط ﻓﯿﮭﺎ ﺗﺘﻮﻓﺮ داﻟﺔاﻷوﻟﻰFirst Derivativeھﻲ
( )
dy
y f x
dx
وﺗﻤﺜﻞدﺟﺪﯾﺪة اﻟﺔ
اﻟﺠﺪﯾﺪة واﻟﺪاﻟﺔإذااﻟﺠﺪﯾﺪ اﻟﺪاﻟﺔ ﻣﺸﺘﻘﺔ ﻓﺎن أﯾﻀﺎ اﻻﺷﺘﻘﺎق ﺷﺮوط ﻓﯿﮭﺎ ﺗﻮﻓﺮتاﻟﺜﺎﻧﯿﺔ اﻟﻤﺸﺘﻘﺔ ﺗﻤﺜﻞ ة
Second Derivativeوﻟﮭﺎ ﯾﺮﻣﺰﺑﺎﻟﺮﻣﺰ
2
2
( )
d y
y f x
dx
اﻟﻤﺘﻐﯿﺮ ﻓﻲ ﺟﺪﯾﺪة داﻟﺔ وھﺬهxوإذا
اﻟﻤﺸﺘﻘﺔ إﯾﺠﺎد ﻓﺈن اﻻﺷﺘﻘﺎق ﺷﺮوط ﻓﯿﮭﺎ ﺗﻮﻓﺮتاﻷﺧﯿﺮة ﻟﻠﺪاﻟﺔﺛﺎﻟﺜﺔ ﻣﺸﺘﻘﺔ ﯾﺴﻤﻰThird Derivative
ﺑﺎﻟﺼﻮرة ﯾﻜﺘﺐ:
3
3
( )
d y
y f x
dx
ﻣﺘﺘﺎﻟﯿﺔ ﻣﺸﺘﻘﺎت إﯾﺠﺎد ﯾﻤﻜﻦ اﻟﻤﻨﻮال ھﺬا وﻋﻠﻰوﺑﺪءاﺑﺎﺳﻢ اﻟﻤﺸﺘﻘﺎت ھﺬه ﻋﻠﻰ ﯾﻄﻠﻖ اﻟﺜﺎﻧﯿﺔ اﻟﻤﺸﺘﻘﺔ ﻣﻦ
اﻟﻌﻠﯿﺎ اﻟﻤﺸﺘﻘﺎتHigher Derivativesاﻟﺮﺗﺒﺔ ﻣﻦ اﻟﻤﺸﺘﻘﺔ وﺗﻜﺘﺐnﯾﻠﻲ ﻛﻤﺎ:
( ) ( )
( )
n
n n
n
d y
y f x
dx
ﺣﯿﺚnﻣﻮﺟﺐ ﺻﺤﯿﺢ ﻋﺪد.
اﻟﻤﺘﺘﺎﻟﯿﺔ ﻟﻠﻤﺸﺘﻘﺎت ﻣﺨﺘﻠﻔﺔ رﻣﻮز ﻋﻠﻰ وﻟﻨﺘﻌﺮفﯾﻠﻲ وﻛﻤﺎ:
(4) ( )
( ), ( ), ( ), ( ), , ( )n
f x f x f x f x f x
2 3 4
, , , , , n
x x x x xD y D y D y D y D y
(4) ( )
, , , , , n
y y y y y
2 3 4
2 3 4
, , , , ,
n
n
dy d y d y d d y
dx dx dx dx dx
ﻟﻨﺎ ﯾﺘﻀﺢ اﻟﻌﻠﯿﺎ اﻟﻤﺸﺘﻘﺎت ﺗﻌﺮﯾﻒ وﻣﻦأن:
2
2
d y d dy
dx dx dx
وأن:
3 2
3 2
,
d y d d y
dx dx dx
110.
KAMIL ALNASSIRY110
اﻟﻤﺘﺘﺎﻟ ﻟﻠﻤﺸﺘﻘﺎتوﻛﻤﺜﺎلاﻟﺘﺎﻟﯿﺔ اﻟﺪاﻟﺔ ﻟﻨﺄﺧﺬ ﯿﺔ:( )s f tﺣﯿﺚsأي ﻋﻨﺪ ﻣﺘﺤﺮك ﺟﺴﻢ إزاﺣﺔ ﺗﻤﺜﻞ
زﻣﻦ،tاﻷوﻟﻰ ﻓﺎﻟﻤﺸﺘﻘﺔ ﺛﺎﻧﯿﺔ( )
ds
f t
dt
، اﻟﺠﺴﻢ ﻟﺬﻟﻚ اﻟﻠﺤﻈﯿﺔ اﻟﺴﺮﻋﺔ ﺗﻤﺜﻞ
اﻟﺜﺎﻧﯿﺔ واﻟﻤﺸﺘﻘﺔ
2
2
( )
d S
f t
dt
اﻟﺘﻌﺠﯿﻞ أي اﻟﺴﺮﻋﺔ ﺗﻐﯿﺮ ﺳﺮﻋﺔ ﺗﻤﺜﻞAccelerationاﻟﻤﺘﺤﺮك ﻟﻠﺠﺴﻢ.
ﻟﻠﺰﻣﻦ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻺزاﺣﺔ اﻟﺜﺎﻟﺜﺔ اﻟﻤﺸﺘﻘﺔ أﻣﺎtﺛﺎﻧﯿﺔ
3
3
( )
d s
f t
d t
اﻟﺘﻌﺠﯿﻞ ﻟﺘﻐﯿﺮ اﻟﻠﺤﻈﻲ اﻟﻤﻌﺪل ﺗﻤﺜﻞ ﻓﮭﻲ
اﻟﻔﯿﺰﯾﺎ اﻷﻣﺜﻠﺔ وﻣﻦﺋاﻷ ﯿﺔﺧﺮى،ﺣﺴﺎبﻋﻠﻰ ﯾﺘﻮﻗﻒ ﻣﺎ ﺳﯿﺎرة ﻓﺮاﻣﻞ ﻧﻈﺎم ﻓﻲ اﻷﻣﺎن درﺟﺔأﻗﺼﻰﺗﺒﺎﻃﺆ
Decelerationاﻟﻔﺮاﻣﻞ ﺗﺤﺪﺛﮫ أن ﯾﻤﻜﻦ)ﺳﺎﻟﺐ ﺗﻌﺠﯿﻞ وھﻮ(.
وﻋﻨﺪإﻃﻼقوھﺬه ﻃﺒﯿﺔ ﻟﺘﺄﺛﯿﺮات ﯾﺘﻌﺮض اﻟﺼﺎروخ داﺧﻞ اﻟﻤﺮﻛﺒﺔ ﻓﻲ اﻟﺬي اﻟﻔﻀﺎء ﻓﺮاﺋﺪ ﻟﻠﻔﻀﺎء ﺻﺎروخ
اﻟﺘﺄﺛﯿﺮاتﺗﻌﺘﻤﺪﯾﺘﻌﺮ اﻟﺬي اﻟﺘﻌﺠﯿﻞ ﻋﻠﻰاﻟﺮاﺋﺪ ھﺬا ﻟﮫ ض.
اﻟﺜﺎﻟﺜﺔ اﻟﻤﺸﺘﻘﺔ وﺗﺴﺘﻌﻤﻞﻣﺎ ﻟﺪراﺳﺔﻗﻄﺎرات راﻛﺐ ﻟﮭﺎ ﯾﺘﻌﺮضاﻷﻧﻔﺎق.
ﻣﺜﺎل1:إذاﻛﺎﻧﺖ2y Cos xﻓﺠﺪ
4
4
d y
dx
اﻟﺤﻞ:2 2Sin x
dy
dx
2
2
4 2
d y
Cos x
dx
3
2 2Sin x
3
3
d y
dx
4
2 2Cos x
4
4
d y
dx
ﻣﺜﺎل2:ﻟﺘﻜﻦ
1
3
( ) 54f x xﻋﻨﺪ اﻟﺜﺎﻧﯿﺔ اﻟﻤﺸﺘﻘﺔ ﻟﺪاﻟﺔ اﻟﻤﻤﺎس ﻣﻌﺎدﻟﺔ ﺟﺪ( x = - 8 )
اﻟﺤﻞ:
2
3
( ) 18f x x
وأن:
5
3
( ) 12f x x
وﻟﺘﻜﻦ اﻟﺪاﻟﺔ وﺗﻤﺜﻞ( ) ( )f x g x
5
3
( ) 12g x x
5
3 13
12 3
12( 2 ) 12( 32)
32 8
( 8)g
111.
KAMIL ALNASSIRY111
ھﻲ اﻟﺘﻤﺎسﻧﻘﻄﺔ:
3
8 ,
8
اﻟﻤﯿﻞ ﻧﺤﺘﺎج:ﻗﯿﻤﺔ ﺗﻌﻮﯾﺾ ﻣﻦ ﻧﺠﺪهxﺑﺎﻟﻤﺸﺘﻘﺔاﻷوﻟﻰﻟﻠﺪاﻟﺔg
8
3
20x
( )g xﻻﺣﻆأﻧﮭﺎاﻟﻤﺸﺘ ﺗﻤﺜﻞﻟﻠﺪاﻟﺔ اﻟﺜﺎﻟﺜﺔ ﻘﺔf
اﻟﻤﻤﺎس ﻣﯿﻞTangenttheofSlope
8
3 3
20 5
20( 2 )
256 64
m
( 8)g
1
1
y y
x x
m
3
8
8
y
x
5
645 64 64 0x y اﻟﻤﻄﻠﻮب اﻟﻤﻤﺎس ﻣﻌﺎدﻟﺔ
ﻣﺜﺎل3:ﺑﺄن ﻋﻠﻤﺖ إذا2 2
1y x أن ﻋﻠﻰ ﻓﺒﺮھﻦ:
2
2
2
( ) 1 0
d y dy
y
dx dx
اﻟﺤﻞ:ﺿﻤﻨﯿﺔ ﻋﻼﻗﺔ ھﻲ اﻟﻤﻌﻄﺎة اﻟﻌﻼﻗﺔ،ﻟﻠﻤﺘﻐﯿﺮ ﺑﺎﻟﻨﺴﺒﺔ اﻟﻄﺮﻓﯿﻦ ﻧﺸﺘﻖx
2 2 0
dy
y x
dx
ﻋﻠﻰ اﻟﻤﻌﺎدﻟﺔ ﻃﺮﻓﻲ ﻗﺴﻤﺔ وﻣﻦ2ﻋﻠﻰ ﻧﺤﺼﻞ:
0
dy
y x
dx
ﻟﻠﻤﺘﻐﯿﺮ ﺑﺎﻟﻨﺴﺒﺔ اﻟﻄﺮﻓﯿﻦ ﻧﺸﺘﻖ ﺛﻢxأ ﺗﻨﺲ وﻻﻣﺘﻐﯿﺮﯾﻦ ﺿﺮب ﺣﺎﻟﺔ ھﻮ اﻷول اﻟﺤﺪ ن:
2
2
1 0
d y dy dy
y
dx dx dx
2
2
2
( ) 1 0
d y dy
y
dx dx
اﻟﻤﻄﻠﻮب ﯾﺘﻢ وﺑﮭﺬا
ﺗﺪﺭﻳﺐ)3 - 1(
س1:ﺟﺪ
2
2
d y
dx
ﯾﻠﻲ ﻣﻤﺎ ﻟﻜﻞ:
a(4 0,, 0, 0xy x y b(2 ,, 2y x x
c(
2
,, 2
2
x
y x
x
d(2 5
(1 2 )y x e(2 4 5 0,, 0, 2yx y y x
س2:ﺟﺪ(1)f ﻣﻤﺎ ﻟﻜﻞﯾﺄﺗﻲ:
1(
3
( )
2
f x
x
2(( ) sinf x x3(( ) 4 6 2f x x
س3:ﻛﺎﻧﺖ إذاtany x،,,x n n أن ﻓﺒﺮھﻦ
2
2
2
2 (1 )
d y
y y
dx
س4:ﻛﺎﻧﺖ إذاsiny x xأن ﻓﺒﺮھﻦ
2
2
2cos
d y
y x
dx
س5:ﻛﺎﻧﺖ إذا2
( )g u au bu c وأن(1) 4g ،(1) 3g ،(1) 5g اﻟﺜﻮاﺑﺖ ﻗﯿﻤﺔ ﻓﺠﺪ, ,a b c
اﻟﻨﺎﺻﺮي ﻣﻮﺳﻰ ﻛﺎﻣﻞ121
(0 , 1 )
( -2 , 3 )
( 1 , 2 )
ظﺻﻐﺮ ﻗﯿﻤﺔ أو ﻋﻈﻤﻰ ﻗﯿﻤﺔ ﻟﻠﺪاﻟﺔ ﻛﺎن اذاىﻋﻨﺪcﺣﯿﺚ ,c a bﺗﻜﻮن أن ﯾﺸﺘﺮط ﻓﻼ( ) 0f c
لﻟﺘﻜﻦ : 2,1 , ( ) 1f f x x
3x = -2
ھﻲ ﻗﯿﻤﺔ أﺻﻐﺮ وﺗﻤﺘﻠﻚ1وﻣﻮﺟﻮدﻋﻨﺪ ةx = 0وﻟﻜﻦ
(0)f ﻏﯿﺮﻋﻨﺪھﺎ ﻟﻼﺷﺘﻘﺎق ﻗﺎﺑﻠﺔ ﻏﯿﺮ اﻟﺪاﻟﺔ ﻷن ﻣﻮﺟﻮدة
ررولRolle`s Theorem
Michel Rolle
x
1f ,a b
2 ,a b
3( ) ( )f a f b
Rolle`s Theorem
f ,a b( , )a b
( ) ( )f a f bc( , )a b( ) 0f c
, ( )b f b
a b1c
2c
, ( )a f a
ﻋﻨﺪ اﻟﻤﻤﺎس1cاﻟﺴﯿﻨﺎت ﻣﺤﻮر ﯾﻮازي
ﻋﻨﺪ اﻟﻤﻤﺎس2cاﻟﺴﯿﻨﺎت ﻣﺤﻮر ﯾﻮازي
y
122.
اﻟﻨﺎﺻﺮي ﻣﻮﺳﻰ ﻛﺎﻣﻞ122
12,c c
ﻣﺜﺎﻝ:ﻗﻴﻢ ﻭﺟﺪ ﻣﻨﻬﺎ ﻟﻜﻞ ﺗﺘﺤﻘﻖ ﺭﻭﻝ ﻧﻈﺮﻳﺔ ﺃﻥ ﻫﻞ ﺍﻟﺘﺎﻟﻴﺔ ﺍﻟﺪﻭﺍﻝ ﻣﻦ ﻟﻜﻞ ﺑﲔcﺍﳌﻤﻜﻨﺔ.
12
( ) (2 )f x x 0,4
0,4
(0,4)
2
(0) (2 0) 4f
2
(4) (2 4) 4f (0) (4)f f
( ) 2(2 )f x x
( ) 2(2 )f c c
0 2(2 )c 2c
22 3
( ) 9 3f x x x x 1,1
1,1
( 1,1)
( 1) 9 3 51f
5(1) 9 3 1f ( 1) (1)f f
c
3
2
1 ( 1,2]
1 [ 4, 1]
( ) { x if x
if x
f x
( ) 4,2D x
2
1
1
2
1
lim ( 1) 2
lim ( 1) 11
lim ( ) { x
x
x L
Lx
f x
1 2L L
1
lim ( )
x
f x
123.
اﻟﻨﺎﺻﺮي ﻣﻮﺳﻰ ﻛﺎﻣﻞ123
1x
A, B
( ) ( )y f b f a
x b a
y
x
0
A
B
a b
اﻟﻮﺗﺮ ﻣﯿﻞ=
f b f a
b a
اﻟﻤﻤﺎس ﻣﯿﻞ=
f c
y f x
اﻟﻤﻤﺎساﻟﻮﺗﺮ ﯾﻮازي
c
(6 3)رطوا ا(
f ,a b
( , )a bc( , )a b
( ) ( )
( )
f b f a
f c
b a
Or,
]
124.
اﻟﻨﺎﺻﺮي ﻣﻮﺳﻰ ﻛﺎﻣﻞ124
C()f c
( ) ( )
( )
f b f a
f c
b a
c
12
( ) 6 4f x x x 1,7
( ) 2 6 ( ) 2 6f x x f c c
( ) ( ) (7) ( 1) 11 1
7
0
1
1 8
f b f a f f
b a
0 2 6 3c c
22
( ) 25f x x 4,0
1 4,0a
2
2( ) 5a af
2
22
2lim ( ) 25 5lim
x a x a
f x x a
lim ( ) ( )
x a
f x f a
a
a
( )f x 4,0x
( ) ( )f a f b
( ) 0f c
125.
اﻟﻨﺎﺻﺮي ﻣﻮﺳﻰ ﻛﺎﻣﻞ125
22
25
( ) ( )
25
x
f x f c
x
c
c
اﻟﻮﺗﺮ ﻣﯿﻞ
1
2
( ) ( ) (0) ( 4) 5 3
0 4 4
f b f a f f
b a
2
1
2 25
c
c
2
25 2c c
2 2 2
25 4 5 5c c c c
3
23
( ) 1 , 1, 3f x x x
1, 3a
22
3 3
lim ( ) 1lim 1
x a x a
af x x
23
1( ) af a
lim ( )
x a
f x f a
fx = a
a 1, 3f 1, 3
1, 3x
3
2
( )
3 1
f
x
x
; x = 11 1, 3 01x x 1f
1, 3
3 2
: 0, , : ( ) 4f b f x x x
f
2
3
c b
2 2 2 4 16
( ) 3 8 ( ) 3 8 ( ) 4
3 3 3
f x x x f c c c f
3 2
2( ) ( ) ( ) (0) 4 0
4
0
f b f a f b f b b
b b
b a b b
2 2 2
4 4 4 4 0 ( 2) 0 2b b b b b b
126.
اﻟﻨﺎﺻﺮي ﻣﻮﺳﻰ ﻛﺎﻣﻞ126
() ( ) ( )h f a f a h f a
ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﺘﻘﺮﻳﺐﻣﱪﻫﻨﺔﺍﳌﺘﻮﺳﻄﺔ ﺍﻟﻘﻴﻤﺔ
)Approximation Using Mean Value Theorem(
ﺑﺎﺳﺘﺨﺪا اﻟﺘﻘﺮﯾﺐ ﻟﻨﺤﺎول واﻵنمﺷﺮﺣﮭﺎ ﺳﺒﻖ واﻟﺘﻲ اﻟﻤﺘﻮﺳﻄﺔ اﻟﻘﯿﻤﺔ ﻧﻈﺮﯾﺔ:
أي اﻟﻤﯿﻞ ﻧﻔﺲ ﻟﮭﻤﺎ ﯾﻜﻮن ﻟﺬا ﻣﺘﻮازﯾﺎن واﻟﻮﺗﺮ اﻟﻤﻤﺎس اﻟﻤﺴﺘﻘﯿﻢ:
( ) ( )
( )
f b f a
f c
b a
اﻗﺘﺮاب ﯾﻜﻮن وﻋﻨﺪﻣﺎbﻣﻦaاﻟﺤﺎﻟﺔ ھﺬه ﻓﻲ ﺗﻜﻮن ﻛﺎﻓﯿﺎ ﻗﺮﺑﺎhﻣﻦ ﻛﺎﻓﯿﺎ ﻗﺮﺑﺎ اﻟﻮﺗﺮ وﯾﻘﺘﺮب ﺻﻐﯿﺮةa
أن أيﻋﻨﺪ اﻟﻤﻤﺎسcﻣﻦ ﺟﺪا ﻗﺮﯾﺒﺎ ﺳﯿﻜﻮنaﻓﯿﻜﻮن:
( ) ( )
( )
f a h f a
f c
h
( ) ( ) ( )h f c f a h f a
ﯿﻢ ﻗ ﺴﺎب ﻟﺤ :ﻗﺪﻣﺔﻣﺔ3
8.006ھﻲ ھﻨﺎ اﻟﻤﺴﺘﻌﻤﻠﺔ اﻟﺪاﻟﺔ:
3
:f x xﻧﺠﺪ ﻣﻨﮭﺎ
ﻣﻮﺟﻮدة واﻟﺤﺎﺳﺒﺔ اﻹﺟﮭﺎد ھﺬا ﻟﻤﺎذا اﻟﻘﺎرئ ﯾﺘﺴﺎءل ﻟﻜﻦ ،اﻟﺴﺎﺑﻖ ﻟﻠﻌﺪد ﺗﻘﺮﯾﺒﺎ،ﻣﺤﻖ أﻧﺖ ﻧﻌﻢ ﻧﻘﻮل
ﻓﯿﮭﺎ ﺗﻘﺮب اﻟﺘﻲ اﻟﻄﺮﯾﻘﺔ ﻋﻠﻰ ﻣﺒﺮﻣﺠﺔ آﻟﺔ ﻣﺠﺮد ھﻲ اﻟﺤﺎﺳﺒﺔ أن ﺗﻌﻠﻢ ھﻞ ﻟﻜﻦاﻟﻌﺪد ھﺬا.وﻟﻨﻠﻧﻈﺮة ﻖ
اﻟﺨﻮارزﻣﻲ ﻣﻮﺳﻰ ﺑﻦ ﻣﺤﻤﺪ ﻓﻤﺜﻼ ، ﻋﻠﻤﺎﺋﻨﺎ ﺑﻌﺾ ﺑﮫ ﻗﺎم ﻣﺎ ﻋﻠﻰ)اﻷول اﻟﻨﺼﻒ ﻓﻲ ﺑﻐﺪاد ﻓﻲ ﻋﺎش
اﻟﺘﺎﺳﻊ اﻟﻘﺮن ﻣﻦ(اﻟﻌﺪد ﻗﺮب ﻓﻠﻘﺪ2
a bإﻟﻰ
2
b
a
a
ﯾﺠﺪ أن ﯾﺴﺘﻄﯿﻊ اﻟﻘﺎﻋﺪة ھﺬه ﻃﺮق وﻋﻦ
و اﻟﺘﺮﺑﯿﻌﯿﺔ اﻟﺠﺬورھﺬا ﻋﻤﻢ وﻟﻘﺪ ، اﻟﺘﻔﺎﺿﻞ ﺑﺎﺳﺘﺨﺪام إﻻ إﻟﯿﮫ ﻧﺼﻞ أن ﯾﻤﻜﻦ وﻻ ﺻﺤﯿﺢ ﺗﻘﺮﯾﺐ ھﻮ
اﻟﻄﻮﺳﻲ اﻟﺪﯾﻦ ﻧﺼﯿﺮ ﻣﺤﻤﺪ اﻻﺳﺘﻨﺘﺎج)1201–1274(ﯾﻠﻲ ﻛﻤﺎ اﻟﻨﻮﻧﻲ اﻟﺠﺬر ﻗﺮب ﻋﻨﺪﻣﺎ:
( 1)
nn
n n
b
a b a
a a
ﺣﯿﺚ)
n
a b(
Let b a h b a h
127.
اﻟﻨﺎﺻﺮي ﻣﻮﺳﻰ ﻛﺎﻣﻞ127
() ( ) ( )f a h f a h f a
اﻟﻘﺎﻧﻮن ﻋﻠﻰ ﺳﻨﻄﻠﻖاﻷﺧﯿﺮاﺳﻢ)ﻟﻠﺪاﻟﺔ اﻟﺘﻘﺮﯾﺒﻲ اﻟﺘﻐﯿﺮ(إذاﺗﻐﯿﺮتxﻣﻦ سaإﻟﻰa h
ﻧﺤﺼﻞ وﻣﻨﮫ:
ﻟﻠﺪاﻟﺔ اﻟﺘﻘﺮﯾﺒﯿﺔ اﻟﻘﯿﻤﺔ ﻗﺎﻧﻮن اﻷﺧﯿﺮ وﯾﻤﺜﻞ.
ﻣﺜﺎﻝ:ﻟﺘﻜﻦ( )f x xﺗﻘﺮﻳﺒﻴﺔ ﻭﺑﺼﻮﺭﺓ ﺟﺪ(26)f
اﻟﺤﻞ:26=25+1ﻟﺘﻜﻦ25aوﻟﺘﻜﻦ1h
1(اﻟﺪاﻟﺔ: : 25,26 , ( )f f x x
أن ﻻﺣﻆ:25 , 26a b
2(اﻟﻤﺸﺘﻘﺔ:
1
( )
2
f x
x
3(اﻟﻨﻈﺮﯾﺔ ﺗﻄﺒﯿﻖ:(26) (25 1) (25) 1 (25)f f f f
1
(26) 25 5.1
2 25
f
ﻣﺜﺎﻝ23:ﺣﺮﻓﻪ ﻃﻮﻝ ﻣﻜﻌﺐ9.98 cmﺍﳌﺘﻮﺳﻄﺔ ﺍﻟﻘﻴﻤﺔ ﻧﻈﺮﻳﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺗﻘﺮﻳﺒﻴﺔ ﺑﺼﻮﺭﺓ ﺣﺠﻤﻪ ﺟﺪ.
اﻟﺤﻞ:ﺣﺠاﻟﻤﻜﻌﺐ ﻢ) =اﻟﻀﻠﻊ ﻃﻮل(
3
3
( )V x g x
10 , 0.02Let a x h
اﻟﺼﯿﻐﺔ ﻋﻠﻰ ﺗﻜﻮن اﻟﺪاﻟﺔ أن أي: 3
: 9.98 ,10 , ( )g g x x
2 2
( ) 3 (10) 3(10) 300g x x g
3
(10) 10 1000g
(9.98) (10 ( 0.02)) (10) ( 0.02) (10)g g g g
(9.98) 1000 ( 0.02) (300)g
(9.98) 994g cub cm=اﻟﻤﻜﻌﺐ ﺣﺠﻢ
128.
اﻟﻨﺎﺻﺮي ﻣﻮﺳﻰ ﻛﺎﻣﻞ128
.98
1
b
xa
.02h b a
ﻣﺜﺎﻝ:ﻟﺘﻜﻦ
3 2
( )f x xﺗﻐﲑﺕ ﻓﺈﺫﺍxﻣﻦ8ﺇﱃ8.06ﻟﻠﺪﺍﻟﺔ ﺍﻟﺘﻘﺮﻳﺒﻲ ﺍﻟﺘﻐﲑ ﻣﻘﺪﺍﺭ ﻓﻤﺎ.
اﻟﺤﻞ:1(اﻟﺪاﻟﺔ: 3 2
: 8,8.06 : ( )f f x x
2(اﻟﻤﺸﺘﻘﺔ:3
2
( )
3
f x
x
3
2 1
( ) (8) 0.333
33 8
f a f
اﻟﺘﻘﺮﯾﺒﻲ اﻟﺘﻐﯿﺮ=( ) (0.06) (0.333) 0.01998h f a
ﻣﺜﺎﻝ:ﺣﺮﻓﺔ ﻃﻮﻝ ﻣﻜﻌﺐ10 cm:ﺑﺴﻤﻚ ﺍﳉﻠﻴﺪ ﻣﻦ ﺑﻄﺒﻘﺔ ﻣﻐﻄﻰ0.3 cmﺑﺼﻮﺭﺓ ﺍﳉﻠﻴﺪ ﻛﻤﻴﺔ ﺟﺪ
ﺗﻘﺮﻳﺒﻴﺔ.
اﻟﺤﻞ:اﻟﺪاﻟﺔ:
3
( )V x f x
اﻟﻤﺸﺘﻘﺔ:
2
( ) 3f x x
2
( ) (10) (3) (10) 300f a f
اﻟﺠﻠﯿﺪ ﻛﻤﯿﺔ=اﻟﻤﻜﻌﺐ ﺣﺠﻢ ﻓﻲ اﻟﺰﯾﺎدة ﻣﻘﺪار=اﻟﺤﺠﻢ ﺑﺪاﻟﺔ اﻟﺘﻐﯿﺮ ﻣﻘﺪار=
3
( ) (0.6)(300) 180h f a cm
ﻣﺜﺎﻝ:ﻟﺜﻼ ﻭﻣﻘﺮﺑﺎ ﺗﻘﺮﻳﺒﻴﺔ ﻭﺑﺼﻮﺭﺓ ﺟﺪﻣﻦ ﻛﻼ ﺍﻷﻗﻞ ﻋﻠﻰ ﻋﺸﺮﻳﺔ ﻣﺮﺍﺗﺐ ﺛﺔ:
a(3 45
(0.98) (0.98) 3
اﻟﺤﻞ:اﻟﻤﺠﺎل ﻟﺬﻛﺮ ﺣﺎﺟﺔ ﻻ:
1(اﻟﺪاﻟﺔ:
3
45
( ) 3f x x x
2(اﻟﻤﺸﺘﻘﺔ:
2
35
3
( ) 4
5
f x x x
3(ﺑﺎﻟﺪاﻟﺔ ﺗﻌﻮﯾﺾ:
3
45
( ) (1) 1 1 3 5f a f
3
8.06
8 2
b
x a
0.06h b a
10.6
10
b
x a
0.6h b a
129.
اﻟﻨﺎﺻﺮي ﻣﻮﺳﻰ ﻛﺎﻣﻞ129
3
7.8
82
b
x a
.2h b a
17
16 24
b
x a
1h b a
4(ﺑﺎﻟﻤﺸﺘﻘﺔ ﺗﻌﻮﯾﺾ:
2
35
3
( ) (1) ( )(1) (4)(1) 4.6
5
f a f
5(ﺗﻌﻮﯾﺾﺑﺎﻟﻨﻈﺮﯾﺔ:( ) ( ) ( )f a h f a h f a
(0.98) (1) ( 0.02) (1)f f f
(0.98) 5 ( 0.02) (4.6)f
(0.98) 5 0.092 4.908f
3 45
(0.98) (0.98) 3 4.908
b(3
7.8
اﻟﺤﻞ:1(اﻟﺪاﻟﺔ:
3
( )f x x
2(اﻟﻤﺸﺘﻘﺔ:
3 2
1
( )
3
f x
x
3(ﺑﺎﻟﺪاﻟﺔ اﻟﺘﻌﻮﯾﺾ:
3
( ) (8) 8 2f a f
4(ﺑﺎﻟﻤﺸﺘﻘﺔ اﻟﺘﻌﻮﯾﺾ:3 2
1 1
( ) (8) 0.083
123 8
f a f
5(اﻟﻨﻈﺮﯾﺔ اﺳﺘﻌﻤﺎل:( ) ( ) ( )f a h f a h f a
(7.8) (8) ( 0.2) (8) 2 (0.2)(0.083) 2 0.0166 1.9834f f f
أي:3
7.8 1.9834
c(4
17 17
اﻟﺤﻞ:1(اﻟﺪاﻟﺔ:ﻟﺘﻜﻦ
1 1
2 4
( )f x x x
2(اﻟﻤﺸﺘﻘﺔ:
1 3
2 4
1 1
( )
2 4
f x x x
3(ﺑﺎﻟﺪاﻟﺔ ﺗﻌﻮﯾﺾ:
1 1
4 42 4
(16) (2 ) (2 ) 4 62f
130.
اﻟﻨﺎﺻﺮي ﻣﻮﺳﻰ ﻛﺎﻣﻞ130
3
0.120
0.125(0.5)
b
x a
0.005h b a
4(ﺑﺎﻟﻤﺸﺘﻘﺔ ﺗﻌﻮﯾﺾ:
1 3
4 4 2 3 2 32 4
1 1 1 1 1 1
(16) (2 ) (2 ) (2 ) (2 ) 0.5( ) 0.75( )
2 4 2 4 2 2
f
2 3
(0.5) (0.5) (0.25)(0.5) (0.5) (0.25) (0.25)(0.125)
0.125 0.031 0.156
3(اﻟﻨﻈﺮﯾﺔ ﺗﻄﺒﻖ:( ) ( ) ( )f a h f a h f a
(17) (16) 1 (16)f f f
(17) 6 1 0.156f
(17) 6 1 0.156f
(17) 6.156f
4
17 17 6.156
d(3
0.12
اﻟﺤﻞ:1(اﻟﺪاﻟﺔ:
1
3
( )f x x
2(اﻟﻤﺸﺘﻘﺔ
2
3
1
( )
3
f x x
3(ﺑﺎﻟﺪاﻟﺔ ﺗﻌﻮﯾﺾ:
1
3 3
( ) ((0.5 0.) 5)f x
4(ﺑﺎﻟﻤﺸﺘﻘﺔ ﺗﻌﻮﯾﺾ:
2
3 2 23
1 1 1 1 4
( ) [(0.5) ] ( ) (2) 1.
3 3 2 3
333
3
f x
5(اﻟﻨﻈﺮﯾﺔ ﺗﻄﺒﯿﻖ:( ) ( ) ( )f a h f a h f a
(0.12) (0.125) ( 0.005) (1.333)f f
(0.12) 0.5 0.0006665
(0.12) 0.493335
f
f
3
0.12 0.493335
ّّّّّ===================================================
131.
اﻟﻨﺎﺻﺮي ﻣﻮﺳﻰ ﻛﺎﻣﻞ131
ﺱ1:ﻗﻴﻤﺔﺟﺪcﺗﻌﻴ ﺍﻟﺘﻲﻨﺭ ﻣﱪﻫﻨﺔ ﻬﺎﻭﻳﻠﻲ ﳑﺎ ﻛﻞ ﰲ ﻭﻝ:
3
4
2 1
) ( ) 3 , 1,2 ) ( ) 2 , ,2
2
) ( ) ( 1) , 1,3 ) ( ) cos2 2cos , 0,2
a f x x x x b f x x x
x
c f x x c x x x
ﺱ2(ﻳﻠﻲ ﳑﺎ ﻟﻜﻞ ﺗﻘﺮﻳﺒﺎ ﺟﺪ:
1(
1
101
2(3
1
9
3(
3 4
1.04 3 1.04)4(3
63 635(
1
2
س3(ﻧﺼ ﻛﺮةﻗﻄﺮھﺎ ﻒ6 cmﺳﻤﻜﮫ ﺑﻄﻼء ﻃﻠﯿﺖ0.1 cmﺗﻘﺮﯾﺒﯿﺔ ﺑﺼﻮرة اﻟﻄﻼء ﻛﻤﯿﺔ ﺟﺪ.
س4(ﺣﺠﻤﮭﺎ ﻛﺮة84 .cub cmﺗﻘﺮﯾﺒﯿﺔ ﺑﺼﻮرة ﻗﻄﺮھﺎ ﻧﺼﻒ ﺟﺪ ،.
س5(ﯾ ارﺗﻔﺎﻋﮫ ﻛﺎن ﻓﺈذا ﻗﺎﻋﺪﺗﮫ ﻗﻄﺮ ﻃﻮل ﯾﺴﺎوي ارﺗﻔﺎﻋﮫ ، ﻗﺎﺋﻢ داﺋﺮي ﻣﺨﺮوطﺴﺎوي2.98 cm
ﺗﻘﺮﯾﺒﯿﺔ ﺑﺼﻮرة ﺣﺠﻤﮫ ﻓﺠﺪ.
ﺱ6:ﲢﻘﻖ ﺍﻟﺘﺎﻟﻴﺔ ﺍﻟﺪﻭﺍﻝ ﻣﻦ ﺩﺍﻟﺔ ﻛﻞ ﺃﻥ ﺑﲔﻣﱪﻫﻨﺔﻣﻨﻬﺎ ﻛﻞ ﺟﻮﺍﺭ ﺍﳌﻌﻄﺎﺓ ﺍﻟﻔﱰﺓ ﻋﻠﻰ ﺭﻭﻝ:
4 3
1) ( ) ( 1) , 1,3 2) ( ) , 1,1f x x h x x x
2 2
3) ( ) 3 , 1,4 4) ( ) 25 , 3,3x x x x x
ﺱ7:ﺗﻄﺒﻴﻖ ﺇﻣﻜﺎﻧﻴﺔ ﺍﺧﺘﱪﻣﱪﻫﻨﺔﺍﳌﺘﻮﺳﻄ ﺍﻟﻘﻴﻤﺔﺇﺯﺍءﻫﺎ ﺍﳌﻌﻄﺎﺓ ﺍﻟﻔﱰﺓ ﻋﻠﻰ ﺍﻟﺘﺎﻟﻴﺔ ﻟﻠﺪﻭﺍﻝ ﺔ
ﻗﻴﻢ ﻓﺠﺪ ﺍﻟﻨﻈﺮﻳﺔ ﲢﻘﻘﺖ ﻭﺍﻥ ﺍﻟﺴﺒﺐ ﺫﻛﺮ ﻣﻊcﺍﳌﻤﻜﻨﺔ.
3 2 2
1) ( ) 1, 1,3 2) ( ) 4 5 , 1,5f x x x x h x x x
23
4
3) ( ) , 1,2 4) ( ) ( 1) , 2,7
2
g x x x
x
132.
ﻛﺎﺍﻟﻨﺎﺻﺮﻱ ﻣﻮﺳﻰ ﻣﻞ132
ﻓﺤﺺﻭﺍﻟﺘﻨﺎﻗﺺﺍﻟﺘﺰﺍﻳﺪﻟﻠﺪﺍﻟﺔ
Test for increasing or decreasing functions
واﻟﻤﺒﺮھﻨﺔاﻟﺴﺎﺑﻘﺔأن ﯾﻤﻜﻦﺗﻮﺿﺢﻛﯾﻠﻲ ﻤﺎ:
1(ﺗﺰاﯾﺪ وﺿﻊ ﻓﻲ ﻓﺎﻟﺪاﻟﺔ ﻣﻮﺟﺐ ﻣﯿﻠﮫ ﻟﻠﻤﻨﺤﻨﻲ اﻟﻤﻤﺎس ﻛﺎن إذا.
2(وﺿ ﻓﻲ ﻓﺎﻟﺪاﻟﺔ ﺳﺎﻟﺐ ﻣﯿﻠﮫ ﻟﻠﻤﻨﺤﻨﻲ اﻟﻤﻤﺎس ﻛﺎن إذاﺗﻨﺎﻗﺺ ﻊ.
ﺍﻟﺘﺎﻟﻴﺔ ﻟﻸﻣﺜﻠﺔﺍﻟﺘﺎﻟﻴﺔ ﻟﻠﺪﻭﺍﻝ ﻭﺍﻟﺘﻨﺎﻗﺺ ﺍﻟﺘﺰﺍﻳﺪ ﻣﻨﺎﻃﻖ ﺟﺪ:
ﻣﺜﺎل1:
2 3
( ) 9 3f x x x x
اﻟﺤﻞ:ﻧﺠﺪاﻟﺤﺮﺟﺔ اﻟﻨﻘﻂ أوﻻ:
2
( ) 9 6 3f x x x
2
0 9 6 3x x
2
0 3( 2 3)x x
اﻟﺤﺮﺟﺔ اﻟﻨﻘﻂ:0 3( 3)( 1) 3 , 1x x x x
ﻣﺒﺮھﻨﺔ:ﻟﺘﻜﻦfداﻟﺔاﻟﻤﻔﺘﻮﺣﺔ اﻟﻔﺘﺮة ﻋﻠﻰ ﻟﻠﺘﻔﺎﺿﻞ ﻗﺎﺑﻠﺔ(a , b)ﻛﺎﻧﺖ ﻓﺈذا:
1(( ) 0 , ( , )f x x a b fﻣﺘﺰاﯾﺪة)Increasing(اﻟﻔﺘﺮة ﻋﻠﻰ(a , b)
2(( ) 0 , ( , )f x x a b fﻣﺘﻨﺎﻗﺼﺔ)Decreasing(اﻟﻔﺘﺮة ﻋﻠﻰ(a , b)
149
.........4 .5 12( )a b c
اﻟﻤﺴﺘﻘﯿﻢ ﻟﻜﻦ2 9 0x y ﻟﻠﻤﻨﺤﻨﻲ ﻣﻤﺎﺳﺎ2( )f x ax bx c ﻋﻨﺪ2x
ﻧﺠﺪ اﻟﻤﻤﺎس ﻣﻦﻣﯿﻞ:9 2y x 2y اﻟﻤﻤﺎس ﻣﯿﻞ=2
اﻟﻤﻤﺎس ﻣﯿﻞ ﻧﺠﺪ اﻟﻤﻨﺤﻨﻲ ﻣﻌﺎدﻟﺔ ﻣﻦ:2( )f x ax bx c
( ) 2f x ax b (2) 4f a b اﻟﻤﻤﺎس ﻣﯿﻞ=4a b
اﻟﻨﻘﻄﺔ ﻧﻔﺲ ﻓﻲ وﺣﯿﺪ ﻣﻤﺎس ﻟﻠﻤﻨﺤﻨﻲ ﻟﻜﻦﻣﺘﺴﺎوﯾﺎن اﻟﻤﯿﻼن:....4 )2 ...(2a b
ﻋﻨﺪ1x ﻣﺤﻠﯿﺔ ﻧﮭﺎﯾﺔ ﺗﻮﺟﺪ1x ﺣﺮﺟﺔ ﻧﻘﻄﺔ0(1)f
2( )f x ax bx c
( ) 2 (1) 2 ...... )2 (0 3f x ax b f a a bb
آﻧﯿﺎ اﻟﺤﻞ:....2 4 ...(2)a b
.... . 3)0 2 . (a b
ــــــــــــــــــــــــــــــــــــﺑﻄﺮحﻋﻠﻰ ﻧﺤﺼﻞ اﻟﻤﻌﺎدﻟﺘﯿﻦ ﻃﺮﻓﻲ:1a
اﻟﻤﻌﺎدﻟﺘﯿﻦ إﺣﺪى ﻓﻲ ﺗﻌﻮض2b
ﻋﻠﻰ ﻧﺤﺼﻞ اﻷوﻟﻰ اﻟﻤﻌﺎدﻟﺔ ﻓﻲ ﺗﻌﻮض:5c
ھﻲ اﻟﻤﻨﺤﻨﻲ ﻣﻌﺎدﻟﺔ:2( ) 2 5f x x x
ﻣﺜﺎل3:ﻛﺎ إذاﻟﻠﺪ ناﻟﺔ3 2( ) 3f x ax x c ﺗﺴﺎوي ﻣﺤﻠﯿﺔ ﻋﻈﻤﻰ ﻧﮭﺎﯾﺔ8ﻋﻨﺪ اﻧﻘﻼب وﻧﻘﻄﺔ
1x ﻗﯿﻤﺔ ﻓﺠﺪ,a c.
اﻟﺤﻞ:ﻋﻨﺪ1x اﻧﻘﻼب ﻧﻘﻄﺔ ﺗﻮﺟﺪ0(1)f
2( ) 3 6 ( ) 6 6
(1) 6 6
0 6 6 1
f x ax x f x ax
f a
a a
3 2( ) 3f x x x c
8=ﻣﺤﻠﺔ ﻋﻈﻤﻰ ﻧﮭﺎﯾﺔ8=ﻋﻦ اﻟﺒﺤﺚ ﻓﯿﺠﺐ ﺻﺎدي إﺣﺪاﺛﻲأﻹﺣﺪاﺛﻲﻟﮫ اﻟﻤﻨﺎﺳﺐ اﻟﺴﯿﻨﻲ:
150.
150
2( ) 36f x x x
20 3 6 3 ( 2) 0 2x x x x x or x ﺎن ﺣﺮﺟﺘ
اﻟﻨﻘﻄﺔ أن ﻧﺴﺘﻨﺘﺞ اﻷوﻟﻰ اﻟﻤﺸﺘﻘﺔ أﻋﺪاد اﻟﺨﻂ ﻣﻦ:(2,8)ﻣﺤﻠﯿﺔ ﻋﻈﻤﻰ ﻧﮭﺎﯾﺔ ﻧﻘﻄﺔ ھﻲ)ﻣﻌﺎدﻟﺔ ﺗﺤﻘﻖ
اﻟﻤﻨﺤﻨﻲ(ﻧﻘﻄﮫ ﻣﻦ ﻷﻧﮭﺎ.
8 128 4c c 3 2( ) 3f x x x c
ﻣﺜﺎل4:ﻟﺘﻜﻦ2
( ) , 0
a
f x x x
x
1(ﺍﻟﺪﺍﻟﺔ ﺃﻥ ﺑﺮﻫﻦfﲤﺘ ﻻﻗﻴﻤﺔ ﺗﻜﻦ ﻣﻬﻤﺎ ﳏﻠﻴﺔ ﻋﻈﻤﻰ ﻧﻬﺎﻳﺔ ﻠﻚa.
2(ﻗﻴﻤﺔ ﺟﺪaﻋﻨﺪ ﺍﻧﻘﻼﺏ ﻧﻘﻄﺔ ﻟﻠﺪﺍﻟﺔ ﻛﺎﻥ ﺇﺫﺍ1
اﻟﺤﻞ:اﻟﺜﺎﻧﯿﺔ اﻟﻤﺸﺘﻘﺔ ﻃﺮﯾﻘﺔ ﻧﻄﺒﻖ.
ﺣﺮﺟﺔ
3
3
3
2
2
: 2 2 4 6 0
2
2
( )
2
( )
2
a
a
Then
a
f x But x
x
a
f
a
اﻟﺤﺮﺟﺔ ﻋﻨﺪ ﻣﺤﻠﯿﺔ ﺻﻐﺮى ﻧﮭﺎﯾﺔ ﺗﻮﺟﺪ ﻟﺬا
ﻗﯿﻤﺔ ﺗﻜﻦ ﻣﮭﻤﺎ ﻣﺤﻠﯿﺔ ﻋﻈﻤﻰ ﻧﮭﺎﯾﺔ ﺗﻮﺟﺪ ﻻa
(2)ا ﻧﻘﻄﺔ ﻟﻠﺪاﻟﺔﻋﻨﺪ ﻧﻘﻼبx = 1ﻋﻠﻰ ﻧﺤﺼﻞ:2
2
(1) 0 1
1
a
f a
0 2
ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ( )f x
-----+ + + +-----
3 3
2
2
3
2
0
22
1 ( ) ( ) 2 ( ) 0
2 2
a
a x
a
x
a a
f x x f x x when f x
x x
a
x x
x
151.
151
س1:ﻣﻨﮭﺎ ﻛﻼ وارﺳﻢواﻟﺘﻘﻌﺮ اﻟﺘﺤﺪب وﻣﻨﺎﻃﻖ اﻟﻤﺤﻠﯿﺔ واﻟﻨﮭﺎﯾﺎت واﻟﺘﻨﺎﻗﺺ اﻟﺘﺰاﯾﺪ ﻣﻨﺎﻃﻖ ﺟﺪ اﻟﺘﺎﻟﯿﺔ ﻟﻠﺪوال:
1(3
( ) 12f x x x 2(2 4
( ) 2f x x x 3(5
5( ) xf x
4(2
6( ) 2f x x x 5(3
4 (1 )( ) xf x 6(2
( ) ( 2)( 1)f x x x
7(3
( 4)( ) x xf x 8(3
3 2( ) x xf x
س2:ﻟﺘﻜﻦ2 2
( ) 6 bf x ax x أن ﺣﯿﺚ ،b ،{4,8}aﻗﯿﻤﺔ ﺟﺪaاﻟﺤﺎﻻت ﻣﻦ ﻟﻜﻞ
اﻟﺘﺎﻟﯿﺔ:1(ﻣﺤﺪﺑﺔ اﻟﺪاﻟﺔ2(ﻣﻘﻌﺮة اﻟﺪاﻟﺔ3(ﻣﺤﻠﯿﺔ ﻋﻈﻤﻰ ﻧﮭﺎﯾﺔ ﻟﻠﺪاﻟﺔ.
س3:إذاﻛﺎﻧﺖ(2.6)اﻟﺪاﻟﺔ ﻟﻤﻨﺤﻨﻲ ﺣﺮﺟﺔ ﻧﻘﻄﺔ ھﻲ4
( )( ) a x bf x ﻗﯿﻤﺔ ﻓﺠﺪ,a bﻧﻮع وﺑﯿﻦ
اﻟﺤﺮﺟﺔ اﻟﻨﻘﻄﺔ.
س4:ﻛﺎن اذا3 2
( ) cxf x ax bx 12 ,( ) 1 xg x ﻣﻦ ﻛﻞ وﻛﺎن,g fﻓﻲ ﻣﺘﻤﺎﺳﺎن
اﻻ ﻧﻘﻄﺔﻧﻘﻼب(1, 11)اﻟﺜﻮاﺑﺖ ﻗﯿﻤﺔ ﻓﺠﺪ, ,a b c.
س5:ﻛﺎﻧﺖ اذا6اﻟﺪاﻟﺔ ﻟﻤﻨﺤﻨﻲ اﻟﺼﻐﺮى اﻟﻨﮭﺎﯾﺔ ﺗﻤﺜﻞ2 3
( ) 3 cf x x x ﻗﯿﻢ ﻓﺠﺪcﻣﻌﺎدﻟﺔ ﺟﺪ ﺛﻢ
اﻧﻘﻼﺑﮫ ﻧﻘﻄﺔ ﻓﻲ اﻟﻤﻨﺤﻨﻲ ﻣﻤﺎس.
س6::اذاﻛﺎن3 2
( ) cxf x ax bx وﻛﺎﻧﺖfﻣﻘﻌﺮةx وﻣﺤﺪﺑﺔx
ﻋﻨﺪ وﻣﺴﺘﻤﺮة1x ﻟﻠﺪاﻟﺔ وfﻣﺤﻠﯿﺔ ﻋﻈﻤﻰ ﻧﮭﺎﯾﺔ ﻧﻘﻄﺔھﻲ( 1,5)،اﻟﺜﻮاﺑﺖ ﻗﯿﻤﺔ ﻓﺠﺪ, ,a b c.
س7:ﻟﺘﻜﻦ2
( ) , 0
a
f x x x
x
1(اﻟﺪاﻟﺔ أن ﺑﺮھﻦfﻗﯿﻤﺔ ﺗﻜﻦ ﻣﮭﻤﺎ ﻣﺤﻠﯿﺔ ﻋﻈﻤﻰ ﻧﮭﺎﯾﺔ ﺗﻤﺘﻠﻚ ﻻa.
2(ﻗﯿﻤﺔ ﺟﺪaاﻧﻘﻼ ﻧﻘﻄﺔ ﻟﻠﺪاﻟﺔ ﻛﺎن إذاﻋﻨﺪ ب1
س8:إذاﻛﺎن3 2
9( ) xf x ax bx وﻛﺎن0(3)f ،5( 1)f ﻗﯿﻤﺔ ﻓﺠﺪ,a b.
152.
KAMIL ALNASSIRY152
اﻟﺘﻨﺎﻇﺮSymmetry
زوﺟﯿﺔ دوالأﻧﮭﺎ ﻣﻦ اﻟﺼﺎدات ﻣﺤﻮر ﻣﻊ اﻟﻤﺘﻨﺎﻇﺮة ﻟﻠﺪوال ﯾﻘﺎلEven Functions
ﻓﺮدﯾﺔ دوال أﻧﮭﺎ ﻣﻦ اﻷﺻﻞ ﻧﻘﻄﺔ ﺣﻮل اﻟﻤﺘﻨﺎﻇﺮة ﻟﻠﺪوال وﯾﻘﺎلOdd Functions
ﻣﺜﺎل:اﻟﺘﺎﻟﯿﺔ اﻟﺪوال ﻣﻦ ﻟﻜﻞ وﺟﺪ إن اﻟﺘﻨﺎﻇﺮ ﻧﻮع ﺑﺮھﻦ:
4 2
1) ( ) 3 5f x x x
اﻟﺤﻞ:ﻣﺠﺎل أوﺳﻊ:( )D f
; ( )x x ﻖ وﯾﺤﻘ
4 2 4 2
( ) ( ) 3( ) 5 3 5 ( )f x x x x x f x
اﻟﺼﺎدات ﻣﺤﻮر ﻣﻊ ﻣﺘﻨﺎﻇﺮة اﻟﺪاﻟﺔزوﺟﯿﺔ اﻟﺪاﻟﺔ
35
2) ( ) 4 8f x x x x
اﻟﺤﻞ:( )D f
; ( )x x ﻖ وﯾﺤﻘ
5 3 5 3
( ) ( ) 4( ) 8( ) 4 8f x x x x x x x
اﻷﺻﻞ ﻧﻘﻄﺔ ﺣﻮل ﻣﺘﻨﺎﻇﺮة اﻟﺪاﻟﺔﻓﺮدﯾﺔ اﻟﺪاﻟﺔ
5 3
( 4 8 ) ( )x x x f x
ﺗﻌﺮﯾﻒ:ﻟﺘﻜﻦfاﻟﻔﺘﺮة ﻋﻠﻰ ﻣﻌﺮﻓﺔ داﻟﺔI
1(fاﻟﺼﺎدات ﻣﺤﻮر ﻣﻊ ﻣﺘﻨﺎﻇﺮة)y-axis symmetry(اﻟﺸﺮﻃﯿﻦ ﺣﻘﻘﺖ إذا:
أ(, ( )x I x I ﺗﻨﺎﻇ ﯾﺴﻤﻰ وھﺬااﻟﻤﺠﺎل ﺮ.
ب(( ) ( )f x f x ﻟﻜﻞ أي( , )x yﻓﺈن اﻟﺪاﻟﺔ ﻧﻘﻂ ﻣﻦﯾﻮﺟﺪ( , )x yﻣﻦ
اﻟﺪاﻟﺔ ﻧﻘﻂ.
2(fاﻷﺻﻞ ﻧﻘﻄﺔ ﻣﻊ ﻣﺘﻨﺎﻇﺮة)Origin symmetry(اﻟﺸﺮﻃﯿﻦ ﺣﻘﻘﺖ إذا:
أ(, ( )x I x I اﻟﻤﺠﺎل ﺗﻨﺎﻇﺮ ﯾﺴﻤﻰ وھﺬا.
ب(( ) ( )f x f x ﻟﻜﻞ أي( , )x yﻓﺈن اﻟﺪاﻟﺔ ﻧﻘﻂ ﻣﻦﯾﻮﺟﺪ( , )x y ﻣﻦ
اﻟﺪاﻟﺔ ﻧﻘﻂ.
153.
KAMIL ALNASSIRY153
2
3
5
3) ()
x
x
f x
اﻟﺤﻞ:( )D f
; ( )x x ﻖ وﯾﺤﻘ
2 2
3( ) 3
( ) ( )
( ) 5 5
x x
f x f x
x x
اﻷﺻﻞ ﻧﻘﻄﺔ ﺣﻮل ﻣﺘﻨﺎﻇﺮة اﻟﺪاﻟﺔﻓﺮدﯾﺔ اﻟﺪاﻟﺔ
3
5
4) ( )
x
x
f x
اﻟﺤﻞ: ( ) / 5D f
ﻷن ﻣﺘﻨﺎﻇﺮ ﻏﯿﺮ اﻟﻤﺠﺎل5 ( )D fوأن5 ( )D f وﻻ اﻟﺼﺎدات ﻣﻊ ﻻ ﺗﻨﺎﻇﺮ ﯾﻮﺟﺪ ﻻ
اﻷﺻﻞ ﻧﻘﻄﺔ ﺣﻮل.
0,25) ( ) ,f x Sin x x
اﻟﺤﻞ:( ) 0,2D f
ﻷن ﻣﺘﻨﺎﻇﺮ ﻏﯿﺮ اﻟﻤﺠﺎل2 ( )D f وأن2 ( )D f اﻟﺼﺎدات ﻣﻊ ﻻ ﺗﻨﺎﻇﺮ ﯾﻮﺟﺪ ﻻ
اﻷﺻﻞ ﻧﻘﻄﺔ ﺣﻮل وﻻ.
6) ( )f x Sin x
اﻟﺤﻞ:( )D f
; ( )x x ﻖ وﯾﺤﻘ
( ) ( ) ( )f x Sin x Sin x f x
اﻷﺻﻞ ﻧﻘﻄﺔ ﺣﻮل ﻣﺘﻨﺎﻇﺮة اﻟﺪاﻟﺔﻓﺮدﯾﺔ اﻟﺪاﻟﺔ
154.
KAMIL ALNASSIRY154
واﻟﻌﻤﻮدﯾﺔ اﻷﻓﻘﯿﺔاﻟﻤﺤﺎذﯾﺔ اﻟﻤﺴﺘﻘﯿﻤﺎت)Vertical asymptotes andHorizontal(
ﻣﺒﺮھﻨﺔ
1(اﻟﻌﻤﻮدي اﻟﻤﺤﺎذي:ﺑﺼﻮرة اﻟﺪاﻟﺔ ﻛﺎﻧﺖ إذا
( )
( )
( )
x
f x
g x
اﻟﻤﺤﺎذ ﻓﺈنياﻟﻤﻌﺎد ﺣﻞ ھﻮ اﻟﻌﻤﻮديﻟﺔ( ) 0g x
2(اﻷﻓﻘﻲ اﻟﻤﺤﺎذي:(aاﻟﻤﻘﺎ درﺟﺔ ﻣﻦ أﺻﻐﺮ اﻟﺒﺴﻂ درﺟﺔ ﻛﺎﻧﺖ اذامﻓﺈن0y اﻷﻓﻘﻲ اﻟﻤﺤﺎذي ھﻮ
(bﻟﻠﺼ اﻟﺪاﻟﺔ ﺣﻮل اﻟﻤﻘﺎم درﺟﺔ ﺗﺴﺎوي أو أﻛﺒﺮ اﻟﺒﺴﻂ درﺟﺔ ﻛﺎﻧﺖ إذاﯿﻐﺔ:( )
( )
( )
( )
F x
f x h x
g x
ﻓﯿﻜﻮن اﻟﻤﻘﺎم درﺟﺔ ﻣﻦ أﻗﻞ اﻟﺒﺴﻂ درﺟﺔ ﺷﺮط( )y h xأﻓﻘﯿﺎ اﻟﻤﺤﺎذي ھﺬا وﯾﻜﻮن ، اﻟﻤﺤﺎذي ھﻮ
ﻛﺎﻧﺖ إذا( )h xﻣﺎﺋﻞ ﻣﺤﺎذي ﯾﻤﺜﻞ أو ﺻﻔﺮ اﻟﺪرﺟﺔ ﻣﻦSlant asymptotesاﻟﺪرﺟﺔ ﻣﻦ ﻛﺎﻧﺖ إذا
اﻷوﻟﻰﻛﺎن إذا ﻣﻨﺤﻨﻲ ﺷﻜﻞ ﻋﻠﻰ ﻣﺤﺎذي وﯾﻤﺜﻞ( )g xﻓﻮق ﻓﻤﺎ اﻟﺜﺎﻧﯿﺔ اﻟﺪرﺟﺔ ﻣﻦ.
ﻣﺜﺎلاﻟﺘﺎﻟﯿﺔ اﻟﺪوال ﻣﻦ ﻟﻜﻞ اﻟﻤﺤﺎذﯾﺎت ﺟﺪ:
2
1) ( ) 3
1
f x
x
اﻟﺤﻞ:1 1 0x x ﻋﻤﻮدي ﻣﺤﺎذي ﻣﺴﺘﻘﯿﻢ
3y أﻓﻘﻲ ﻣﺤﺎذي ﻣﺴﺘﻘﯿﻢ
2 1
2) ( )
1
x
f x
x
اﻟﺤﻞ:1x ﻋﻤﻮدي ﻣﺤﺎذي ﻣﺴﺘﻘﯿﻢ
اﻟﻘﯿﺎﺳﯿﺔ ﻟﻠﺼﯿﻐﺔ ﻧﺤﻮل:ﻋﻠﻰ ﻓﻨﺤﺼﻞ ﻃﻮﯾﻠﺔ ﻗﺴﻤﺔ اﻟﻤﻘﺎم ﻋﻠﻰ اﻟﺒﺴﻂ ﻧﻘﺴﻢ:2
3
( )
1
f x
x
2y أﻓﻘﻲ ﻣﺤﺎذي ﻣﺴﺘﻘﯿﻢ
155.
KAMIL ALNASSIRY155
2
2
3) ()
1
x
f x
x
اﻟﺤﻞ:ﻣﺮﺑﻌﯿﻦ ﻣﺠﻤﻮع اﻟﻤﻘﺎم ﻷن ﻋﻤﻮدي ﻣﺤﺎذي ﻣﺴﺘﻘﯿﻢ إﯾﺠﺎد ﻣﻤﻜﻦ ﻏﯿﺮ.
اﻟﻘﯿﺎﺳﯿﺔ ﻟﻠﺼﯿﻐﺔ ﻧﺤﻮل2
2
( ) 0
1
x
f x
x
0y أﻓﻘﻲ ﻣﺤﺎذي ﻣﺴﺘﻘﯿﻢ
اﻟﺘﻔﺎﺿﻞ ﺑﺎﺳﺘﺨﺪام اﻟﺮﺳﻢCurve Sketching Using Differentiation
أﻣﻜﻦ إن ﯾﻠﻲ ﻣﺎ ﻧﺘﺒﻊ داﻟﺔ ﻟﺮﺳﻢ:
1(ﻟﻠﺪاﻟﺔ ﻣﺠﺎل أوﺳﻊ ﻧﺠﺪDomain
2(اﻟﻤﺤﺎذﯾﺎت ﻧﺠﺪAsymptotesﻟﻠﺪاﻟﺔﻓ اﻟﻨﺴﺒﯿﺔﻘﻂ.
3(اﻟﺪاﻟﺔ ﻓﺮدﯾﺔ أو زوﺟﯿﺔ ﻧﺒﺮھﻦOdevity of the function)اﻟﺘﻨﺎﻇﺮSymmetry. (
4(واﻟﺼﺎدي اﻟﺴﯿﻨﻲ اﻟﻤﺤﻮرﯾﻦ ﻣﻊ اﻟﻤﻨﺤﻨﻲ ﺗﻘﺎﻃﻊ ﻧﻘﻂ ﻧﺠﺪ
The intersection of the curve and y axis or x axis.
5(رﺗﺎﺑﺔ أدرساﻟﺪاﻟﺔMonotonic functionﻟﻠﺪاﻟﺔ واﻟﺘﻨﺎﻗﺺ اﻟﺘﺰاﯾﺪ ﻣﻨﺎﻃﻖ إﯾﺠﺎد ﺣﯿﺚ ﻣﻦ
The increasing and decreasing interval of the function
اﻟﺤﺮﺟﺔ اﻟﻨﻘﻂ وﺟﺪ)critical point(إﺷﺎ ﺗﻔﺤﺺ وﻣﻦ ،اﻟﺒﺪاﯾﺔ ﻓﻲﺑﻄﺮﯾﻘﺔ أو اﻷوﻟﻰ اﻟﻤﺸﺘﻘﺔ رات
ﻟﻠﺪاﻟﺔ اﻟﻤﺤﻠﯿﺔ اﻟﻨﮭﺎﯾﺎت ﻧﺠﺪ اﻟﺜﺎﻧﯿﺔ اﻟﻤﺸﺘﻘﺔ
6(و اﻟﺪاﻟﺔ وﺗﻘﻌﺮ ﺗﺤﺪب ﻧﺪرسﻧاﻻﻧﻘﻼب ﻧﻘﻂ ﺠﺪConcavity and inflection points
7(ﻧﻘﻂ ﻧﺤﺘﺎج ﻗﺪﻣﺴﺎﻋﺪةاﻟﻤﻨﺤﻨﯿﺎت ﻣﺘﻌﺪدة ﺗﻜﻮن اﻟﺪاﻟﺔ ﻷن اﻟﻌﻤﻮدي اﻟﻤﺤﺎذي ﺗﻮﻓﺮ إذا وﺧﺎﺻﺔ.
أﻣﺜﻠﺔ:اﻟﺘﺎﻟﯿﺔ اﻟﺪوال اﻟﺘﻔﺎﺿﻞ ﺑﺎﺳﺘﺨﺪام ارﺳﻢ:
3 2
.1: ( ) 6 9 1ex f x x x x
1(ﻣﺠﺎل أوﺳﻊ=
2(اﻟﻤﺤﺎذﯾﺎت:ﻟﯿﺴﺖ اﻟﺪاﻟﺔ ﻷن ﺗﻮﺟﺪ ﻻﻧﺴﺒﯿﺔ
3(اﻟﺘﻨﺎﻇﺮ:ﻻ ﺗﻨﺎﻇﺮ ﯾﻮﺟﺪ ﻻﻷن اﻟﺼﺎدات ﻣﻊ( ) ( )f x f x
ﻷن اﻷﺻﻞ ﻧﻘﻄﺔ ﺣﻮل وﻻ( ) ( )f x f x
4(اﻟﺘﻘﺎﻃﻊ:( )aاﻟﺴﯿﻨﺎت ﻣﺤﻮر ﻣﻊ)ﯾﻌﻮض0y (
156.
KAMIL ALNASSIRY156
3 2
06 9 1x x x ﻣﻓﺘﺘﺮك ﺣﻠﮭﺎ ﯾﺼﻌﺐ اﻟﺜﺎﻟﺜﺔ اﻟﺪرﺟﺔ ﻣﻦ ﻌﺎدﻟﺔ
( )bاﻟﺼﺎدات ﻣﻊ)ﯾﻌﻮض0x اﻟﺼﺎدات ﻣﺤﻮر ﻣﻌﺎدﻟﺔ ﻷﻧﮭﺎ(1y (0,1)اﻟﺘﻘﺎﻃﻊ ﻧﻘﻄﺔ
5(واﻟﺘﻨﺎﻗﺺ اﻟﺘﺰاﯾﺪ. Increasing/Decreasing:
a) Take the first derivative:
2
( ) 3 12 9f x x x
b) Set it equal to zero:
2
3 12 9 0x x
x: c) Solve for
2
3( 4 3) 0x x
3( 1)( 3) 0x x
1x and3x ﺣﺮﺟﺘﺎن ﻧﻘﻄﺘﺎن
اﻹﺷﺎرات ﺗﺤﻠﯿﻞSign analysis
fﻣﺘﺰاﯾﺪةﻓﻲ:1( |x x و2( :x x
fﻣﺘﻨﺎﻗﺼﺔ:x
اﻟﻤﺤﻠ اﻟﻨﮭﺎﯾﺎتﯿﺔ:
1x and3x اﻟﺼﺎدي اﻻﺣﺪاﺛﻲ ﻟﻨﺠﺪ
ﻣﺤﻠﯿﺔ ﻋﻈﻤﻰ ﻧﮭﺎﯾﺔ=
3 2
(1) (1) 6(1) 9(1) 1 5f
ﻣﺤﻠﯿﺔ ﺻﻐﺮى ﻧﮭﺎﯾﺔ=
3 2
(3) (3) 6(3) 9(3) 1 1f
Critical pointsﺣﺮﺟﺔ ﻧﻘﺎط(1,5)and(3,1)
واﻟﺘﻘﻌﺮ اﻟﺘﺤﺪب6. Concave up/Concave down
( ) 6 12f x x
ﻟﻼﻧﻘﻼب ﻣﺮﺷﺤﺔ6 12 0 2x x
1 3
إﺷﺎرة( )f x
--- + ++ + 0 0
min
max
KAMIL ALNASSIRY166
6
7: ()
2 1
Q f x
x
1(ﻣﺠﺎل أوﺳﻊ=
2(اﻟﻤﺤﺎذﯾﺎت:اﻟﻌﻤﻮديﻣﺮﺑﻌﯿﻦ ﻣﺠﻤﻮع اﻟﻤﻘﺎم ﻷن ﻣﻮﺟﻮد ﻏﯿﺮ
اﻷﻓﻘﻲ)y = 0(
3(اﻟﺘﻨﺎﻇﺮ:ﻣﻮﺟﻮد
X = -1
y
x
y = 3
167.
KAMIL ALNASSIRY167
إﺷﺎرة
( )fx
0
+ + + - - -
max
اﻟﺒﺮھﺎن:2 2
6 6
( ) ( )
( ) 1 1
f x f x
x x
اﻟﺪاﻟﺔزوﺟﯿﺔ)اﻷﺻﻞ ﻧﻘﻄﺔ ﺣﻮل ﻣﺘﻨﺎﻇﺮة(
4(اﻟﺘاﻟﻤﺤﻮرﯾﻦ ﻣﻊ ﻘﺎﻃﻊ:a(اﻟﺴﯿﻨﺎت ﻣﻊ)ﻣﻤﻜﻦ ﻏﯿﺮ(
b(اﻟﺼﺎدات ﻣﻊ)x=0(ﻋﻠﻰ ﻧﺤﺼﻞy = 6ھﻲ اﻟﺘﻘﺎﻃﻊ ﻧﻘﻂ)0 , 6(
5(
6(2 ) 12
( )
2 2 2 2( 1) ( 1)
x x
f x
x x
اﻟﻤﺸﺘﻘﺔ وﻋﻨﺪﻣﺎ=0ﻋﻠﻰ ﻧﺤﺼﻞ:اﻟﺒﺴﻂ=00x ﺣﺮﺟﺔ ﻧﻘﻄﺔ
ﻣﺘﺰاﯾﺪة اﻟﺪاﻟﺔاﻟﻔﺘﺮة ﻓﻲ : 0x x
ﻣﺘﻨﺎﻗﺼﺔ اﻟﺪاﻟﺔﻓﻲ : 0x x
ﻣﺤﻠﯿﺔ ﻋﻈﻤﻰ ﻧﮭﺎﯾﺔ
6
(0) 6
0 1
f
(0,6)ﻧﮭﺎﯾ ﻧﻘﻄﺔ ھﻲﺔﻣﺤﻠﯿﺔ ﻋﻈﻤﻰ
6(
2 2( 1) ( 12 ) 2*( 12) *
2 4(
2( 1)*
1)
2
( )
x x
x
x x
f x
2( 1)x 2 212( 1) 48
42( 1)
x x
x
3
236 12
32( 1)
x
x
اﻟﺜﺎﻧﯿﺔ اﻟﻤﺸﺘﻘﺔ وﻋﻨﺪﻣﺎ=0ﻋﻠﻰ ﻧﺤﺼﻞ)اﻟﺒﺴﻂ=0(236 12 0x
KAMIL ALNASSIRY169
اﻟﺘﺎﻟﯿﺔ اﻟﺪوالﺑﺎﻟﺘﻔﺎﺿﻞ ﻣﻌﻠﻮﻣﺎﺗﻚ ﺑﺎﺳﺘﺨﺪام ارﺳﻢ:
4
5
3 2
3
3
2 3
2 2
1: ( ) 1 (1 )
2: ( ) 1 (1 )
3: ( ) 6 12
4: ( ) 6 2
5: ( ) 6
6: ( ) 3 9
7 : ( ) ( 2)
Q f x x
Q f x x
Q f x x x x
Q f x x x
Q f x x x
Q f x x x x
Q f x x
2
5
2
2
2
2
2
2
8:
9: ( ) 3 10
10: ( )
11: 4 0
3
12: ( )
2
13: ( )
1
4
14: ( )
( 1)
6
15: (
( ) ( 2)( 1
)
3
1
)
16: ( )
1
Q
Q f x x x
Q f x x
Q x y
Q f x
x
x
Q f x
x
Q f x
x
Q f
f x x x
x
x
x
Q f x
x
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ
171
Ex62:ﺑﻌﺪاھﺎ اﻟﺸﻜﻞ ﻣﺮﺑﻌﺔاﻟﻨﺤﺎس ﻣﻦ ﻗﻄﻌﺔ ﻣﻦ ﻣﻔﺘﻮح ﺻﻨﺪوق ﺻﻨﻊ12,12 cmأرﺑﻌﺔ ﺑﻘﺺ وذﻟﻚ
ﻣﻨﮭﺎ اﻟﺒﺎرزة اﻷﺟﺰاء ﺛﻨﻲ ﺛﻢ اﻷرﺑﻌﺔ أرﻛﺎﻧﮭﺎ ﻣﻦ اﻷﺑﻌﺎد ﻣﺘﺴﺎوﯾﺔ ﻣﺮﺑﻌﺎت.اﻟﻌﻠﺒﺔ؟ ﻟﮭﺬه اﻷﻋﻈﻢ اﻟﺤﺠﻢ ھﻮ ﻣﺎ
اﻟﺤﻞ:
ﯾﺴﺎوي اﻟﻤﻘﻄﻮع اﻟﺮﺑﻊ ﺿﻠﻊ ﻃﻮل ﻧﻔﺮضx cm
ھﻲ اﻟﺼﻨﺪوق أﺑﻌﺎد:12 2 ; 12 2 ;x x x
اﻟﺤﺠﻢ=اﻟﺜﻼﺛﺔ أﺑﻌﺎده ﺿﺮب ﺣﺎﺻﻞ:
(12 2 ) (12 2 )*v x x x
2
( ) (12 2 )v f x x x
4
( ) (144 48 4 )V f x x x x
2 3
( ) 144 48 4V f x x x x
2
( ) 144 96 12
dv
f x x x
dx
2
0 12(12 8 ) 12(6 )(2 )x x x x
اﻟﺤﺮﺟﺔ اﻟﻨﻘﻂ2 ; 6x x
أن اﻟﺸﻜﻞ ﻣﻦ ﻻﺣﻆ6ﺗﮭﻤﻞ
ﻋﻨﺪ ﺑﯿﻨﻤﺎ2ﻧﮭﺎﯾﺔ ﺗﻮﺟﺪوﺗﺴﺎوي ﻟﻠﺤﺠﻢ ﻋﻈﻤﻰ
2 3
(2) 2(12 4) 128V f cm
xx
x
x
x x
x
12 2x
x
2
0
إﺷﺎرة( )f x
---+ +
max
6
min
+ +
172.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ
172
h-12
12
12
h
xx
Ex63:ﻣﺘﺴﺎ ﻣﺜﻠﺚ أﻛﺒﺮﺑﻌﺪي ﺟﺪﻗﻄﺮھﺎ ﻧﺼﻒ داﺋﺮة داﺧﻞ ﯾﻮﺿﻊ أن ﯾﻤﻜﻦ اﻟﺴﺎﻗﯿﻦ وي12 cmأن ﺑﺮھﻦ ﺛﻢ
ﻛﻨﺴﺒﺔ اﻟﺪاﺋﺮة ﻣﺴﺎﺣﺔ إﻟﻰ اﻟﻤﺜﻠﺚ ﻣﺴﺎﺣﺔ
3 3
4
اﻟﺤﻞ:
1(اﻟﻤﺜﻠﺚ ﺑﻌﺪي ﻧﻔﺮض:2 ,x h)اﻟﻤﺘﻐﯿﺮات(
2(اﻟﻤﺘﻐﯿﺮات ﺑﯿﻦ ﻋﻼﻗﺔ ﻟﻨﺠﺪ:
ﻓﯿﺜﺎﻏﻮرس:
2 2( 12) 144x h
2 2 24 144 144x h h
2 224x h h
224x h h
3(اﻟﺪاﻟﺔ) :اﻟﻤﺜﻠﺚ ﻣﺴﺎﺣﺔ(
1
*
2
A b h
1
*2 *
2
A x h h x
4(اﻟﺘﻌﻮﯾﺾ:
2( ) 24A f h h h h
اﻟﻤﺠﺎل ﻻﺣﻆ:0 24h أن ﯾﻌﻨﻲ وھﺬاhاﻟﺠﺬر ﺗﻮﺣﯿﺪ ﻓﯿﻤﻜﻦ ﻣﻮﺟﺒﺔ
5(اﻟﻤﺸﺘﻘﺔ ﻗﺒﻞ اﻟﺘﺒﺴﯿﻂ
2 2( ) (24 )A f h h h h
3 4( ) 24A f h h h
6(اﻟﻤﺴﺎﺣﺔ ﻟﺪاﻟﺔ اﻟﺤﺮﺟﺔ اﻟﻨﻘﻂ ﻧﺠﺪ:
3272 4
( )
3 424
h hdA
f h
dh h h
173.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ
173
وﻋﻨﺪﻣﺎ( ) 0fh 2 372 4 0h h
24 (18 ) 0 18h h h cm
ﻧﺘﻌﺮف اﻟﻤﺠﺎور اﻟﻤﺨﻄﻂ وﻣﻦﻋﻠﻰاﻟﻤﺴﺎﺣﺔ ﻟﺪاﻟﺔ أنﻧﮭﺎﯾﺔاﻟـ ﻋﻨﺪ ﻋﻈﻤﻰ18
اﻻرﺗﻔﺎع=h = 18 cm
اﻟﻘﺎﻋﺪة ﻃﻮل=2x
2 224 24*18 18
18(24 18) 18*6 36*3 6 3
x h h x
x cm
اﻟﻘﺎﻋﺪة ﻃﻮل=12 3 cm
اﻟﺪاﺋﺮة ﻣﺲ:2
1A r2 2
1 *12 144A cm
اﻟﻤﺜﻠﺚ ﻣﺲ:2
1
*
2
A b h
2
2 6 3*18 108 3A cm
اﻟﻤﺜﻠﺚ ﻣﺲاﻟﺪاﺋﺮة ﻣﺲ:
2
1
108 3 3 3
144 4
A
A
18
0
إﺷﺎرة( )f h
---+ +
max
24
174.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ
174
b
c r
n s
p
a
y
18
x
18-x
24
Ex64:ﻗﺎﻋﺪﺗﮫ ﻃﻮل ﻣﺜﻠﺚ داﺧﻞ ﯾﻮﺿﻊ أن ﯾﻤﻜﻦ ﻣﺴﺘﻄﯿﻞ أﻛﺒﺮ ﺑﻌﺪي ﺟﺪ24 cmوارﺗﻔﺎﻋﮫ18 cmﺑﺤﯿﺚ
أرؤوﺳ ﻣﻦ ﻣﺘﺠﺎورﯾﻦ رأﺳﯿﻦ نﮫﺳﺎﻗﯿﮫ ﻋﻠﻰ ﺗﻘﻌﺎن اﻟﺒﺎﻗﯿﯿﻦ واﻟﺮأﺳﯿﻦ اﻟﻘﺎﻋﺪة ﻋﻠﻰ ﺗﻘﻌﺎن.
اﻟﺤﻞ:
1(اﻟﻤﺴﺘﻄﯿﻞ ﺑﻌﺪي ﻣﻦ ﻛﻞ ﻃﻮل ﻧﻔﺮض:x , y cm
2(اﻟﻤﺘﻐﯿﺮات ﺑﯿﻦ اﻟﻌﻼﻗﺔ:اﻟﻤﺜﻠﺜﺎن:bns , bcrﺗﺘﻨﺎﺳﺐ ﻟﺬا اﻟﻤﺘﻨﺎﻇﺮة زواﯾﺎھﻤﺎ ﻟﺘﺴﺎوي ﻣﺘﺸﺎﺑﮭﺎن
أﺿﻼﻋﮭﻤﺎاﻟﻤﺘﻨﺎﻇارﺗﻔﺎﻋﯿﮭﻤﺎ وﻛﺬﻟﻚ ﺮة.
18
24 18
ns ba y x
cr bp
24
(18 )
4
(18
318
)xy x y
3(اﻟﺪاﻟﺔ:اﻟﻤﺴﺘﻄﯿﻞ ﻣﺴﺎﺣﺔ=ﻃﻮﻟﮫ ﺿﺮب ﺣﺎﺻﻞ×ﻋﺮﺿﮫA x y
4(واﺣﺪ ﻣﺘﻐﯿﺮ ﺑﺪﻻﻟﺔ اﻟﺘﺤﻮل:
4
(18 )
3
*A x x
175.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ
175
5(اﻟﻤﺸﺘﻘﺔ ﻗﺒﻞ اﻟﺘﺒﺴﯿﻂ:
24
() ( 18 )
3
f x A x x ﺣﯿﺚ0 18x
6(اﻟﺤﺮﺟﺔ اﻟﻨﻘﻂ ﻧﺠﺪ:
4
( ) ( 18 2 )
3
f x x
وﻋﻨﺪﻣﺎ( ) 0f x 9x اﻟﺤﺮﺟﺔ اﻟﻨﻘﻄﺔ
4 8
( ) ( 2)
3 3
f x
8
(9) 0
3
f
ﻋﻨﺪ ﻣﺤﻠﯿﺔ ﻋﻈﻤﻰ ﻧﮭﺎﯾﺔ اﻟﻤﺴﺎﺣﺔ ﻟﺪاﻟﺔ ﯾﻌﻨﻲ وھﺬا9x cmاﻟﺒﻌﺪﯾﻦ أﺣﺪ وﯾﻤﺜﻞ.
اﻵﺧﺮ اﻟﺒﻌﺪ
4
(18 9) 12
3
y cm ;
4
(18 )
3
y x
Ex65(ﻃﻮﻟﮫ ﺳﻠﻚ ﻣﻦ ﺷﻜﻞL cmﻣﺴﺎﺣﺔ أﻛﺒﺮ ذو ﻣﺴﺘﻄﯿﻼ.
اﻟﺤﻞ:
1(اﻟﻤﺴﺘﻄﯿﻞ ﺑﻌﺪي ﻧﻔﺮضx , y cmاﻟﻤﺘﻐﯿﺮات
2(ﻟﻠﻤﺴﺘﻄﯿﻞ ﻣﺤﯿﻄﺎ ﯾﻤﺜﻞ اﻟﺜﺎﺑﺖ اﻟﺴﻠﻚ ﻃﻮل( )*2x y L
2
L
y x
3(اﻟﻤﺴﺘﻄﯿﻞ ﻣﺴﺎﺣﺔ ﻟﺘﻜﻦ=A*A x y
4(*( )
2
L
A x x
5(
2
( )
2
L
A f x x x
6(( ) 2
2
L
f x x
وﻋﻨﺪﻣﺎ( ) 0f x
ﻓﺎن:ﺣﺮﺟﺔ
4
L
x cm
176.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ
176
h
8
8
h+8
a
b
c
n
d
r
ﻣﺤﻠﯿﺔ ﻋﻈﻤﻰ ﻧﮭﺎﯾﺔاﻟﻤﺴﺎﺣﺔ ﻟﺪاﻟﺔ أن ﯾﻌﻨﻲ وھﺬا
( ) 0 2 2
( ) 2 0
4 4
f x
L L
when x f
2 4 4
L L L
y cm
وﻣﺴﺎﺣﺘﮫ ﻣﺮﺑﻊ ھﻮ اﻟﻤﺘﻜﻮن اﻟﻤﺴﺘﻄﯿﻞ
2 21
16
L cm
Ex66:ﻗﻄﺮھﺎ ﻧﺼﻒ ﻛﺮة ﯾﺤﯿﻂ ﻗﺎﺋﻢ داﺋﺮي ﻣﺨﺮوط أﺻﻐﺮ ﻗﻄﺮ وﻧﺼﻒ ارﺗﻔﺎع ﺟﺪ8 cm.
1(اﻟﻤﺨﺮوط ﺑﻌﺪي ﻧﻔﺮض اﻟﺮﺳﻢ ﺑﻌﺪ, 8r h cmﺣﺠﻤﮫ وﻟﯿﻜﻦ=V
2(اﻟﻌﻼﻗﺔ:2
8
tan
864 adnabc
r
hh
ﻋﻠﻰ ﻧﺤﺼﻞ اﻟﻄﺮﻓﯿﻦ وﺑﺘﺮﺑﯿﻊ:
2
2 2
64
64 ( 8)
r
h h
2
2
64
( 8)( 8) ( 8)
r
h x h
2 8
64*
8
h
r
h
3(اﻟﺪاﻟﺔ:
21
*( 8)
3
V r h
4(واﺣﺪ ﺑﻤﺘﻐﯿﺮ اﻟﺪاﻟﺔ ﺗﻜﻮن أن أﺟﻞ ﻣﻦ اﻟﺘﻌﻮﯾﺾ:
1 8
64* * *( 8)
3 8
h
V h
h
5(ﺗﺒﺴﯿﻂ:8h :
2
64 ( 8)
( ) *
3 8
h
V f h
h
177.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ
177
24
8
إﺷﺎرة( )f h
++--
min
2
2
64 ( 8)*2( 8) ( 8) *1
( ) *
3 ( 8)
h h h
f h
h
2 2
64 ( 8)(2 16 8) 64 ( 24)( 8)
( ) * *
3 ( 8) 3 ( 8)
h h h h h
f h
h h
6(اﻟﺤﺮﺟﺔ اﻟﻨﻘﻂ ﻧﺠﺪ:اﻟﻤﺸﺘﻘﺔ وﻋﻨﺪﻣﺎ=0اﻟﺒﺴﻂ ﻓﺎن=024 0h
24h ﺣﺮﺟﺔ
ﻧﮭﺎﯾﺔ اﻟﺤﺠﻢ ﻟﺪاﻟﺔ أن ﻧﺴﺘﻨﺞ اﻷوﻟﻰ اﻟﻤﺸﺘﻘﺔ اﺧﺘﺒﺎر ﻣﺨﻄﻂ ﻣﻦ
ﻋﻨﺪﻣﺎ ﻣﺤﻠﯿﺔ ﺻﻐﺮى24h
اﻷﺑﻌﺎد(اﻻرﺗﻔﺎع:h+8 = 32 cm
اﻟﻘﻄﺮ ﻧﺼﻒr(
2 24 8
64* 128 8 2
24 8
r r cm
Ex67(داﺋﺮﯾﺔ اﺳﻄﻮاﻧﺔ ﻗﻄﺮ ﻧﺼﻒ ﯾﺴﺎوي ﻛﺮة ﻗﻄﺮ ﻧﺼﻒ ﻛﺎن اذاﻗﺎﺋﻤﺔاﻟﻜﺮة ﺣﺠﻤﻲ ﻣﺠﻤﻮع وﻛﺎن ،
ﯾﺴﺎوي واﻻﺳﻄﻮاﻧﺔ
3
90 cmاﻟﻜﻠﯿﺔ ﻣﺴﺎﺣﺘﯿﮭﻤﺎ ﻣﺠﻤﻮع ﯾﻜﻮن ﻋﻨﺪﻣﺎ اﻟﻜﺮة ﻗﻄﺮ ﻧﺼﻒ ﺟﺪﻣﺎ أﺻﻐﺮ
ﯾﻤﻜﻦ.
اﻟﺤﻞ:
1(اﻻﺳﻄﻮاﻧﺔ ﺑﻌﺪي ﻧﻔﺮض:اﻟ ﻧﺼﻒﻘﻄﺮ=rواﻻرﺗﻔﺎع=hﻟﻜﺮ ﻗﻄﺮا ﻧﺼﻒة=rﺑﺎﻟﺴﻨﺘﯿﻤﺘﺮ
2(اﻟﻌﻼﻗﺔ:اﻟﻜﺮة ﺣﺠﻢ+اﻻﺳﻄﻮاﻧﺔ ﺣﺠﻢ=
3
90 cm
3 2 2 34 4
* 90 * 90
3 3
r r h r h r
2
90 4
3
h r
r
178.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ
178
3(اﻟﺪاﻟﺔ:اﻟﻜﺮة ﻣﺴﺎﺣﺔ+ﻣﺴﺎاﻻﺳﻄﻮاﻧﺔ ﺣﺔ
SylinderSphereA A A
2 2
2 2 4 SphereSylinder
r h r rA
4(واﺣﺪ ﻟﻤﺘﻐﯿﺮ اﻟﺘﺤﻮﯾﻞ:2
2 290 4
2 ( )
3
2 4rA r
r
rr
5(اﻻﺷﺘﻘﺎق ﻗﺒﻞ ﻣﺎ ﺗﺒﺴﯿﻂ:
2 290 4
( ) 2 ( 6)
3
A f r r
r
r
6(ﻟﻠﺼﻔﺮ اﻟﻤﺸﺘﻘﺔ وﻧﺴﺎوي ﻧﺸﺘﻖ:2
90 8
( ) 2 1)
3
2(
dA
f r r
dr r
r
2
3
2
2
90 8
0 2 ( ) 12
3
r
r r
r
3 3 3 3
0 270 8 18 10 270 27 3r r r r r cm
اﻟﻤ ﻟﻤﺠﻤﻮع أن ﯾﻌﻨﻲ وھﺬااﻟﻘﻄﺮ ﻧﺼﻒ ﻋﻨﺪﻣﺎ ﻣﺤﻠﯿﺔ ﺻﻐﺮى ﻧﮭﺎﯾﺔ ﺴﺎﺣﺘﯿﻦ=3 cm
Ex68:ﯾﺴﺎوى وﻣﺮﺑﻊ داﺋﺮة ﻣﺤﯿﻄﻲ ﻣﺠﻤﻮع60 cmاﻟﺸﻜﻠﯿﻦ ﻣﺴﺎﺣﺘﻲ ﻣﺠﻤﻮع ﯾﻜﻮن ﻋﻨﺪﻣﺎ اﻧﮫ اﺛﺒﺖ
اﻟﻤﺮﺑﻊ ﺿﻠﻊ ﻃﻮل ﯾﺴﺎوي اﻟﺪاﺋﺮة ﻗﻄﺮ ﻃﻮل ﻓﺎن ﯾﻤﻜﻦ ﻣﺎ أﺻﻐﺮ.
اﻟﺤﻞ:
1(اﻟﻔﺮﺿﯿﺔ:اﻟﺪاﺋﺮة ﻗﻄﺮ ﻧﺼﻒ ﻧﻔﺮض=r cmﺿﻠﻊ ﻃﻮل وﻧﻔﺮضاﻟﻤﺮﺑﻊ=x cm
2(اﻟﻌﻼﻗﺔ:60=اﻟﻤﺮﺑﻊ ﻣﺤﯿﻂ+اﻟﺪاﺋﺮة ﻣﺤﯿﻂ60 4 2x r
1
(30 2 )r x
3(اﻟﺪاﻟﺔ:
2 2
;Squere circleA A A A x r
4(واﺣﺪ ﻟﻤﺘﻐﯿﺮ اﻟﺘﺤﻮﯾﻞ:
2
2 1
(30 2 )A x x
3
270 8 270 8 80
( ) 2 ( ) 12 ; (3) 2 ( ) 12 0
3 27 3 3
f r f
r
179.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ
179
5(ﺗﺒﺴﯿﻂ:
2 21
( )(900 120 4 )A f x x x x
6(ﻧﺸﺘﻖ......
1
( ) 2 ( 120 8 )f x x x
اﻟﻤﺸﺘﻘﺔ وﻋﻨﺪﻣﺎ=0ﻋﻠﻰ ﻧﺤﺼﻞ:
21
0 2 ( 120 8 ) 0 60 4x x x x
60 4x x
ﻟﻜﻦ60 4 2x r 4x 2 4r x x
2r x
2r xاﻟﻤﻄﻠﻮب ﯾﺘﻢ وﺑﮭﺬا.
Ex69(ﻃﻮﻟﮭﺎ ﺳﻠﻚ ﻗﻄﻌﺔ60 cmاﻟﺠﺰء ﻣﻦ ﺟﺰأﯾﻦ اﻟﻰ ﻗﺴﻤﺖاﻷولﺻﻨﻊ اﻟﺜﺎﻧﻲ اﻟﺠﺰء وﻣﻦ داﺋﺮة ﺻﻨﻊ
اﻟﺪ ﻗﻄﺮ ﺑﺮھﻦ ، ﻣﺮﺑﻊﺻﻐﺮى ﻧﮭﺎﯾﺔ اﻟﺸﻜﻠﯿﻦ ﻣﺴﺎﺣﺘﻲ ﻟﻤﺠﻤﻮع ﯾﻜﻮن ﻋﻨﺪﻣﺎ اﻟﻤﺮﺑﻊ ﺿﻠﻊ ﻃﻮل ﯾﺴﺎوي اﺋﺮة
ﻣﺤﻠﯿﺔ.
اﻟﺴﺎﺑﻖ اﻟﺴﺆال ﺣﻞ ﯾﻌﺎد.
Ex70(اﻟﺰاﺋﺪ ﻟﻠﻘﻄﻊ ﺗﻨﺘﻤﻲ ﻧﻘﺎط أو ﻧﻘﻄﺔ ﺟﺪ
2 2
3y x ﻟﻠﻨﻘﻄﺔ ﯾﻤﻜﻦ ﻣﺎ أﻗﺮب ﺗﻜﻮن ﺑﺤﯿﺚ(0,4)
اﻟﺤﻞ:
1(اﻟﻔﺮﺿﯿﺔ:اﻟﻨﻘﻄﺔ ﻧﻔﺮض(x , y)ﻣ ھﻲل ﻣﻌﺎدﻟﺘﮫ ﻓﺘﺤﻘﻖ اﻟﻤﻨﺤﻨﻲ ﻧﻘﻂ ﻦ
2(اﻟﻌﻼﻗﺔ:اﻟﻨﻘﻄﺔ(x , y)ھﻲ ﻓﺎﻟﻌﻼﻗﺔ ﻣﻌﺎدﻟﺘﮫ ﻓﺘﺤﻘﻖ اﻟﻤﻨﺤﻨﻲ ﻧﻘﻂ ﻣﻦ ھﻲ:
2 2
3y x
اﻟﺤﺎﺟﺔ ﺣﺴﺐ ﻧﺠﺪ ﻣﻨﮭﺎ:
2 2 2 2
3 3y x or x y
3(اﻟﻤﺴﺎﻓﺔ ﻗﺎﻧﻮن:2 2
2 1 2 1( ) ( )D x x y y
2 2 2 2
( 0) ( 4) 8 16D x y x y y
4(واﺣﺪ ﻟﻤﺘﻐﯿﺮ ﺗﺤﻮﯾﻞ:2 2
3 8 16D y y y
5(ﻟﻼﺷﺘﻘﺎق ﻟﻠﺘﺠﮭﯿﺰ ﺗﺒﺴﯿﻂ:2
( ) 2 8 13D f y y y
180.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ
180
2
إﺷﺎرة( )f y
++--
min
y
x
X = 12
( , )
•
a x y
b
12
c
d
y
x
6(ﻧﺸﺘﻖ:...2
4 8
( )
2 2 8 13
y
f y
y y
اﻟﻤﺸﺘﻘﺔ وﻋﻨﺪﻣﺎ=0اﻟﺒﺴﻂ ﻓﺎن=04y – 8 = 0y = 2
ﻟﻜﻦ:
2 2
3x y
2
4 3 1x 1x
ھﻲ اﻟﻨﻘﻄﺔ:(1,2) ( 1,2)or
َE71(اﻟﻤﻜﺎﻓﺊ ﺑﺎﻟﻘﻄﻊ اﻟﻤﺤﺪدة اﻟﻤﻨﻄﻘﺔ داﺧﻞ ﻟﻤﺴﺘﻄﯿﻞ ﻣﺴﺎﺣﺔ أﻛﺒﺮ ﺟﺪ
2
y xواﻟﻤﺴﺘﻘﯿﻢ12x
اﻟﺤﻞ:
أوﻻ ﻧﺮﺳﻢ:اﻟﯿﻤﯿﻦ ﻣﻦ اﻟﺴﯿﻨﺎت ﻣﺤﻮر ﻋﻠﻰ وﺑﺆرﺗﮫ اﻷﺻﻞ ﻧﻘﻄﺔ رأﺳﮫ اﻟﻤﻜﺎﻓﺊ اﻟﻘﻄﻊ.
1(اﻟﻔﺮﺿﯿﺔ:اﻟﺮأس ﻧﻔﺮض( , )a x y
ﻧﺴﺘﻨﺘﺞ ارﺳﻢ ﻣﻦ:اﻟﻌﺮض12ad x
واﻟﻄﻮل:2ab y
2(اﻟﻤﻌﻄﺎة اﻟﻤﻌﺎدﻟﺔ ھﻲ اﻟﻌﻼﻗﺔ
2
y x
3(اﻟﺪاﻟﺔ:2 (12 )A y x
4(واﺣﺪ ﻟﻤﺘﻐﯿﺮ اﻟﺘﺤﻮل
2
2 (12 )A y y
5(اﻟﺘﺒﺴﯿﻂ:
3
( ) 2(12 )A f y y y
6(و ﻧﺸﺘﻖ: ...
2
( ) 2(12 3 )f y y
2
0 2(12 3 )y 2y
ﯾﻤﻜﻦ ﻣﺎ أﻛﺒﺮ اﻟﻤﺴﺎﺣﺔ داﻟﺔ أن ﯾﻌﻨﻲ وھﺬا( ) 2(0 6 ) (2) 24 0f y y f
ھﻲ ﻣﺴﺎﺣﺔ أﻛﺒﺮ:
2
(2) 2(12 2 8) 32A f unit
184
اﻟﻔﺘﺮة ﻧﻘﺴﻢ a x b ﺟ ﻓﺘﺮات اﻟﻰﻋﺪدھﺎ ﺰﺋﯿﺔnﺣﯿﺚn ﺑﺤﯿﺚ ﻣﻮﺟﺐ ﺻﺤﯿﺢ ﻋﺪد 1n وﻃﻮل
ﻣﻨﮭﺎ ﻓﺘﺮة ﻛﻞhﻓﯿﻜﻮن:
b a
h
n
n h b a
ﻓﯿﻜﻮن0 a x، nb xھﻲ اﻟﺘﻘﺴﯿﻢ ﻧﻘﻂ وﺗﻜﻮن:1 2 3 1 , , , ....., nx x x x
وﯾﻜﻮن:1 2 3 , 2 , 3 , ...., r rx a h x a h x a h x a h
ھﻲ اﻷﺧﯿﺮة اﻟﺘﻘﺴﯿﻢ ﻧﻘﻄﺔ ﺗﻜﻮن ﻋﺎﻣﺔ وﺑﺼﻮرة:
1 , n n n nx a h x a x a xb a bh
ھﻮ اﻟﺘﺠﺰﺋﺔ ﻟﻌﻨﺼﺮ اﻟﻌﺎم اﻟﺤﺪ وﻗﺎﻧﻮن:
r or r r r
b a
x a h x a
n
ﻣﻼﺣﻈﺔ:hﯾﻤﺜﻞxﻓو واﻟﻐﺎﯾﺎت اﻟﻤﺴﺎﺣﺎت ﻓﻲ اﻻﺳﺘﻌﻤﺎﻻت ﻣﻦ ﻛﺜﯿﺮ ﻲ........
ﻣﺜﻞ1:ﻟﻠﻔﺘﺮة اﻟﺮﺑﺎﻋﯿﺔ اﻟﺘﺠﺰﺋﺔ ﺟﺪ 2 , 10
اﻟﺤﻞ: 2 , 10 , 4a b n
10 ( 2 )
= = 3
4
b a
h
n
اﻻول ﺣﺪھﺎ ﻋﺪدﯾﺔ ﻣﺘﺘﺎﻟﯿﺔ أﺳﺎس ﯾﻤﺜﻞ=-2
اﻷﺳﺎس ھﺬا ﯾﻀﺎف)3(ﻋﻨﺼﺮ ﻟﻜﻞﯾﻠﯿﮫ اﻟﺬي اﻟﻌﻨﺼﺮ ﻋﻠﻰ ﻧﺤﺼﻞ.
0
1 0
2 1
3 2
4 3 4
= 2
x 2 3 1
x 1 3 4
x 4 3 7
x 7 3 10 2 , 1 , 4 , 7 ,10
a x
x h
x h
x h
x h
اﻟﺘﺠﺰئ ھﻲ اﻷﺻﻠﯿﺔ ﻟﻠﻔﺘﺮة اﻟﻤﻨﺘﻈﻤﺔ اﻟﺘﺠﺰﺋﺔ أن ﻻﺣﻆ: 2 , 1 , 1 , 4 , 4 , 7 , 7 , 10
a b
x0 x 1 x 2 x r - 1 x r
اﻟﻔﺘﺮةاﻟﺮﺗﺒﺔ ﻣﻦr
x n - x n
185.
185
4
1
1 2 3 4
(2 1) 2(1) 1 2(2) 1 2(3) 1 2(4) 1
1 3
i
i i i i
i
5 7 16
ﻣﺜﺎل2:ﺟﺪ24 ﻟﻠﻔﺘﺮة 2 , 10
اﻟﺤﻞ:
10 ( 2 )
= = 0.5
24
b a
h
n
24
25
2 , 1.5 , 1 , .... , 9 , 9.5 , 10
elements
ﻣﻼﺣﻈﺔ:ﯾﻜﻮن اﻟﻤﻨﺘﻈﻢ اﻟﺘﺠﺰئ ﻓﻲ:
1(اﻟﺘﺠﺰﺋﺔ ﻋﻨﺎﺻﺮ ﻋﺪد=اﻟﺠﺰﺋﯿﺔ اﻟﻔﺘﺮات ﻋﺪد+1ﯾﺴﺎوي أيn + 1
2(وﯾﺴﺎوي ﻣﺘﺴﺎو اﻟﺠﺰﺋﯿﺔ اﻟﻔﺘﺮات أﻃﻮال
b a
h
n
3(ﻟﻠﻔﺘﺮة اﻟﻜﻠﯿﺔ اﻟﻔﺘﺮة ﻃﻮل , a bﯾﺴﺎوي b aوﯾﺴﺎوياﻟﺠﺰﺋﯿﺔ اﻟﻔﺘﺮات ﻣﺠﻤﻮعأن أي ﺟﻤﯿﻌﮭﺎ:
ﻣﻼﺣﻈﺔ:ﻟﻜﻦ ﺗﻜﻤﻠﺔ وﻟﮫ واﺳﻊ اﻟﻤﻮﺿﻮعاﻟﻌﺎﺟﺰ ﻣﻨﮭﺠﻨﺎاﻟﻘﺪر ﺑﮭﺬا اﻛﺘﻔﻲ ﻟﺬا ﻟﻠﺘﺠﺰﺋﺔ ﺷﺮح أي اﻟﻰ ﯾﺘﻄﺮق ﻟﻢ
اﻟﺠﻤﻊ رﻣﺰSigma Notation
ﻣﺠﻤﻮعnاﻟﺤﺪود ﻣﻦ:naaa ,,, 21
ﺑﺎﻟﺼﻮرة ﯾﻜﺘﺐ
n
i
ni aaaa
1
21 ﯾﺴﻤﻰ ﺣﯿﺚiاﻟﺠﻤﻊ ﺑﺪﻟﯿﻞindex of summation
ﻣﺜﺎل:ﺟﺪﻣﺠﻤﻮع
4
1
12
i
i
اﻟﺤﻞ:
1
1
( )
n
r
r r
x x b a
186.
186
0 1 2
1
1
1
1
0
1
1
0
...
min ( ):
max ( ):
( , )
( , )
n
i i i
i i i
n
i i i
i
n
i i i
i
Partition a x x x x b
Define
m f x x x x
M f x x x x
Lower sum L f m x x
Upper sum U f M x x
اﻟﺪاﻟﺔ ﻟﺪﯾﻨﺎ ﻟﻨﻔﺘﺮضf وأن( ) 0f x ﻣﺴﺘﻤﺮةاﻟﻔﺘﺮة ﻋﻠﻰ وﻣﺤﺪدةbxa
وﻟﻨﺤﺎولإﯾﺠﺎداﻟﻤﻨﺤﻨﻲ ﺗﺤﺖ اﻟﻤﺴﺎﺣﺔ fﺑﺎﻟﻤﺴﺘﻘﯿﻤﯿﻦ واﻟﻤﺤﺪدةx = a to x = b
اﻟﻔﺘﺮة ﻧﺨﻀﻊ اﻟﻌﻤﻞ ﺑﮭﺬا وﻟﻠﻘﯿﺎمbxa اﻟﻰ ﻟﺘﺠﺰئnاﻟﻤﺘﺴﺎوﯾﺔ اﻟﺠﺰﺋﯿﺔ اﻟﻔﺘﺮات ﻣﻦﻧﺠﺪ ﻟﻜﻲnﻣﻦ
اﻟﻤﻨﺤﻨﻲ ﺗﺤﺖ اﻟﻤﺴﺘﻄﯿﻼتf وﻟﻨﻌﺘﺒﺮnxxxx ,,, 210ا ﻧﻘﻂﻛﻞ ﻋﺮض ﻓﯿﻜﻮن ﺟﺰﺋﯿﺔ ﻓﺘﺮة ﻟﻜﻞ ﻟﻨﮭﺎﯾﺎت
اﻟﻤﺴﺘﻄﯿﻞ ﻃﻮل و ﺟﺰﺋﯿﺔ ﻓﺘﺮة ﻛﻞ ﻃﻮل ھﻮ ﻣﺴﺘﻄﯿﻞ( )if xاﻟﻤﺴﺘﻄﯿﻼت ﻣﻦ ﻧﻮﻋﯿﻦ ﻣﻊ وﻧﺘﻌﺎﻣﻞ
اﻻول اﻟﻨﻮع:ﻋﻠﻮي ﻣﺠﻤﻮعUpper sum
اﻟﺜﺎﻧﻲ واﻟﻨﻮع:ﺳﻔﻠﻲ ﻣﺠﻤﻮع)أدﻧﻰ(Lower sumﯾﻠﻲ وﻛﻤﺎ:
187.
187
اﻟ وﻻﺳﺘﺨﺪامواﻟﯿﺴﺮى اﻟﯿﻤﻨﻰاﻟﻄﺮﻓﯿﺔ ﻨﻘﻂواﻟﺤﺮﺟﺔﯾﻠﻲ ﻣﺎ ﻧﺘﺒﻊ.
1(ھﻲ اﻟﻨﻘﻂ ھﺬه ﻣﻦ واﺣﺪة وﻟﺘﻜﻦ اﻟﺤﺮﺟﺔ واﻟﻨﻘﻂ اﻟﻤﺤﻠﯿﺔ اﻟﻨﮭﺎﯾﺎت ﻟﻨﺠﺪ اﻷوﻟﻰ اﻟﻤﺸﺘﻘﺔ ﻧﺠﺪx cوﻟﻨﺒﺤﺚ
واﻟﺘﻨﺎﻗﺺ اﻟﺘﺰاﯾﺪ.
2(ھﻮ واﺣﺪ ﺗﺠﺰئ ﻟﻨﺄﺧﺬ ,a b
3(اﻟﻔﺘﺮة ﻃﻮل)اﻟﺘﺠﺰئ= (b a=اﻟﻤﺴﺘﻄﯿﻞ ﻋﺮض.
4(اﻻرﺗﻔﺎع وﯾﻤﺜﻞ اﻟﻤﺴﺘﻄﯿﻞ ﻃﻮل ﻧﺠﺪ
(Aاﻟﺪاﻟ ﻛﺎﻧﺖ إذاﺔﻣﻦ ﻛﻞ ﻣﻦ اﻟﺴﯿﻨﺎت ﻣﺤﻮر ﻋﻠﻰ ﻟﻸﻋﻠﻰ ﻋﻤﻮدﯾﻦ ارﺳﻢ ﻣﺘﺰاﯾﺪةa ,bﻓﻲ اﻟﺪاﻟﺔ ﺑﯿﺎن ﯾﻘﻄﻌﺎ
اﻟﻌﻠﻮي اﻟﻤﺴﺘﻄﯿﻞ ﻃﻮل ﺗﻌﻄﻲ أﻃﻮﻟﮭﻤﺎ ﻧﻘﻄﺘﯿﻦupperوﺳﺘﻜﻮن
اﻟﻄﺮﻓﯿ اﻟﻨﻘﻄﺔاﻟﯿﻤﻨﻰ ﺔ f b
اﻟﺴﻔﻠﻲ اﻟﻤﺴﺘﻄﯿﻞ ﻃﻮل ﯾﻌﻄﻲ وأﺻﻐﺮھﻤﺎLowerاﻟﯿﺴﺮى اﻟﻄﺮﻓﯿﺔ اﻟﻨﻘﻄﺔ وﺳﺘﻜﻮن f a
اﻟﺨﻄﺄ ﻋﻦ ﻛﺘﺎﺑﻨﺎ وﻣﺆﻟﻔﻲ اﻟﻄﺎﻟﺐ ﺳﯿﺒﻌﺪ وارﺳﻢ اﻟﺘﺎﻟﯿﺔ اﻷﺷﻜﺎل ﻓﻲ ﺟﯿﺪا دﻗﻖ.
a b a b
A M
a b
( )f a m
( )f b M
a b
Lower
Upper
A m
اﻟﺮﺳﻤﺎن
ﻣﻌﺎ
mA = L( , ) ( )( )f f a b a
A = U( , ) ( ) ( )M f bf b a
188.
188
B(اﻟﺪاﻟ ﻛﺎﻧﺖ إذاﺔﻣﻦﻛﻞ ﻣﻦ اﻟﺴﯿﻨﺎت ﻣﺤﻮر ﻋﻠﻰ ﻟﻸﻋﻠﻰ ﻋﻤﻮدﯾﻦ ارﺳﻢ ﻣﺘﻨﺎﻗﺼﺔa, bﻓﻲ اﻟﺪاﻟﺔ ﺑﯿﺎن ﯾﻘﻄﻌﺎ
اﻟﻌﻠﻮي ﻟﻠﻤﺴﺘﻄﯿﻞ اﻟﻤﺴﺘﻄﯿﻞ ﻃﻮل ﺗﻌﻄﻲ أﻃﻮﻟﮭﻤﺎ ﻧﻘﻄﺘﯿﻦupperوﺳﺘﻜﻮن اﻟﯿﺴﺮى اﻟﻄﺮﻓﯿﺔ اﻟﻨﻘﻄﺔf (a)
اﻟﺴﻔﻠﻲ اﻟﻤﺴﺘﻄﯿﻞ ﻃﻮل ﯾﻌﻄﻲ وأﺻﻐﺮھﻤﺎLowerاﻟﯿﻤﻨﻰ اﻟﻄﺮﻓﯿﺔ اﻟﻨﻘﻄﺔ وﺳﺘﻜﻮن( )f b
C(ﻋﻨﺪ ﻣﺤﻠﯿﺔ ﻧﮭﺎﯾﺔ ﻧﻘﻄﺔ ﺗﺤﻮي اﻟﺪاﻟﺔ ﻛﺎﻧﺖ اذاx = c
ﻣﻦ أﻋﻤﺪة ﺛﻼﺛﺔ ﻧﺮﺳﻢ , , a b cﺗﻜﻮنﺻﺎدي إﺣﺪاﺛﻲ أﻋﻠﻰارﺗﻔﺎع ﺗﻤﺜﻞ اﻟﺜﻼث اﻟﻨﻘﻂ ﻣﻦ ﻟﻨﻘﻄﺔ)ﻃﻮل(
اﻷﻋﻠﻰ اﻟﻤﺴﺘﻄﯿﻞUpperﺻﺎدي إﺣﺪاﺛﻲ أوﻃﺄ واﻷدﻧﻰ اﻟﻤﺴﺘﻄﯿﻞ ﻃﻮل ﺗﻤﺜﻞ اﻟﺜﻼث اﻟﻨﻘﻂ ﻣﻦ ﻟﻨﻘﻄﺔLower
.
a b a b
A M
a b
( )f b m
( )f a M
a b
Lower
Upper
A m
اﻟﺮﺳﻤﺎن
ﻣﻌﺎ
mA = L( , ) ( ) ( )f b af b
A = U( , ) ( ) ( )M bff a a
189.
189
ﻛﺎﻵﺗﻲ ﺳﺒﻖ ﻣﺎﺗﻠﺨﯿﺺ وﯾﻤﻜﻦ:
اذا ﻗﺴﻤﺖ اﻟﻔﺘﺮةbxa اﻟﻰn ﻣﻦ اﻟﻔﺘﺮات اﻟﺠﺰﺋﯿﺔ اﻟﻤﺘﺴﺎوﯾﺔ وﺗﻜﻮﻧﺖn ﻣﻦ اﻟﻤﺴﺘﻄﯿﻼت ﺗﺤﺖ اﻟﻤﻨﺤﻨﻲf
وﻛﺎﻧﺖnxxxx ,,, 210 ﻧﻘﻂ اﻟﻨﮭﺎﯾﺎت ﻟﻜﻞ ﻓﺘﺮة ﻓﺎن:
1
0 1 1
0
0 1 1
Left Hand
Total Area from
( ) ( ) ( ) ( )
endpoint sum
(Lo
( ) ( ) (
r
)
we )
n
i n
i
n
f x x f x x f x x f x x
a x b
f x f x f x x
( , )L f
a b
A M
a b
( )f b m( )f a M
a b
Lower
Upper
A m
اﻟﺮﺳﻤﺎن
ﻣﻌﺎ
mA = L( , ) ( ) ( )f b af b A = U( , ) ( ) ( )M f f c b a
c a bc
A M
A m
c
mA = L( , ) ( ) ( )f c af b
A M
A = U( , ) ( ) ( )M f f a b a
190.
190
1 2
1
12
Right Hand
Total Area from
( ) ( ) ( ) ( )
endpoint sum
(Upper)
( ) ( ) ( )
n
i n
i
n
f x x f x x f x x f x x
a x b
f x f x f x x
( , )U f
ﻣﺜﺎل:ﻟﻠﺪاﻟﺔ اﻷدﻧﻰ اﻟﺠﻤﻊ وﺣﺎﺻﻞ اﻷﻋﻠﻰ اﻟﺠﻤﻊ ﺣﺎﺻﻞ ﺟﺪf(x) =9 – x 2
اﻟﻔﺘﺮة ﻋﻠﻰ
]-2 , 3[ﻟﻠﺘﺠﺰئ( 2, 1,2,3)
اﻟﺤﻞ:
ھﻲ اﻟﺠﺰﺋﯿﺔ اﻟﻔﺘﺮات: 2 , 1 , 2
( ) 2f x x
اﻟﻤﺸﺘﻘﺔ وﻋﻨﺪﻣﺎ=0ﻓﺎنx = 0ﻧﻘﻄﺔﺣﺮﺟﺔ.اﻟﻔﺘﺮة ﻓﻲ وﺗﻜﻮن 1 ﻓﻲ ﻗﯿﻤﺔ أﻋﻈﻢ ﻟﻠﺪاﻟﺔ وﺗﻜﻮن
ھﻲ اﻟﻔﺘﺮة ھﺬه( ) (0) 9f M f
ﻣﺘﺰاﯾﺪة واﻟﺪاﻟﺔx وﻣﺘﻨﺎﻗﺼﺔx
ﻹﯾﺠﺎد ,L f ﺑﺎﺳﺘﺨﺪام ﻧﺠﺪه اﻷدﻧﻰ اﻟﺠﻤﻊ ﺣﺎﺻﻞ أيﻟﻠﺪاﻟﺔ ﻗﯿﻤﺔ أﺻﻐﺮfاﻟﻔﺘﺮات ﻓﻲ وھﻲ
اﻟﺠﺰﺋﯿﺔاﻟﺴﺎﺑﻘﺔﺑﺎﻟﺮﻣﺰ ﻟﮫ وﯾﺮﻣﺰﯾﻠﻲ ﻛﻤﺎ:
1(اﻟﻔﺘﺮة ﻓﻲ 2 ﻟﻠﺪاﻟﺔ ﻗﯿﻤﺔ أﺻﻐﺮfﺗﻮﻓﺘﻜﻮن ﻓﯿﮭﺎ ﻣﺘﺰاﯾﺪة اﻟﺪاﻟﺔ ﻷن اﻷﯾﺴﺮ اﻟﻄﺮف ﻋﻨﺪ ﺟﺪ
ھﻲ اﻟﻤﺴﺘﻄﯿﻞ ﻣﺴﺎﺣﺔ: 1 ( 2) 1 5 1 5A f
2(اﻟﻔﺘﺮة ﻓﻲ 1 أﺻﻐﺮﻗﯿﻤﺔاﻟﻤﺴﺘﻄﯿﻞ ﻣﺴﺎﺣﺔ ﻓﺘﻜﻮن ﻓﯿﮭﺎ ﻣﺘﻨﺎﻗﺼﺔ اﻟﺪاﻟﺔ ﻷن اﻷﯾﻤﻦ اﻟﻄﺮف ﻋﻨﺪ
ھﻲ:
if m
2 (2) 3 5 3 15A f
width
191.
191
3 ( ﻓﻲ اﻟﻔﺘﺮة 2 أﺻﻐﺮ ﻗﯿﻤﺔ ﻟﻠﺪاﻟﺔf ﺗﻮﺟﺪﻋﻨﺪ اﻟﻄﺮف اﻷﯾﻤﻦ ﻷن اﻟﺪاﻟﺔ ﻣﺘﻨﺎﻗﺼﺔ ﻓﯿﮭﺎ ﻓﺘﻜﻮن
ھﻲاﻟﻤﺴﺘﻄﯿﻞ ﻣﺴﺎﺣﺔ: 3 ( ) 1 03 1 0A f
ﻹﯾﺠﺎد ,U f ﺑﺎﺳﺘﺨﺪام ﻧﺠﺪه اﻷﻋﻠﻰ اﻟﺠﻤﻊ ﺣﺎﺻﻞ أيأﻋﻈﻢﻟﻠﺪ ﻗﯿﻤﺔاﻟﺔfوھﻲﻓﻲ
ﯾﻠﻲ ﻛﻤﺎ اﻟﺴﺎﺑﻘﺔ اﻟﺠﺰﺋﯿﺔ اﻟﻔﺘﺮات:
1(اﻟﻔﺘﺮة ﻓﻲ 2 ﻟﻠﺪاﻟﺔ ﻗﯿﻤﺔ أﺻﻐﺮfﻓﺘﻜﻮن ﻓﯿﮭﺎ ﻣﺘﺰاﯾﺪة اﻟﺪاﻟﺔ ﻷن اﻷﯾﻤﻦ اﻟﻄﺮف ﻋﻨﺪ ﺗﻮﺟﺪ
ھﻲ اﻟﻤﺴﺘﻄﯿﻞ ﻣﺴﺎﺣﺔ: 1 ( 1) 1 8 1 8A f
2(اﻟﻔﺘﺮة ﻓﻲ 1 اﻟﻨﻘﻄﺔ ﻋﻨﺪ ھﻲ ﻟﻠﺪاﻟﺔ ﻗﯿﻤﺔ أﻋﻈﻢx = 0وﻟﻘﺪ اﻟﺤﺮﺟﺔﺑﻤﺆﻟﻔﻲ ﯾﺴﻤﻰ ﻣﺎ ﻓﺸﻞ
ذﻟﻚ إﯾﻀﺎح ﻓﻲ اﻟﻜﺘﺎبﻓﺘﻜﻮنf (0) = 9ھﻲ اﻟﻤﺴﺘﻄﯿﻞ ﻣﺴﺎﺣﺔ ﻓﺘﻜﻮن ﻗﯿﻤﺔ أﻋﻈﻢ ھﻲ:
3(اﻟﻔﺘﺮة ﻓﻲ 2 ﻟﻠﺪاﻟﺔ ﻗﯿﻤﺔ أﺻﻐﺮfﻋﻨﺪ ﺗﻮﺟﺪﻓﺘﻜﻮن ﻓﯿﮭﺎ ﻣﺘﻨﺎﻗﺼﺔ اﻟﺪاﻟﺔ ﻷن اﻷﯾﺴﺮ اﻟﻄﺮف
ھﻲ اﻟﻤﺴﺘﻄﯿﻞ ﻣﺴﺎﺣﺔ: 3 (2) 1 5 1 5A f
1 2 3
1
, 8 27 5 40Upper sum
n
i
i
f M x U f A A A
if M
2 (0) 3 9 3 27A f
width
1 2 3
1
, 5 15 0 20Lower sum
n
i
i
f m x L f A A A
192.
192
ﻟـ اﻟﺼﺤﯿﺤﺔ اﻟﻘﯿﻤﺔإن
3
2
( )f x dx
ھﻲ
1
33
3
اﻻﻋﻠﻰ اﻟﻤﺠﻤﻮع ﺑﯿﻦ ﻣﺤﺼﻮرة ﻓﮭﻲ40واﻟﻤﺠﻤﻮع
اﻷدﻧﻰ27ﺗﺴﺎوي اﻟﺘﻘﺮﯾﺒﯿﺔ واﻟﻤﺴﺎﺣﺔ:
, , 40 23 1
31
2 2 2
U f L f
A
ﻣﺜﺎل:ﺟﺪ1
b
a
dx
اﻟﻤﻨﺤﻨﻲ ﺗﺤﺖ اﻟﻤﺴﺎﺣﺔ اﻟﻤﻄﻠﻮب( ) 1f x اﻟﺮأﺳﯿﯿﻦ واﻟﻤﺴﺘﻘﯿﻤﯿﻦx = a , x = b
ﻃﻮﻟﮫ ﻣﺴﺘﻄﯿﻞ ﻣﺴﺎﺣﺔ ﺗﺴﺎوي اﻟﻤﺴﺎﺣﺔ وھﺬهb – a
وﻋﺮﺿوﺣﺪة ﯾﺴﺎوي ﮫواﺣﺪة ﻃﻮل
ﺗﺴﺎوي ﻣﺴﺎﺣﺘﮫ ﻟﺬاuint2
b – a
أي:
2
( , ) ( , ) ( )A U f L f b a unit
ﻓﺎن ﻟﺬا:1
b
a
dx b a
اﻟﺤﻞ:اﻟﻤﻨﺤﻨﻲ ﺗﺤﺖ اﻟﻤﺴﺎﺣﺔ اﻟﻤﻄﻠﻮب)اﻟﺴﯿﻨﺎت وﻣﺤﻮر اﻟﻤﻨﺤﻨﻲ ﺑﯿﻦ(
اﻟﺮأﺳﯿﯿﻦ واﻟﻤﺴﺘﻘﯿﻤﯿﻦx = -1 , x = 3
ﺷﺒﮫ ﯾﻤﺜﻞ اﻟﺸﻜﻞاﻟﻤﺘﻮازﯾﺘﯿﻦ ﻗﺎﻋﺪﺗﯿﮫ ﻣﻦ ﻛﻞ ﻃﻮل ﻣﻨﺤﺮف
5 , 1ﯾﺴﺎوي وارﺗﻔﺎﻋﮫ3 – (-1) = 4
اﻟﻤﺴﺎﺣﺔ= 21
5 1 *4 12
2
unit
ﻟﺬا:
3
1
3 12x dx
193.
193
ﻣﺜﺎل:ﺟﺪ
3
1
2x dx
اﻟﻤﺴﺎﺣﺔA1ﻗﺎﻋﺪﺗﮫ ﻃﻮل ﻟﻤﺜﻠﺚ ھﻲ=2وارﺗﻔﺎع=1
A1 = 1/2(2*1) = 1
اﻟﻤﺴﺎﺣﺔA2ﻗﺎﻋﺪﺗﮫ ﻃﻮل ﻟﻤﺜﻠﺚ ھﻲ=2وارﺗﻔﺎع=2
A2= 1/2*(2*2)= 2
3
2
1 2
1
2 1 2 3 ( )x dx A A A unit
ﻣﺜﺎل:اﻟﻤﺴﺎﺣﺔ ﻹﯾﺠﺎد واﻷﯾﺴﺮ اﻷﯾﻤﻦ اﻟﻄﺮﻓﻲ اﻟﻤﺠﻤﻮع اﺳﺘﻌﻤﻞاﻟﺘﻘﺮﯾﺒﯿﺔاﻟﻤﻨﺤﻨﻲ ﺗﺤﺖ12
xyﻋﻠﻰ
اﻟﻔﺘﺮة[0, 2]ﺑﺎﺳﺘﻌﻤﺎلn = 4.
اﻟﺤﻞ:اﻻدﻧﻰ اﻟﻤﺠﻤﻮع ﻧﺠﺪ.Lower sum
اﻟﻤﺴﺘﻄﯿﻼت ﻋﺪد=4
ﻣﺴﺘﻄﯿﻞ ﻛﻞ ﻋﺮض=
2 0
0.5
4
x b a
n n
اﻟﻤﺴﺘﻄﯿﻞ ﻃﻮل)1(( 10)f ﻓﻲ]0 , 0.5[
اﻟﻤﺴﺘﻄﯿﻞ ﻃﻮل)2(( ) 5.5 20 1.f ﻓﻲ]10.5 ,[
اﻟﻤﺴﺘﻄﯿﻞ ﻃﻮل)3(( 21)f ﻓﻲ]1.51 ,[
اﻟﻤﺴﺘﻄﯿﻞ ﻃﻮل)4((1.5) 3.25f ﻓﻲ]21.5 ,[
اﻟﻜﻠﯿﺔ اﻟﻤﺴﺎﺣﺔ=اﻻرﺑﻌﺔ اﻟﻤﺴﺘﻄﯿﻼت ﻣﺴﺎﺣﺎت ﻣﺠﻤﻮع
اﻷ اﻟﻤﺠﻤﻮع ﺛﺎﻧﯿﺎ ﻟﻨﺠﺪﻋﻠﻰ:Upper sum
اﻟﻤﺴﺘﻄﯿﻞ ﻃﻮل)1(( ) 5.5 20 1.f ﻓﻲ]0 , 0.5[
اﻟﻤﺴﺘﻄﯿﻞ ﻃﻮل)2(( ) 21f ﻓﻲ]10.5 ,[
3
0
0 1 2 3
0 1 2 3
Left Hand
Total Area from
( ) ( ) ( ) ( ) ( ) (Lower)
0 2
endpoint sum
( ) ( ) ( ) ( )
i
if x x f x x f x x f x x f x x
x
f x f x f x f x x
41 1.25 3.75 ,2 0.5 L f
194.
194
اﻟﻤﺴﺘﻄﯿﻞ ﻃﻮل)3((1.5) 3.25fﻓﻲ]1.51 ,[
اﻟﻤﺴﺘﻄﯿﻞ ﻃﻮل)4(( ) 52f ﻓﻲ]21.5 ,[
اﻟﻜﻠﯿﺔ اﻟﻤﺴﺎﺣﺔ=اﻻرﺑﻌﺔ اﻟﻤﺴﺘﻄﯿﻼت ﻣﺴﺎﺣﺎت ﻣﺠﻤﻮع
2
: 3.75 5.75T otal A ria
Ude
Hence
L eft R igt
S um S um
r
y x
0, 2
اﻟﺘﻘﺮﯾﺒﯿﺔ اﻟﻤﺴﺎﺣﺔ=
( , ) ( , ) 5.75 3.75
4.75
2 2
U f L f
ﻣﺜﺎل:ﺑﺎﺳﺘﺨﺪامﺗﺤﺖ ﻟﻠﻤﺴﺎﺣﺔ ﺗﻘﺮﯾﺒﺎ ﺟﺪ واﻟﺴﻔﻠﻰ اﻟﻌﻠﯿﺎ اﻟﻤﺠﺎﻣﯿﻊ
اﻟﻤﻨﺤﻨﻲ2
( ) 1f x x ﺑﺎﻟﻤﺴﺘﻘﯿﻤﯿ واﻟﻤﺤﺪدةﻦx = - 1 , x = 2
وﺑﺎﺳﺘﺨﺪامn = 6.
اﻟﺤﻞ:أن اﻟﻤﺠﺎور اﻟﺸﻜﻞ ﻓﻲ ﻻﺣﻆ)0 ,1(ﻋﻠﻰ ﺑﯿﻨﻤﺎ ﻣﺘﻨﺎﻗﺺ ﯾﺴﺎرھﺎ ﻓﻲ واﻟﻤﻨﺤﻨﻲ ﺣﺮﺟﺔ ﻧﻘﻄﺔﯾﻤﯿﻨﮭﺎ
ﻣﺘﺰاﯾﺪ.ﺗﺰاﯾﺪ وﺟﻮد ﺑﺴﺒﺐ اﻟﯿﺴﺮى اﻟﯿﺪ وﻗﺎﻋﺪة اﻟﯿﻤﻨﻰ اﻟﯿﺪ ﻗﺎﻋﺪة ﺑﺎﺳﺘﻌﻤﺎل اﻟﺘﻘﺮﯾﺐ ﺳﯿﻜﻮن ﻟﺬا
ﺑـ اﻟﯿﺴﺮى اﻟﯿﺪ ﻗﺎﻋﺪة ﻋﻠﻰ ﯾﺼﻄﻠﺢ واﻟﺘﻲ اﻟﺪاﻟﺔ ﺑﻨﻔﺲ وﺗﻨﺎﻗﺺ(LRAM).ﻟﻠﻌﺒﺎرة ﻣﺨﺘﺼﺮ وھﻲ:
Left-hand Rectangular Approximation Method
ﺑﺎﻻﺧﺘﺼﺎر ﺗﻜﺘﺐ اﻟﯿﻤﻨﻰ اﻟﯿﺪ ﻗﺎﻋﺪة ﺑﯿﻨﻤﺎ)RRAM(ﻟﻠﻌﺒﺎرة ﻣﺨﺘﺼﺮ وھﻲ:
Right-hand Rectangular Approximation Method
, 1, 2a b
ﻋﺮضWidthﯾﺴﺎوي ﻣﺴﺘﻄﯿﻞ ﻛﻞ
2 1 1
6 6 2
b a
x
1 2 3 4
1
1 2 3 4
4
Right Hand
Total Area from
( ) ( ) ( ) ( ) ( ) ( )
0 2
endpoint sum
Upper
( ) ( ) ( ) ( )
i
if x x f x x f x x f x x f x x
x
f x f x f x f x x
451.25 2 0. .75 ,5 L f
195.
195
اﻟﺘﻘﺮﯾﺒﯿﺔ اﻟﻤﺴﺎﺣﺔ=
25.3756.875
6.125
2 2
L RA A
A unit
ﻣﺜﺎل:ﺗﺤﺖ اﻟﻤﺴﺎﺣﺔ ﺟﺪ اﻟﻤﺴﺘﻄﯿﻼت ﻣﺠﻤﻮع ﺑﺎﺳﺘﺨﺪام و اﻟﻤﺠﺎور اﻟﺸﻜﻞ ﻣﻦ
اﻟﻤﺠﻤﻮع ﻧﻮع وﻣﺎ اﻟﻤﻨﺤﻨﻲ.
ﺑﺎﺳﺘﺨﺪ ﺗﻜﺘﺐ أن وﯾﻤﻜﻦﯾﻠﻲ وﻛﻤﺎ اﻟﺠﻤﻊ رﻣﺰ ام:
ﻣﺠﻤﻮع وﺗﻤﺜﻞ)أدﻧﻰ(
196.
196
1 2 3 4
4
1 (0) (1) (2) (3)
1 1 2 5 10 18 ,
mA A A A A
f f f f
L f
1 2 3 4
4
1 (1) (2) (3) (4)
1 2 5 10 17 34 ,
MA A A A A f f f f
U f
ﻣﺜﺎل:اﻟﻤﻨﺤﻨﻲ ﺗﺤﺖ اﻟﺘﻘﺮﯾﺒﯿﺔ اﻟﻤﺴﺎﺣﺔ ﺟﺪ
2
( ) 1f x x
ﺑﺎﻟﻤﺴﺘﻘﯿﻤﯿﻦ واﻟﻤﺤﺪدة اﻟﺴﯿﻨﺎت ﻣﺤﻮر وﻓﻮق
اﻟﺮأﺳﯿﯿﻦx = 0 , x = 4ﺑﺎﻋﺘﺒﺎرn= 4
اﻟﺤﻞ:أوﻻ ﻟﻨﺠﺪ:4( , )L f ا ﻣﺠﻤﻮعدﻧﻰ
اﻟﻔﺘﺮة ﻓﻲ ﻣﺘﺰاﯾﺪة اﻟﺪاﻟﺔ 0,4
ﻧﺴﺘﻌﻤﻞ ﻟﺬااﻟﯿﺴﺮى اﻟﻄﺮﻓﯿﺔ اﻟﻨﻘﻂاﻟﺠﺰﺋﯿﺔ ﻟﻠﻔﺘﺮات
,1 , ,2 , ,3 , 3,0 41 2
واﺣﺪة وﺣﺪة ﺗﺴﺎوي ﻓﺘﺮة ﻛﻞ وﻃﻮل
ﻟﻨﺠﺪﺛﺎﻧﯿﺎ:4( , )U f اﻷﻋﻠﻰ اﻟﻤﺠﻤﻮع:Upper sum
ا ﻓﻲ ﻣﺘﺰاﯾﺪة اﻟﺪاﻟﺔﻟﻔﺘﺮة 0,4
ﻧﺴﺘﻌﻤﻞ ﻟﺬااﻟﯿ اﻟﻄﺮﻓﯿﺔ اﻟﻨﻘﻂﻤﻨﻰاﻟﺠﺰﺋﯿﺔ ﻟﻠﻔﺘﺮات 0, , 1, , 2, , 31 2 ,3 4
واﺣﺪة وﺣﺪة ﺗﺴﺎوي ﻓﺘﺮة ﻛﻞ وﻃﻮل
اﻟﺘﻘﺮﯾﺒﯿﺔ اﻟﻤﺴﺎﺣﺔ=
2( , ) ( , ) 34 18
26
2 2
U f L f
unit
197.
197
1 2 3 4
4
1 (1) (2) (3) (4)
1 16 13 8 1 36 ,
mA A A A A f f f f
L f
1 2 3 4
4
(0) 1 (1) 1 (2) 1 (3)
17 16 13 8 54 ,
MA A A A A
f f f f
U f
ﻣﺜﺎل:ﻟﻠﺘﻜﺎﻣﻞ ﺗﻘﺮﯾﺒﯿﺔ ﻗﯿﻤﺔ ﺟﺪ
4
2
0
(17 )x dx
اﻟﺘﺠﺰئ ﺑﺎﺳﺘﺨﺪام 0,1,2,3,4
اﻟﺤﻞ:ﻻﯾﺠﺎد ﻟﺬا ﻣﺘﻨﺎﻗﺼﺔ اﻟﺪاﻟﺔاﻟﻤﺴﺎﺣﺔ
اﻟﯿﻤﻨﻰ اﻟﻄﺮﻓﯿﺔ اﻟﻨﻘﻂ ﻧﺴﺘﻌﻤﻞ اﻷدﻧﻰ.
اﻟﻤﺠﺎور اﻟﻤﺨﻄﻂ راﺟﻊ
واﺣﺪة ﻃﻮل وﺣﺪة ﯾﺴﺎوي ﻣﺴﺘﻄﯿﻞ ﻛﻞ ﻋﺮض
اﻻرﺑﻌﺔ اﻟﻤﺘﻄﯿﻼت أﻃﻮال ﻟﻨﺠﺪ.
(1) 17 1 16f ﻟﻠﻤﺴﺘﻄﯿرﻗﻢ ﻞ)1(
2
(2) 17 2 13f رﻗﻢ ﻟﻠﻤﺴﺘﻄﯿﻞ)2(
2
(3) 17 3 8f رﻗﻢ ﻟﻠﻤﺴﺘﻄﯿﻞ)3(
2
(4) 17 4 1f رﻗﻢ ﻟﻠﻤﺴﺘﻄﯿﻞ)4(
اﻟﻤﺴﺎﺣﺔ وﻟﻨﺠﺪﺑﺎﺳﺘﻌﻤﺎلاﻟﻤﺠﻤﻮعاﻷﻋﻠﻰ
وذﻟﻚﺑﺎﺳﺘﺨﺪاماﻟﺪاﻟﺔ ﻷن اﻟﯿﺴﺮى اﻟﻄﺮﻓﯿﺔ اﻟﻨﻘﻂ
ﻣﺘﻨﺎﻗﺼﺔ.
اﻟﻤﺴاﻟﺘﻘﺮﯾﺒﯿﺔ ﺎﺣﺔ=
2( , ) ( , ) 54 36
45
2 2
U f L f
unit
203
1 6
62
( ) 16 ( ) 3 32f x dx and f x dx
1
2
( )f x dx
-2 1 6 1 6
6 1
( ( 6) 16 ) 1f dd fx xx x
6 1 6
2 2 1
( ) ( ) ( )f x dx f x dx f x dx
1 1
2 2
8 16( ) ( ) ( ) 24f x dx f x dx
6
2
6 6 6
2 2 2
6
2
( ) 3 32 ( ) 3 32
( ) 3(6 2) 3 )2 ( 8
f x dx f x dx dx
f x dx f x dx
4
2
3
25 x dx
0.x
2 2 2 2
2 2 2 2
2 2
2 2
2 2
2 2
2 ( ) 6 2 ( ) 6 ( )
( ) ( ) 8 ; 24
2 6
2 2 2 6(2 2) 8 24
f x dx f x dx dx f x dx
f x dx f x dx m M
x x
ﻣﻼﺣﻈﺔ ﯾﻤﻜﻦأن:( , ) 8 ; ( , ) 24L f U f اﻟﺘﻘﺮﯾﺒﺔ اﻟﻤﺴﺎﺣﺔ اﯾﺠﺎد ﯾﻤﻜﻦ اﻟﻌﺪدﯾﻦ ﻣﺘﻮﺳﻂ ﻣﻦ ﻟﺬا
.
اﻟﻤﺴﺎﺣﺔ وھﺬهاﻷﺧﯿﺮةﺑﺎﺳﺘﺨﺪامﻓﺘﺮةواﺣﺪةاﻷﻋ اﻟﺤﺪﯾﻦ ﻣﻦ ﻟﻜﻞﻠﻰواﻷدﻧﻰ.
ﻣﺜﺎل2:اﻟﺘﻜﺎﻣﻞ ﻗﯿﻤﺔ ﻟﺘﻘﺮﯾﺐ اﻟﺨﻮاص اﺳﺘﺨﺪم
اﻟﺤﻞ:ﻓﻠﻨﺄﺧﺬ اﻟﺤﺮﺟﺔ اﻟﻨﻘﻄﺔ ﻟﻨﺠﺪ
اﻟﺤﺮﺟﺔ اﻟﻨﻘﻄﺔ ﻋﻠﻰ ﻧﺤﺼﻞ ﺗﻜﻮن وﻋﻨﺪﻣﺎ
اﻟﺪاﻟﺔ ﻣﺪى ﻋﻠﻰ ﻓﻨﺤﺼﻞthe range of f(x)
ﻣﺜﺎل3:ﻟﺘﻜﻦfوﻟﯿﻜﻦ ، ﻣﺴﺘﻤﺮة داﻟﺔ
ﻓﺠﺪ
اﻟﺤﻞ:
اﻻﺟﺰاء ﻣﺠﻤﻮع ﯾﺴﺎوي اﻟﻜﻞ.
2
( ) 25 .f x x
2
( )f x
2
x
2
[ 3,4]
25
x
x
( ) 0,f x
2
max min
( ) 25 . ( 5 0) , ( 3) 4 (4)f x x f f f
4
4
3
3
2
3 ( ) 5, and thus 3 4 3 21 35.( ) 5 4 3 ( )
35 21
28
2
f x f x dx f x dx
A unit
204.
204
6
0
( )f xdx
1
0, ( ) 2
6 2
1 1
lim ( ) lim 2 2
2 2
lim ( ) ( ) Continuous
x a x a
x a
a F a Sin a
F x Sin x
defined
exits
Hence
Sin a
F x F a F at a
0,
6
( ) 2 ( ) 2 0 ,
6
F x Cos x F a Cos a a
1
( ) 2 ( ) 2 ( )
2
F x Sin x F x Cos x f x
6
0
1 1
( ) 0 1
3 2 2
f x dx Cos Cos
32
2
3 1 1
: 2 , ; ( )
4 1
x x
f f x find f x dx
x x
2
1
1
1
2
1
2 lim 3 1 4
lim
3 1 : 2 1
4 m 43 li 4: 1
x
x
x
x x L
f x
x
x
x
x
x L
f
x x
1 2
1
1
lim 4
(1) 3 1 4
lim (1) 1
exits
defined
x
x
L L f x
f
Hence f x f f continuous at x
ﻣﺜﺎل4:اﻟﺪاﻟﺔ أن ﺑﺮھﻦFﻟﻠﺪاﻟﺔ ﻣﻘﺎﺑﻠﺔ داﻟﺔ ھﻲfأن ﺣﯿﺚ
3 2
: 1,2 ; ( ) 6 2 : 1,2 ; ( ) 6 3F F x x x and f f x x
اﻟﺒﺮھﺎن:ﺑﺎﻟﻘﺎﻋﺪة اﻟﻤﻌﺮﻓﺔ اﻟﺪاﻟﺔ3
( ) 6 2F x x x ﻣﺴﺘ داﻟﺔ ھﻲﻛﺜﯿﺮةاﻟﺤﺪود ﻷﻧﮭﺎ ﻟﻼﺷﺘﻘﺎق وﻗﺎﺑﻠﺔ ﻤﺮة
وأن2
( ) 6 3 ( )F x x f x ﻓﺎن ﻟﺬاFﻟﻠﺪاﻟﺔ اﻟﻤﻘﺎﺑﻠﺔ اﻟﺪاﻟﺔ ھﻲf.
ﻣﺜﺎل5:اﻟﺪاﻟﺔ أن ﺑﺮھﻦFﻟﻠﺪاﻟﺔ ﻣﻘﺎﺑﻠﺔ داﻟﺔ ھﻲfأن ﺣﯿﺚ
1
: 0, ; ( ) 2 : 0, ; ( ) 2
6 6 2
F F x Cos x and f f x Sin x
ﺟﺪ ﺛﻢ
اﻟﺤﻞ:1
( ) 2
2
F x Sin x
ﻟﻜﻦaﻓﻲ ﻣﺴﺘﻤﺮة ﻓﺎﻟﺪاﻟﺔ ﻟﺬا اﻟﻔﺘﺮة ﻋﻨﺎﺻﺮ ﻣﻦ ﻋﻨﺼﺮ ﻛﻞ ﺗﻤﺜﻞ
ﻣﻮﺟﻮدة
اﻟﻤﻔﺘﻮﺣﺔ اﻟﻔﺘﺮة ﻓﻲ ﻟﻼﺷﺘﻘﺎق ﻗﺎﺑﻠﺔ اﻟﺪاﻟﺔ ﺗﻜﻮن ﻟﺬا.
اﻟﺪاﻟﺔFﻟﻠﺪاﻟﺔ اﻟﻤﻘﺎﺑﻠﺔ اﻟﺪاﻟﺔ ھﻲf
ﻣﺜﺎل6:ﻟﺘﻜﻦ
اﻟﺤﻞ:
205.
205
2
2
11 1
1
6 (1 ) 6 6 : 2
6 (1 ) 6
1
16 : 3
x x
Sign x
x x x x x
f x
x x x x x
x
x
2 2
1 32 3
3 1 3 1 3
2 2 1 2 1
3 2
2 1
( ) ( ) ( )
3 2 (12 16
6 6 6 6
3 2 2 3 54 27 3 2 55)
x x xf x dx f x dx f x dx dx dxx
x x x x
3
2
: 2,4 6 |1 | ; : ( )f Such that f x x x find f x dx
2
: 2, 6 3 ; ( ) 30 ,
b
f b Such that f x x f x dx find b
2
2
2 2
32 2 2
30 , 30 3 3 30
3 3 12 6 30 3 3 36 0 12 0
4 3
( ) 6
0 3
3
b b
b
dx dx x x
b b b b b b
b
f
b b
x x
اﻟﻔﺘﺮة ﻓﻲ ﻣﺴﺘﻤﺮة واﻟﺪاﻟﺔ]-2 , 1[اﻟﻔﺘﺮة ﻓﻲ وﻣﺴﺘﻤﺮة]1 , 3[اﻟﺪاﻟﺔ ﺗﻜﻮن ﻟﺬا اﻟﺤﺪود ﻛﺜﯿﺮﺗﺎ ﻷﻧﮭﻤﺎf
اﻟﻤﺠﺎل ﻋﻨﺎﺻﺮ ﺟﻤﯿﻊ ﻓﻲ ﻣﺴﺘﻤﺮة ﻷﻧﮭﺎ ﻣﺴﺘﻤﺮة.
2
1
3 1 3 1 3
2 2 1 2
33 2
2 1
1
( ) ( ) ( )
1 1 ( 8 2)
3 1 4
2 18 2 28
f x dx f x dx f x dx x dx dxx
x x x
ﻣﺜﺎل7:ﻟﺘﻜﻦ
اﻟﺤﻞ:
ﻃﺮﯾ ﺑﻨﻔﺲ ﺑﺮھﻦﻣﺴﺘﻤﺮة اﻟﺪاﻟﺔ أن اﻟﺴﺒﻖ اﻟﻤﺜﺎل ﻘﺔ.
ﻣﺜﺎل8:ﻛﺎﻧﺖ اذا:
اﻟﺤﻞ:
206.
206
4
1 3 5 5 5
14 4 4
2 22 2 2 2 2
1 1 1
1
2 2 2 62
2 1 32 1
5 5 5 5
a x x dx x dx x dx x
41 4 4 4
8 8
33 3 3 3 3
1 1
1
3 3 3 45
2 1 16 1
4 4 4 4
b x dx x dx x
3
2 32 2 32 2
0 0
0
1 1
sin cos sin cos sin sin sin0
3 3 2
1 1
(1 0)
3 3
d x x dx x x dx x
9 3 31 39
2 22 22 2
1
1
9
1
1 1 2 2
5 4 5 4 7 3
5 5 3 15
2 632
343 27
1
4
5 15
5 xx x xd xe d
41 1 1 14 4
22 2 2 2
1 1
1
1
2 2 2 1 2(2 1) 2f dx x dx x
x
3 /4 3 /4
/2/2
3 1 2
cos cos cos 0
4 2
n
2 2
si xg x dx
4
1
2 12
1
x xx x
h dx
x
1x
4 43 3
4
2 2
1
1 1
3
2 2
2 2
2 3
3 3
2 4
(2 ) 12 1 3
3 3
dx x x x x
4 8
23 2
1 1 0
9 4 3 /4
1 1 /2
5 2
4 1
21 0
sin cos
1
5 4 sin
2
11
a x x dx b x dx d x x dx
e x dx f dx g x dx
x
x x x x
h dx i dx
x xx
24
1
32 64
5 52 2 2 2
3 21 1 1
6
5y
k x x dx
x
l y x dx m y x dy n dy
x
ﻣﺜﺎل9:ﻣﻦ ﻛﻼ ﺟﺪ:
اﻟﺤﻞ
207.
207
23 2 2
1
2
2
1
20 0
5
( 1) ( 1)( 1
11
x x x x x x x x
dxe i dx
x x xx
2
)
1x x
1
0
2 2
( 1)( 1
dx
x x x x
2
)
1x x
1
1 1
3 2 4 3
0 0
0
1 1 1 1 7
( )
4 3 4 3 12
dx x x dx x x
3 124 4 4
2 2
1 1 1
45 3
2 22 2
1
6 12 36 12 36
2 2 2
6 36 2
5 3 5
k x x dx x x x dx x x x dx
x x x
5
2 2 2
6 2 24 2
3
2 2 812
6 24
5 5
2 7 7
52 2 2 2 2 25 5 5
1 1
1
17
25
5 5
( )
7 7
5
( )
7
y
y y
l y x dx y x dx x y y y y
y y
2 7 7
52 2 2 2 2 25 5 5
1 1
1
17
25
5 5
( )
7 7
5
( )
7
y
y y
l y x dx y x dx x y y y y
y y
2
2 2
5 5 5 52 2 2 2 2 3 2
1 1
1
5 2
1 1
8 1
3 3
7
3
m y x dy x y dx x y x
x
1 1
2 1 1 23 2 264 64 64
3 3 3 3
3 21 1 1
5 3 1
5 5
1 3
3
x
n dx x x dx x x dx
x
2
3
643 33
23 2 22
1
5 2 5 4 2 2(1 8) 14x
208.
208
ln( )
( )
1 0
( )
/ – ( )
( )
ln 1
ln a
log (x) = ln(x) ln e x
ln ln
ln a x ln a
ln a ln
ln
x
e
n
e
x x n x
x
x
Derivatives of Exponential Functions
1) 2) ln
1 1
log ( ) ln( )
ln( )
u u
u u
a
d e d bdu du
e b b
dx dx dx dx
d du d du
u u
dx u a dx dx u dx
Properties of Logarithms
loga x
a x log x
a a x 0 , 1 , 0a a x
Product rule: log log loga a axy x y
Quotient rule: log log loga a a
x
x y
y
Power rule: log logy
a ax y x
Change of base formula:
ln
log
ln
a
x
x
a
209.
209
:Examples
2
2
2
2) [ln( 1)]
1
du x
x Chain ru
x
le
d u x
1
3) [ ln( )] ( ) ln (1) 1 ln
d
x x x x x Pro
dx x
duct rule
4
5 4 1 5[ln( )]
4) [ln( )] 5[ln( )]
d x
x x
dx x x
power rule
أﻣﺜﻠﺔأﺧﺮى:ﺟﺪy ﯾﻠﻲ ﻣﻤﺎ:
1 ( )( )( )2
y 3 1 5 2 7x 4x x
ﻟﻮﻏ ﻧﺄﺧﺬﺎاﻟﻄﺮﻓﯿﻦ رﯾﺘﻢTake natural log of each side
( ( )( )( ))
( ) ( ) ( )
2
2
ln y ln 3 1 5 2 7x 4
ln y ln 3 1 ln 5 2 ln 7x 4
x x
x x
ﻟﻠﻤﺘﻐﯿﺮ ﺑﺎﻟﻨﺴﺒﺔ اﻟﻄﺮﻓﯿﻦ ﻧﺸﺘﻖx
22
3 5 14
3 1 5
3 5 14
3 1 5 42 7 4 2 7
y x x
y y
x x xy x x x
اﺳﺘﺒﺪلyﺑﺪﻻﻟﺔx
2 3
5 2
(
2
2)
1
Take natural log of each
x
y
x x
side
2 3
2 2
5 2
( 2 ) 1
ln ln ln 3 ln ( 2 ) (ln ln 1 )
51
x
y y x x x
x x
اﻟﻄﺮﻓﯿﻦ ﻧﺸﺘﻖ)Differentiate both sides(
22 2 2
6 1 2
2 5( 1)
6 1 2
2 5( 1)
y x x
y xx x
x x
y y
xx x
2 1
1) [ln2 ]
2
d u
x
d
Chai
x u
l
x x
n ru e
2
2
3 5 14
(3 1)(5 - 2)(7 4)
3 1 5 2 7 4
x
y x x x
x x x
210.
210
ln
log
ln
: a
u
u
a
Logs withother bases
ln l
n ln
n
lnl
:
lln n
x
x
x a x
x a x x a
a
a xd d d
a e e e a a
dx d
e
x x
a e
a
d
Exponential functions with other bases
2
2 2
2
5
.
ln 1 1
(log ) *
ln ln
ln
(log ( sin )
ln5
1 1 2 cos
* (2 c
sin
2
sin
os )
ln5 ( ) ln5( s n )
1
i
a
ex
d d u du
u
dx dx a a u dx
d d
x x
dx dx
x x
x x
x x
x x
x x
3
3 2
( ) x x
f x e
3 3
3 2 3 2 3 2
( ) (3 2 ) ( 2 3 )x x x x
f x e x x x e
2 3
22 2 5
6 1 2
( 2)
1
:
2 5( 1)
x x
Replace y with function of x y
xx x
x
x x
أﻣﺜﻠﺔ:
ﻣﺜﺎل1 : ﺟﺪ اﻟﻤﺸﺘﻘﺔ ﻟﻠﺪاﻟﺔ
اﻟﺤﻞ :
ﻣﺜﺎل2A : ﺟﺪ اﻟﻤﺸﺘﻘﺔ ﻟﻠﺪاﻟﺔ
sin(2 1)
( )f e
اﻟﺤﻞ :
sin(2 1) sin(2 1)
( ) sin(2 1) 2cos (2 1)f e e
ﻣﺜﺎل2B ( 2 2
2 2
1 2 2
( 2 5)
2 5
ln( 2 5)
2 5
dy d x
x x
dx x x
y
dx
x x
x x
ﻣﺜﺎل2C ( ( 3 ) 3 ln 3x xd
dx
211.
211
ln ln 5ln sin 3 ln cos 2 ln tany x x x
(ln ) (ln5 lnsin3 ln cos 2 ln tan )
d d
y x x x
dx dx
ﻣﺜﺎل :2D ( 2( log )
1 1
ln 2 ln
d
x
x xd
أﻣﺜﻠﺔ أﺧﺮى : ﺟﺪ اﻟﻤﺸﺘﻘﺔ
dy
dx
ﻣﻦ اﻟﻌﻼﻗﺎت اﻟﺘﺎﻟﯿﺔ. ﻣﺜﺎل3 :2
3
ln( )
1
x
y
x
اﻟﺤﻞ : 21
ln(3 ) ln( 1)
2
y x x
1 1
2 3
dy
dx
3
x
2 2 2
1 1 1 2 1
2
1 2 1 2 1
x x
x
x x x x
ﻣﺜﺎل4 : 5sin3 cos2 tany x x x
اﻟﺨﻞ :
2
1 3cos3 2sin 2 1 sec
0
sin3 cos 2 2 tan
dy x x x
y dx x x x x
21
(5sin3 cos2 tan )( 3cot3 2tan 2 sec cot )
2
dy
x x x x x x x
dx x
ﻣﺜﺎل5 : 1 , 0x
y x x x
اﻟﺤﻞ : ﻣﻦ أﺧﺬ اﻟﻠﻮﻏﺎرﯾﺘﻢ اﻟﻄﺒﯿﻌﻲ ﻟﻠﻄﺮﻓﯿﻦ ﻧﺤﺼﻞ ﻋﻠﻰ:
ln lny x x
1 1
(ln ) ( ln ) ln (1 ln )xd d dy dy
y x x x x x x
dx dx y dx x dx
212.
212
2
6 2 32 5
dy
x y x x
dx
ﻣﺜﺎل6 :
2
ln(3 2 5)x x
y e
اﻟﺤﻞ : ﻣﻦ اﻟﺨﺎﺻﯿﺔ
( )ln u
e u ﻧﺴﺘﻨﺘﺞ أن :
ﻣﺜﺎل8A :
ا
213.
213
2 33x xdx c
اﻟﻤﺤﺪد ﻏﯿﺮ اﻟﺘﻜﺎﻣﻞ ﺗﻌﺮﯾﻒThe Definition of Indefinite Integral
اﻟﺘﻔﺎ ﻋﻠﻢ أن ﺣﯿﺚ ، اﻻﺷﺘﻘﺎق ﻟﻌﻤﻠﯿﺔ اﻟﻌﻜﺴﯿﺔ اﻟﻌﻤﻠﯿﺔ ھﻮ اﻟﻤﺤﺪد ﻏﯿﺮ اﻟﺘﻜﺎﻣﻞ أو اﻟﻌﻜﺴﯿﺔ اﻟﻤﺸﺘﻘﺔﯾﺨﺘﺺ ﺿﻞ
ﻟﻠﺪاﻟﺔ اﻟﻤﺸﺘﻘﺔ ﺑﺈﯾﺠﺎدfﯾﺨﺘﺺ اﻟﻤﺤﺪد ﻏﯿﺮ اﻟﺘﻜﺎﻣﻞ ﻓﺎنﺑﺈﯾﺠﺎداﻟﻌﻜﺴﯿﺔ اﻟﻤﺸﺘﻘﺔFﻟﻠﺪاﻟﺔfﺑﺎﻟﺘﻌﺮﯾﻒ ﻛﻤﺎ:
ﻣﺜﺎل:ﻟﻠﺪاﻟﺔ اﻷﺻﻠﯿﺔ اﻟﺪاﻟﺔ ﺟﺪ 2( ) 3 , ,f x x x
اﻟﺤﻞ:اﻟﺪاﻟﺔ اﯾﺠﺎد ﻧﺮﯾﺪFﺗﻜﻮن اﻟﺘﻲﻣﺸﺘﻘﺎﺗﮭﺎاﻷوﻟﻰﻟـ ﻣﺴﺎوﯾﺔ3 x2
وﺑﻤﻌﻨﻰ ،آﺧﺮﯾﺮادإﯾﺠﺎدFﺑﺤﯿﺚ
2( ) 3F x x ﻗﯿﻢ ﻟﻜﻞxاﻟﺤﻘﯿﻘﯿﺔ.
ان ﻧﻌﻠﻢ ﺑﺎﻟﻤﺸﺘﻘﺔ ﺧﺒﺮﺗﻨﺎ وﻣﻦ3( ) F x xو اﻟﺪاﻟﺔ ھﻲو ھﻲاﻟﺪوال ﻣﻦ اﺣﺪةاﻟﻤﻄﻠﻮب ﺗﺤﻘﻖ اﻟﺘﻲ.
اﻷﺻﻠﯿﺔ اﻟﺪوال ﻣﻦ ﻣﻨﺘﮫ ﻏﯿﺮ ﻋﺪد ھﻨﺎﻟﻚ أن أيﻣﺜﻞ3 3 34 , 2 , x x x c
اﻟﺘﻜﺎﻣﻞ ﺛﺎﺑﺖ ﯾﺴﻤﻰ ﺣﻘﯿﻘﻲ ﺛﺎﺑﺖ ﺑﻌﺪد ﻓﻘﻂ ﺗﺨﺘﻠﻒ اﻟﺪوال ﻓﮭﺬهاﻻﺧﺘﯿﺎري اﻟﺜﺎﺑﺖ اوArbitrary constant
اﻟﻤﺤﺪود ﻏﯿﺮ اﻟﺘﻜﺎﻣﻞ رﻣﺰ)Notation for Indefinite Integral(
اﻟﺮﻣﺰ اﻟﻤﺤﺪود ﻏﯿﺮ اﻟﺘﻜﺎﻣﻞ ﻓﻲ ﯾﺴﺘﻌﻤﻞ..... dxوﯾﻌﺮفﻟﯿﺒﻨﯿﺰ ﺑﺮﻣﺰ)Lebiniz(اﯾﺠﺎد ﻋﻤﻠﯿﺔ ﻋﻠﻰ ﻟﻠﺪﻻﻟﺔ
اﻟﻤﺤﺪود ﻏﯿﺮ اﻟﺘﻜﺎﻣﻞ.ﺑﺎﻟﺮﻣﺰ ﻟﮫ ﯾﺮﻣﺰ اﻟﺴﺎﺑﻖ ﻓﺎﻟﻤﺜﺎل:
( ) ( )f x dx F x c ﺣﯿﺚ( ) ( )F x f x ﯾﻌﻄﻲ اﻟﺘﻜﺎﻣﻞ ھﺬا وان:
اﻟﻤﺸﺘﻘﺎت ﻋﺎﺋﻠﺔاﻟﻌﻜﺴﯿﺔFamily of Antiderivativesأي ﻋﻨﺪ اھﺎ اﻟﻤﺎس ﻣﯿﻞ ﻓﺠﻤﯿﻌﮭﺎxﻟﺬﻟﻚ ﻣﺘﺴﺎو
ﻓﮭﻲﻣﺘﻮازﯾﺔ ﻣﻨﺤﻨﯿﺎت.
اﻟﺮﻣﺰ ﺗﺴﻤﯿﺔ ﻋﻠﻰ اﺻﻄﻠﺢ ﻓﻠﻘﺪﺑﺎﺳﻢإﺷﺎرةاﻟﺘﻜﺎﻣﻞ)Integration Sign(وانf ( x )اﻟﻤﻮﺟﻮدة
اﻟﺼﯿﻐﺔ ﻓﻲ ( ) f x dx
ﺗﻌﺮﯾﻒ:
ﻟﺪ ﯾﻘﺎلاﻟﺔFأﻧﮭﺎﻋﻜﺴﯿﺔ ﻣﺸﺘﻘﺔ)Antiderivative(ﻟﺪاﻟﺔfاﻟﻔﺘﺮة ﻓﻲIﻛﺎن إذا:
( ) ( ) , F x f x x I
214.
214
اﻟﻤﻜﺎﻣﻠﺔ اﻟﺪاﻟﺔ ﺑﺎﺳﻢIntegrandواﻟﺮﻣﺰdxﻋﻠﻰ وﯾﺪل اﻟﺘﻔﺎﺿﻞ رﻣﺰ ھﻮاﻟﻤﺮاد اﻟﺘﻜﺎﻣﻞ ﻋﻤﻠﯿﺔ أن
ﻟﻠﻤﺘﻐﯿﺮ ﺑﺎﻟﻨﺴﺒﺔ ﺗﻜﻮن إﺟﺮاؤھﺎxﻓﻘﻂاﻟﺘﻜﺎﻣﻞ ﻣﺘﻐﯿﺮ وﯾﺴﻤﻰVariable of Integratingاﻋﺘﺒﺎر ﻣﻊ ،
اﻟﻤﺘﺒﻘﯿﺔ اﻟﺮﻣﻮز-وﺟﺪت ان–ﻣﺜﻼ ﻛﺜﻮاﺑﺖ:
اﻟﺮﻣﺰﯾﻦ ﻣﻊ اﻟﺘﻌﺎﻣﻞ ﺗﻢz , yﻛﺜﻮاﺑﺖ.
2
(3 2 2 ) 3 2 z x y dx z x y x c
ﻣﺒﺮھﻨﺔ)1: (ﻧﺘﯿﺠﺔﻣﻦﻣﺒﺎﺷﺮة اﻟﻌﻜﺴﯿﺔ اﻟﻤﺸﺘﻘﺔ ﺗﻌﺮﯾﻒ:
1 ( ) ( )
2 ( ) ( )
d
f x dx f x
dx
d
f x dx f x c
dx
3 3
: 1 : s in s in
2 : ta n 3 ta n 3
d
e x am p le d x
d x x x
d
x x d x x x c
d x
ﻣﺒﺮھﻨﺔ2-اﻟﻘﻮة ﻗﺎﻋﺪةPower Role:
1
, 1
1
n
n x
x dx c n
n
ﻣﺜﺎل:
7
2 75
5 5
5
+ c
7 7
5
x
x dx c x
ﻣﺒﺮھﻨﺔ3:ﻣﻦ ﻛﻞ ﻛﺎن اذاg , fأﺻﻠﯿﺔ داﻟﺔ)ﻣﺤﺪود ﻏﯿﺮ ﺗﻜﺎﻣﻼ(ﻛﺎن وإذاkﻓﺎن ﺛﺎﺑﺘﺎ ﻋﺪدا:
1 ( ) ( )
2 ( ) ( ) ( ) ( )
3 ( ) ( ) ( ) ( )
k f x dx k f x dx
f x g x dx f x dx g x dx
f x g x dx f x dx g x dx
اﻟﺒﺮھﺎن:
1 D ( ) D ( ) ( )
2 D ( ) ( ) D ( ) D ( )
( ) ( )
x x
x x x
k f x dx k f x dx k f x
f x g x dx f x dx g x dx
f x g x
ﻃﺮﯾﻘﺔ ﺑﻨﻔﺲ اﻟﺜﺎﻟﺚ اﻟﺠﺰء وﺑﺮھﺎناﻟﺜﺎﻧﻲ اﻟﺠﺰء.
215.
215
2
10
92
10
9
2
9
2
(1) 3 6 3 6 6
3 6 3 6 6
. : let u = 3 6 3 6 6
:
10
3
6
3
1
Ex am ple x x x d
S olu x x du x dx
u
then u du
x
x x x dx
x x
c
0
c
2 2
3 2
1 2 3
3 2
1 2 3
6 10 3 6 10 3
= 6 10 3
3 2
2 5 3 6 10
x x dx x dx x dx dx
x x
c c x c
x x x c c c
3 2
2 5 3x x x c
ﻣﺜﺎل:
ﻣﺒﺮھﻨﺔ4:اﻟﻌﺎﻣﺔ اﻟﻘﻮى ﻗﺎﻋﺪة)Generalized Power Role(:
ﻟﺘﻜﻦu = g(x)ﻟﻠﺘﻔﺎﺿﻞ ﻗﺎﺑﻠﺔ داﻟﺔوأن 1n و ( ) du g x dxﻓﺎن:
1
( )
( ) ( )
1
n
g xn
g x g x dx c
n
ﻣﺒﺮھﻨﺔ5:اﻟﻄﺒﯿﻌﻲ اﻟﻠﻮﻏﺎرﯾﺘﻢ ﺗﺤﻮي اﻟﺘﻲ اﻟﺪوال ﺗﻜﺎﻣﻞ
1 ( )
ln ln | | ln | ( )
|
( )
2
kx
kx
dx f x
x C du u C dx f x C
x u f x
e
e dx C
k
Integration involving the natural log function
أﻣﺜﻠﺔ:
216.
216
3
2
3 3
3 : 3 3
2 3
. : I = 3 3
x
Example I x x dx
x
Sol x x dx x x c
6 7 7 2
1 1
7 2
1 1 1 1 1
sin ( 4)
2 2 7 14 2
1
sin ( 4)
14
u du u c x c
x c
5
. : let g(x) = g (x) = - ; ( ) ( ) 1
: ( ) + ( ) g (x)
x x
x x
x x
Example I e x e dx
Sol e e let f x x f x
then I e x e dx g x f x f x dx
= ( ) ( ) x
g x f x dx g x f x c x e c
6
2 2 2
6 2 6
2 2
2
1
. : Let sin( 4) cos 4 2 cos 4
2
1
: sin ( 4
4 : I = sin ( 4)cos( 4)
)
2
cos( 4)
Exampl
Sol x u du x x dx x x dx du
He
e x x x dx
x x dxnce I x u du
217.
217
Table of IntegrationFormulas
( )f x dx( )f x
1
, 1
1
n
x
c n
n
n
x
, 0In x c x
1
x
cosx c cosx
sin x csin x
2 1
, ,
2
sec
n
x nIn x c
tan x
sin , ,In x c x n n cot x
2 1
, ,
2
tan
n
x nx c
2
sec x
cot , ,x c x n n 2
csc x
2 1
, ,
2
sec tan
n
x nIn x x c
secx
csc cot , ,In x x c x n n cscx
x
e cx
e
, 0 , 1
x
a
c a a
In a
x
a
1
( )
, 1
1
n
g x
c n
n
( ) ( )n
g x g x
ﺑﺎﻟﺘﻌﻮﻳﺾ ﺍﻟﺘﻜﺎﻣﻞIntegration by Substitution:
اﻟﺘﻜﺎﻣﻞ ﻣﺘﻐﯿﺮ ﺗﻐﯿﯿﺮ ﺑﻄﺮﯾﻘﺔ اﻟﻄﺮﯾﻘﺔ ھﺬه أﯾﻀﺎ ﺗﺴﻤﻰChange of Variablesاﻟﮭﺎﻣﺔ اﻟﻄﺮق إﺣﺪى وھﻲ
اﻟﻌﻜ اﻟﻤﺸﺘﻘﺔ إﯾﺠﺎد ﻓﻲ ﻧﻔﺸﻞ ﻋﻨﺪﻣﺎ ﻣﺒﺎﺷﺮة وﺗﺴﺘﺨﺪم ، ﻟﺪاﻟﺔ اﻟﻌﻜﺴﯿﺔ اﻟﻤﺸﺘﻘﺔ ﻹﯾﺠﺎدﻣﻦ اﻟﺤﺪس ﺑﻄﺮﯾﻘﺔ ﺴﯿﺔ
ﻟﻠﺘﻜﺎﻣﻞ اﻟﺴﺎﺑﻖ اﻟﺮﺋﯿﺴﻲ اﻟﺠﺪول.
218.
218
أﻣﺜﻠﺔ:
2sin
2sin
3 cos
2sin 1
2 sin 2ln |3 cos |
3 cos
3 cos
3 co
2 2ln | |
s
d Let u du d
d d
du
u C
u
x C
sin 1
3 tan sin
cos cos
ln | cos | ln |sec |
ﺘﻘﺔ اﻟﻤﺸ
C Cd d d
2 2
2
2
2
4 2 2
2 2 u u x
x
x x
xe dx Let u x du x dx
e du e Cxe dx e x dx e C
2
2
2
2 2
4
1 3 2
3
4 1
2 2 2ln | 3|
3
2 2ln | |
3
x
dx Let u x du xdx
x
x
dx xdx x C
x x
du
u C
u
2 tan 2
2 tan tan tan2
5 sec tan
sec sec u u x
x
x x
x e dx Let u x du se
e du e C e C
c x dx
x e dx e x dx
2 2
(log7 ) ln7 1 ln7
6 :
1 ln7 1
1
7
ln10 ln10
1 1 (ln7 )
ln10 ln10 ln10 ln10 2 2ln
1
ln7
10
u ln x du dx
x
u x
u d
x x x
dx dx dx Let
x x x
x
dx x dx
x
u C C
x
2 2
1 2 2
7
1 1 1 1
2 ln | 1| ln | 1|
2 2 21 1
x
x x
x x
x
x
x x
e dx
Let u e du e dx
e e
e dx du u u
du u du u c e c
ue e u u u u
219.
219
1 1
00
3
8 3 ln 1 3 ln 1 ln 2 3 0 ln 2 3ln 2
1
dx x
x
ln2ln2 ln2
ln2
0 0 0
1
9 ln 2 ln 2 ln 2 1
2 2
4
ln(2 2) ln3 ln
3
x
x x
x x
e
dx e dx e e
e e
2 2 2
1 1 1
2 ln 1 1 1 5
10 2 ln 2 ln 2 1 2 0
2 2 2
ee ex
dx x dx x
x x
1 1 1
11 ln 1 ln
1 1
ln ln 1 ??? ln
1
x
x x
x x x
x
x x
x
e
dx e dx e c c
e e e
e
c x e c e x
e
2 2 21
12 2 4
2
x x x x x x
e e dx e e dx e e c
4 4 4
3 2 3 2 3 3 2 31 1
13 5 5 8 5
8 8ln5
x x x
x dx x dx c
210log ln 1 1
14 ln ln
ln10 ln10 2ln1
1
0
x x
dx dx x x
x x
x cd
x
4
4 4
3/
3/ 3/
5 5
1 1
15
12
2
1
1
2
x
x xe
dx e e c
xx
dx
3 35 5 2 5 3 2 3
2 3 2 42
16 ( 1) ( 1)
1
( 1) (2
8
1)
2
1
x x x x x x x
x
x x
x x
e e e dx e e e dx e e e dx
d cee ex
sin3 1 1 1
17 3sin3 ln 1 3
1 cos3 3 1 cos3 3
x
dx x dx cos x c
x x
220.
220
1 1
18 : 1 2 1
1 2
1 1 1
2 1 2 1 2 ln 2 1 ln 1
1
dx Let x u dx du dx u du
x x
I dx u du du u u c x x c
u ux
2 21 1
19 : 1 2 4 1
21
1 1
1
dx Let x u dx u du dx u u du
xx
I dx
ux
2
4 1u u
3
31 1
4 4 1 1
3 3
du u u c x x c
6 5
3
5 3
5
3 2 23
1
21 0 : 6
1 1
6 6 6
( 1) 1
dx x Let x u dx u du
x x
u u
I dx u du du du
u u u u ux x
ﻃﻮﯾﻠﺔ ﻗﺴﻤﺔ ﻧﻘﺴﻢ اﻟﻤﻘﺎم درﺟﺔ ﺗﺴﺎوي أو أﻛﺒﺮ اﻟﺒﺴﻂ درﺟﺔ ﻷن
u +1
2
1u u
3
u
3
u
1
2
2
2
1
u
u
u
u u
u
اﻷول ﻋﻠﻰ اﻷول ﻧﻘﺴﻢ
3
2u
u
u
اﻟﻘﺴﻤﺔ ﺧﺎرجu5
ﻋﻠﯿﮫ اﻟﻤﻘﺴﻮم ﻓﻲ ﯾﻀﺮب
u+1
، ﺑﺎﻟﻄﺮح ﺛﻢ
اﻟﻌﻤﻠﯿﺔ ﻧﻔﺲ ﻛﺮر
221.
221
2 2
4 2 5 3
5
2
3
22 1 1 : 1 2
2 2
1 2 2 2
5 3
2 2
1 1
5 3
1
x x dx x Let x u x u dx u du
I x dx u u du u u du u u c
x x
x u
c
1
2 2
2
2
1 2 2
4 2 5 3
2 1 1
1
2
23 3 :
3
3 2
2 1 1 2
2
3 2 2 6 2
5
64 2 8
16 2
5 5 5
x x dx Let x u x u dx u du
w hen x u w hen x u
xI x dx u u du u u du u uu
3
1
32
2
3 2
2 33
2
6 3
1
24 6
61 1 1
6 3
2 36
3 3 1 3 66
x
xx
I dx x x dx c
x
x
d
x
x
x
x
c
3
2
2 3
1 1
2
3
3 3
25 6
1 1 1
2 ln 6
26
6
26
x
x
dx
x
x
I dx dx x dx x c
x x
26 0 , 1
1 1
ln
ln
1 1 1
ln ln ln
ln
1
ln x
I dx Let x u dx du
x x x
I dx du u c x c
x x u
dx x x
x
3 3 33 3 3 3 2 33
1 4
43
3 6
33 3
3
2 33
27
2 2 2
1 1 3 1
2 2 2
3 3 4 4
2
3
I x x x dx x x x d
x x x dx
x
x x x dx
x dx x c x c
2 3 2
3 6 6
1 1 1
6 1 6 ln 1
1 3 2
2 3 6 6ln 1
I u u du u u u u c
u
x x x x c
222.
222
7
2 2
2
77 8
2
2 3 2
28 ( ) (
1 2 3 2
)
1 2 3 1 2 3 1 2 3
2 16
2
x
dx f x f x
x x
x x x
x
x
I dx dx c
x x x
x x
x x
7
9 2
7
7
72 2
2
2 3 2
29 ( ) ( )
1 1 1 2 3
2 3
2 3 2
( ) ( )
1 2 3
1 2
2 3
2
:
2
x
dx f x f x
x x
x
I x dx dx
x x x x
x
f x f x
x
x x
then
x x x
I
7 8
2
2 1 2 3
16
x x
dx c
x x x
1
2
5 5
115 55
2
1 1
513
2
2
1
5 5 5 5
1
2 4 2 1 2 4 2 2 130
2 1 2 1 2
2 2 1
1 2
2 32
16 2 1 3
13 13
dx
x x dx x dx
x
x x x x x
I
13
2
1
13
1594290
34
4
3 13 34 4
4 4
1 3
2 2
31 1
1 1 1 1
( ) 1 ( )
1 2
1
1 2
2
3
1
2
2
1
x x
dx x
x
x x x x x x
I dx dx dx dx
xx
x
I
x x
f x x f x
x
dx x dx x c
x x
7
7 7
7 8
3 5
32 0
7
3 5 3 51
7 7
( ) 3 5 ( )
1 2 2 1
3 5 3 5 ...
87 5 35
5
2
5
2
x
dx x
x
x x
I dx dx
x x
f x x f x
x dx x c
x
I
x
223.
223
23 6 3 6 3
4 4 4 4 4
2 4 3 3
3
3
4 8 161 1 16
33 8
5 5 5
1 1 1 1 16
8 16 8ln
5 5 3 3
1 8 16
ln
15 5 15
x x x x x
dx dx dx
x x x x x
x dx dx x dx x x x c
x
x x c
x
3
13
3
4 4
3 3
2 3
34
2 3 2
2 2 3
3
2 3 1
2 3 2 3
3
3
2
4 2
1
2
x
x
x
x x
e x
dx
x
e x
dx dx e dx x dx
x xx x
e x c e x c
7
9
7 7
7 2 2
7 7
2 2
2
2 1
35
2 1
2 1 1 2 1 1
2 12 1 2 1 2 1
1 1 1 2 1
1
2 1 2
2 1
12 1 2 1
2 4
( ) 1 ( )
2 1 2 1
1 2
1
4 2 1
x
dx
x
x x
dx dx
xx x x
dx dx
x
x
xx x
f x f x
x x
I
x
2
7 8
1 2 1
32
4
12 1 2x
x
dx c
x
3 2 6
2 2 6 2 2
2 2 6 6 7 6
8 7 2 8 2 7
35 6)
6) 6 2
1 1
6) 6 ) 6
2 2
1 1 6 1 1 6
6) 6)
2 8 7 2 8 7
2
x x dx
x x x dx let u x u x du x dx
x x u u u ux dx du du
u u c x x
c
224.
224
7
9
7 7 7
7 2 2 2
2
7
2
8
7 8
1
36
1 1 1 1 1 1
1
1
1 1 1
1
8 8
1
1
1 1
1
x
dx
x
x x
dx dx d
x
du
x
x x x x x x
let u du dx
x
I dx u c c
x
u
x x
4
2
0
4 4
3
0 0
3 4
3 4
2 2
0 3
0
2
37 6 9
3 3
1 1
3 3 3 3
2 2
9 16 9
9 0 12 9 5
2 2 2
x x dx
x dx x dx
x dx x dx x x x x
5
7
5 5
6 5 6
6
5 656 5 66
5
38 5 4
5 4 5 4
5 4
1 1 1 1
5 4
30 30 18
30
30 5
0 180
4
x x dx
I x x dx x x dx
Le x dx
x u
t u x du
I x dx u u c cxd
3
2
2
2
2
1 3 11
2 2 22
3
2 2
39 25 2
25
1 1 25
2 225
1 1 2
25 50
2 2 3
1
25 25 25
3
2
x
dx L et x u du x dx
x
x u
I du
ux
u u du u u c
x x c
x dx
226
2 2 2
2
1 cos 3 sin
1 sin 6
12
cos3 sin 3
1 sin 6 2sin 3 cos3 2sin 3 cos3 cos3 sin 3
cos3 s n 3
:
3
i
x
dx
x x
x x x x x x x
x x
then I
x x
cos3 sin 3x x
1 1
sin 3 cos3
3 3
dx x x c
2 2
10
4 4 2 2
1
1 cos 5 sin 52 cos 5 sin 5 cos 5 sin 5
1
cos10 sin10
10
COS X
x xb x x dx x x dx
x dx x k
EXAMPLES
2 2 2
1
3
3
1 1
2 3
2 3
4 4 sin 4 cos
1 cos sin3
2 sin cos cos2 sin3
3 sin cos 2sin 4 cos4
1
1 sin8 cos8
8
4 sin 1 3 sin 1 3 c
4
1 1
3
3
os 1 3
1 3
5 cos
5
3
d c
d c
d d
d x c
d d c
d
2
2
1 3 1 3
cos sin
5 5
6 sec 4 tan4
7 csc6 cot6 csc6
8 cos cos si
5 3 5
3 5 3
1
4
1
6
1
n3
1
9 sin sin cos3
3
sin3 1 sin
3 3
3
1
3 3 c
10
cos
os
3
3
3
d c
d c
x x dx x c
d d c
d d c c
d
2
2
2
2
3 1 1
cos3 cos3 cos 3
sec3 tan3 sec 3 sec3 tan3
5 5
11 csc 3 cot3
2si
1 1
3 3
5
n 3 62
d
d d c
d d c
227.
227
22
2
2
13 sin
1 1 1
sin 6 sin cos
6 6 6
1
co
3 3 6
3
3s
6
d Let u du d
I d d u cu u
c
2
1 2
3 3
2
3
3
23
2 23
3
1
14 sec
sec sec 3t
1
3
1
an
3tan
3 3
3
d Let u du d
I d u du u c
c
1 1
2 2
1
2
6 sin
15
6 sin
6 sin 6 sin
6 2 co
1
s 12 2co
2
1
2
2
2 s
2
d
I d d Let u du d
I d d d u du
I u c c
3
3
2
6cos3
1
15 cos3 3 2sin3 3 2sin3
3 2s
1 1 2
6cos3
6 6 6 3
in3
3 2sin3
1
9
d Let u du d
I d u d uu
c
c
part-3
ﺑﺎﻟﺸﻜﻞ اﻟﺘﻲ اﻟﺪوال ﺗﻜﺎﻣﻞ
n
f(x) f (x) [ ]
ﺣﯿﺚf(x)ﻣﺜﻠﺜﯿﺔ داﻟﺔ
228.
228
3
3 3
4
4
2co17 cos 2 sin2 cos2
cos2
co
s2
1 1 1
2sin2
2 8
8
s
1
2
2
xx x dx Let u x du dx
I x dx u du
x c
x u c
5
7
5
5
5
5
5 6 6
2
2
2
2
sin 4
18
cos 4
sin 4
tan 4
c
1
sec 4
cos 4os 4
tan4
1 1 1 1
tan4 tan 4
24 2
4sec 4
4sec 4
4 4 4du
u
x
dx
x
x
I dx x dx
x
Le
x
x
x
x d
t u x du dx
I x u udu c x cx
1 1 3 1 3 1
2 2 2 2 2 2
sin2
19
1 sin
1 sin cos
s
cos
in 1
2 2
1 sin
2 4
2 ) 2 ( 2 ) 1 sin 4 1 sin
3 3
xdx du
x
dx
x
Let x u du xdx
x u
Then I
x u
u u du u u c x x c
1 tan
20
1 tan
1 tan cos cos sin
;
1 tan cos cos sin
cos s (cos sin )
(cos
in
1 1
|
co
sin )
s sin
d
d d
Let u ddu
Then I Indu
u
d
|
| cos sin |
u c
In c
2 22
20 1 sin8 1 2sin cos
2sin 4 cos4 sin 4 cos4
1 1
sin 4 cos4
4 4
sin 4
cos4 sin4x + c
4 4
sin 4
x x
x x
b x dx dx
x x dx x x dx
x x dx x
229.
229
2
2 2
2 3 3
sin6
sin3 cos3
-3si
20 cos3
cos3 2 cos 3 sin3
cos3
2
2 cos 3 si
n3
-3sin3 cos 3
3
2 2 2
cos 3
3 9 9
n3
x dx
x dx x xdx
Let x u du dx
Then I x xdx x
u d
x
x x
x
u u
x
c x c
dx
2 2
2
2
2
8 4
sin4
-
21 cos sin
2cos 4 1 2 cos 4 sin 4 sin 4
cos4
2 cos 4 sin 4 sin
4sin4
- 4si
4
2 1
cos 4 4 sin4
4 4
1
n
2
4
x x
x
x
dx
x dx x xdx xdx
Let x u du dx
Then I x xdx xdx
x xdx x
u
dx
3 31 1 1 1 1
cos 4 cos4
4 6 4 6 4
du du u u c x x c
2 2
2
2
2
8 4
cos4
4c
21 cos cos
1 2sin 4 cos4 sin 4 cos
sin 4
cos4 sin 4 cos
1 1
4cos4 sin 4 4cos
4 2
1 1
u
4
s
2
o 4
b dx
x dx x dx x dx
Let x u du dx
Then I x dx x dx
x dx x dx
du
x
du
x x
x
3 31 1 1 1
sin4 sin 4
4 6 4 6
u u c x x c
اﻟﺪاﺋﺮﯾﺔ اﻟﺪوال ﺗﻜﺎﻣﻞ ﻓﻲ اﻟﻘﻮاﻋﺪ ﺑﻌﺾ:
أوﻻ:ﻣﺨﺘﻠﻔﺔ اﻟﺰواﯾﺎ:ﻧﺤﺘﺎج ﻗﺪ:
2 2
2
2
1) sin 2 2cos sin
cos2 cos sin
2) 2cos 1
1 2sin
x x x
x x
x
x
230.
230
3
2 2
2 3
22 sin
sin sin 1 cos sin
1
sin cos sin cos cos
3
x dx
x x dx x x dx
x dx x x dx x x c
3
2 2
2 3
22 sin
sin sin 1 cos sin
1
sin cos sin cos cos
3
x dx
x x dx x x dx
x dx x x dx x x c
4
4 4 2
4
3
2
6
4
23 sin 3
sin sin cos3 1 sin 3
sin cos3 sin cos3
Let sin3x = u du = 3c
cos
cos3 cos 3
1
os3x
I = sin cos
3
3
x dx
x dx x x x dx
x x dx
x
x x
Th
x x dx
dx
xen
6
4 6 5 7
5 7
1
sin cos3
3
1 1 1 1
=
3 3 15 21
1 1
sin sin .
15
21
x dx x x dx
u du u du u u c
x x c
ﺛﺎﻧﻴﺎ:ﺍﳌﺜﻠﺜ ﺍﻟﺪﺍﻟﺔﻴﺔﺃﺃﻷﺳﻲ ﺍﻟﻘﻮﺱ ﺩﺍﺧﻞ ﻣﺸﺘﻘﺔ ﺗﻮﻓﺮ ﻭﺑﺪﻭﻥ ﺳﻴﺔ.
اﻟﻨﻮعاﻷول:ﺑﺼﯿﻐﺔ
2 1
sin n
x
ﺗﺠﺰأإﻟﻰ
2
sin sinn
x x ﯾﻄﺒﻖ اﻟﺰوﺟﻲ وﻟﻸس
2 2
sin 1x cos x ﺣﯿﺚnﻣﻮﺟﺐ ﺻﺤﯿﺢ ﻋﺪد
اﻟﺜﺎﻧﻲ اﻟﻨﻮع:ﺑﺸﻜﻞ ﺗﻜﻮن اﻟﺪاﻟﺔ
2 2
sin cosn n
x or xاﻟﺸﻜﻞ إﻟﻰ ﺣﻮل:
2 2
sin cos
n n
x or x
اﻟﻤﺘﻄﺎﺑﻘﺔ اﺳﺘﻌﻤﻞ ﺛﻢ: 2 21 1
sin 1 cos 2 cos 1 cos2
2 2
x x or x x
231.
231
2 1 1 1
24 sin 5 1 cos10 sin10
2 2 10
x dx x dx x x c
2 1 1 1
25 cos 3 1 cos6 sin 6
2 2 6
x dx x dx x x c
2 24 2
22
1
26 cos 3 cos 3 1 cos6
4
1 1 1
1 2cos6 cos 6 1 2cos 6 1 cos12
4 4 2
1 1 1 1 3 1 1
sin 6 sin12 sin 6 sin12
4 3 2 12 8 12 96
x dx x dx x dx
x x dx x x dx
x x x x c x x x c
2 2
2 2
1 1
27 sin 4 cos 4 1 cos 8 1 cos8
2 2
1 1 1
1 cos 8 sin 8 1 cos16
4 4 8
1 1
sin16
8 16
x x dx x x dx
x dx x dx x dx
x x c
2
1
2
sin 1 1 1 1 1
28 1 cos2 cos2
2 22
1 1 1 1
cos 2 sin 2
2 2 2
x
dx x dx dx x dx
x x x x
x dx x dx x x c
x
2 2
2
2
1 1 1 sin 1 sin 1 sin
29
1 sin 1 sin 1 sin 1 sin cos
1 sin 1
sec tan sec tan sec
cos cos cos
x x x
dx dx dx dx
x x x x x
x
dx x x x dx x x c
x x x
3 33
2
3
2
2
cos 1 sincos 1 sin
30
1 sin 1 sin 1 sin
cos 1 sin
cos 1 si
cos
1 s
n
cos
1
in
1 sin c 1 sin
2
os
x xx xx
x
dx dx
x dx
dx
x x x
x x
dx x x dx
x
x x c
ﺛﺎاﻟﺿرب ﻟﺛﺎاﻟﻣراﻓق ﺑﺎﺳﺗﻌﻣﺎل.
232.
232
sin
31 cos
cos
sin 1
T hen I
tan sin
-sin
cos cos
1
ln | | ln | cos | ln | sec |
x
dx dx L et u x du
x
x
dx
x x
du u c x c x c
u
x x dx
x dx
2
2
2
sec tan sec sec tan
32 sec =
sec tan sec tan
sec tan
sec sec tan
T hen I
sec tan
1
sec
sec tan sec x
sec tan
x x x x x
dx x dx dx
x x x x
L et u x x du
x x x
dx
x
x x t dx
x x
x x
2
1
(sec sec tan
ln | | ln | sec
)
tan |du u c x x c
u
x x x dx
22
33 sec 1 tan tan dx x dx xx x c
2 2
2
4 2 2
22 2 2 2
3
34 tan tan
tan sec tan tan sec
1
tan tan sec 1
se
tan ta
3
n
c 1
dx x dx x dx
x x dx x dx x x dx d
x x x
x x
x x x c
2 2
2
2
2
3
4 2
2
35 sec 3 sec 3
1 1
tan 3 3 s
se
ec 3 sec 3
3 3
1 1
c 3 sec 3 tan 3
tan t
1
9
3
an
3
dx x dx x dx
x x dx x dx
x x
x x x
c
34
3
3 4 4
36 tan 4 x sec 4 sec 4 tan4 x
1
sec 4
4
sec 4
4 sec 4 tan4 x
4 sec 4 tan sec 4
1 1 1
T hen I = sec 4
4
6 6
x
1 1
4
x
x d x
x d
d x x x dx
x
L et u x d xu
u d u u c x c
أﺧرى ﺗﻛﺎﻣﻼت راﺑﻌﺎtan , cot , sec , cscx x x x
233.
233
1
2
1
2
1
2
1
2
cot
sin
c
37 cotx csc cotx csc
cotx csc csc
csc otx csc
-cotx
csc
csc
2 2 csc
x
x
x
dx x dx x dx
x x d x
L et u x du dx
T he xn I x d x ud u
u c x c
3
23
2
2 2 2
3 3 3
2 2 2
2
2
2
2
3
2
3 8 2 2 co s 2 2 2
3
2 sin = -2 sin 2 co s 2 co s 2 co s
1 co
2
s 2
2
s
1 0
2 in
2
x d x d x dx
x d x x x x
x x
d
ln ( 2 )ln ( 2 )2
2 2
3 00
2
ln( 4 ) ln ( 2 )
1
3 9 2 2 co s 2
2
1 1
(1 1) = 4 2 0
2 2
x x x x
x d x e e d x e e
e e
234.
234
a b
( )yf x
R1
R2
R3
0 2
31 2
1 0 5 2 AA A
ﺍﻟﺴﻴﻨﺎﺕ ﻭﳏﻮﺭ ﺩﺍﻟﺔ ﺑﲔ ﺍﳌﺴﺎﺣﺔ
ﻟﺘﻜﻦfاﻟﻔﺘﺮة ﻓﻲ ﻣﺴﺘﻤﺮة داﻟﺔ ,a b
اﻟﺪاﻟﺔ ﻣﻨﺤﻨﻲ ﺑﯿﻦ اﻟﻤﺤﺪدة اﻟﻤﺴﺎﺣﺔfوﻣﺤﻮر
اﻟﺴﯿﻨﺎتاﻟﻤﺴاﻟﺮأﺳﯿﯿﻦ ﺘﻘﯿﻤﻦ
, x a x b ﺗﺴﺎويA
أﻣﺜﻠﺔ:
س1:اﻟﻤﺴﺎﺣﺔ ﺟﺪﺑﯿﻦ2
( ) 3 6f x x x اﻟﺴﯿﻨﺎت وﻣﺤﻮر.
اﻟﺴﯿﻨﺎت ﻣﺤﻮر ﻣﻊ اﻟﺘﻘﺎﻃﻊ أوﻻ ﻟﻨﺠﺪ اﻟﺤﻞ) .y = 0(
2
0 2 3 2 0 0 3 6x or x x x x x
س2:ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﺟﺪ2
( ) 3 6f x x x اﻟﻔﺘﺮة وﻋﻠﻰ اﻟﺴﯿﻨﺎت وﻣﺤﻮر 1 ,5.
اﻟﺤﻞ:
5 5
2
1 1
( ) 3 6 A f x dx x x dx
2
0 2 3 2 0 0 3 6x or x x x x x
1 2 3 ( ) Area of R – Area of R Area of R
b
a
A f x dx
2 2 2 22 2 3 2
00 0
3 6 3 6 3 8 12 4
A x x dx x x dx x x unit
235.
235
31 2
2 4
4 2
AA A
س3:ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﺟﺪ( ) 2f x اﻟﻔﺘﺮة وﻋﻠﻰ اﻟﺴﯿﻨﺎت وﻣﺤﻮر 1 ,5.
اﻟﺤﻞ:( ) 2 0f x اﻟﺴﯿﻨﺎت ﻣﺤﻮر ﻣﻊ ﺗﻘﺎﻃﻊ ﯾﻮﺟﺪ ﻻ أي
5
55 2
1 1
1
2 2 2 5 2 2 6 2 A dx dx x unit
س3:ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﺟﺪ( ) cos2f x xاﻟﻔﺘﺮة وﻋﻠﻰ اﻟﺴﯿﻨﺎت وﻣﺤﻮر ,
2 2
.
اﻟﺤﻞ:
2
2
2
4
4
2
0 cos2x
x
x
x or
x
0 2 5
2 2 2
1 2 3
1 0 2
0 2 53 2 3 2 3 2
1 0 2
2
3 6 3 6 3 6
3 3 3
0 1 3 8 12 0 + 125 75 8 12 4 4 54 62
A A A A x x dx x x dx x x dx
x x x x x x
unit
2
1 2 3
2
4 4 2
4 4 2
2 4 4
2 4 4
( )
1 1 1
cos 2 cos 2 cos 2 = sin 2 sin 2 sin 2
2 2 2
1 1
= sin sin sin sin
2 2 2 2 2
A f x dx A A A or
x dx x dx x dx x x x
2
1
sin sin
2 2
1
1 1
2
1 1
1 0 1 0 2
2 2
unit
236.
236
اﻻوﻟﻰ ﻟﻠﻤﺴﺎﺣﺔ اﻟﺴﯿﻨﺎتﻣﺤﻮر ﺗﺤﺖ ﺗﻜﻮن اﻟﻤﺴﺎﺣﺔ ﺣﯿﺚ اﻟﻤﻄﻠﻘﺔ اﻟﻘﯿﻤﺔ ﻋﻦ اﻻﺳﺘﻐﻨﺎء ﯾﻤﻜﻦ اﻟﺮﺳﻢ ﻣﻦ
اﻟﺜﺎﻧﯿﺔ ﻟﻠﻤﺴﺎﺣﺔ اﻟﺴﻨﺎت ﻣﺤﻮر وﻓﻮق واﻟﺜﺎﻟﺜﺔ.
اﻟﺪوال
واﺣﺪة داﻟﺔ ھﻲ.وھﻲ( ) cos2f x x
س4:ﺟﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﺪ( ) sin3f x xاﻟﻔﺘﺮة وﻋﻠﻰ اﻟﺴﯿﻨﺎت وﻣﺤﻮر0 ,
2
.
اﻟﺤﻞ:
3x = 0 or 3x = 0 s 3
x = 0 or x =
in
3
x
س5:ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﻛﺎﻧﺖ اذا( )f x xاﻟﻔﺘﺮة ﻋﻠﻰ اﻟﺴﯿﻨﺎت وﻣﺤﻮر 0 ,aﺗﺴﺎوي
16
3
ﻗﯿﻤﺔ ﻓﺠﺪa.
اﻟﺤﻞ:
ﻓﻼ اﻟﺴﯿﻨﺎت ﻣﺤﻮر ﻓﻮق اﻟﻤﺴﺎﺣﺔ أن ﻻﺣﻆ
اﻟﻤﻄﻠﻘﺔ اﻟﻘﯿﻤﺔ ﻻﺳﺘﻌﻤﺎل ﺣﺎﺟﺔ.
2 2 2 2
( ) cos2 ; ( ) 2cos 1 ; ( ) 1 2sin ; ( ) cos sinf x x f x x f x x f x x x
2
1 2
2
2
3 2
3 2
0
30
3
( )
1 1
sin 3 sin 3 = cos 3 cos 3
3 3
1 1
1 1
1 1 3
= cos cos 0 cos co 0 1 1 s
3 3 2 3 3
A f x dx A A or
x dx x dx x x
unit
237.
237
1 2
22 3 A A
0
16 2
3 3
a
A x dx
3
2
0
16
3
a
x
3
2
3
32
2 16
8 64 4
a
a a a
س6:ﻟﺘﻜﻦ 4 2
: 2,3 ; ( ) 3 4f f x x x
اﻟﺴﯿﻨﺎت وﻣﺤﻮر اﻟﺪاﻟﺔ ﻣﻨﺤﻨﻲ ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﺟﺪ.
اﻟﺤﻞ: 4 2 2 2
0 3 4 4 1 0 2x x x x x
2 3
4 2 4 2
3 3
4 2
2 2
2 3
5 3 5 3
2 2
2 2
3 4 + 3 4 ( ) = 3 4 =
1 1
= 4 4
5 5
32 32 243 32 64 21
8 8 8 8 27 12 8 8 32
5 5 5 5 5
A f x dx x x dx
x x x
x x dx x
x
x x
x
d
x
2
1
23
5
64 211 147 192
32 23 9
5 5 5 5
unit
ﻣﻨﺤﻨﻴﲔ ﺑﲔ ﺍﳌﺴﺎﺣﺔg , fﺑﺎﳌﺴﺘﻘﻴﻤﻦ ﻭﺍﶈﺪﺩﺓx = a , x = b
238.
238
1 2
10 1 A A
2
( )
b
a
A f x g x dx unit
ﻣﻼﺣﻈﺔ)1: (ﻣﻄﻠﻘﺔ ﻗﯿﻤﺔ ﯾﺤﻮي ﺳﺆال ﻛﺄي اﻟﺴﺆال ﯾﺤﻞ اﻟﺮﺳﻢ ﺑﺪون.
)2(اﻟﻤﻄﻠﻘ اﻟﻘﯿﻤﺔ ﻋﻦ اﻻﺳﺘﻐﻨﺎء ﯾﻤﻜﻦ اﻟﺮﺳﻢ ﺣﺎﻟﺔ ﻓﻲﻣﻮﺿﺢ ﻛﻤﺎ اﻷدﻧﻰ وﻣﻦ اﻷﻋﻠﻰ ﻣﻦ وﺳﻨﺘﻌﻤﻞ ﺔ
ﺗﺴﺎوي اﻟﻤﺴﺎﺣﺔ وﺗﻜﻮن ﺑﺎﻟﺸﻜﻞ ( )
b
upper lowera
A f x g x dx
)3(ﻟﻄﻠﺒﺘﻨﺎ اﻟﺮﺳﻢ ﻟﺼﻌﻮﺑﺔ وﻧﺘﯿﺠﺔ)اﷲ ﺳﺎﻋﺪھﻢ(ﯾﻠﻲ ﻣﺎ ﻧﺘﺒﻊ:
اﻧﯿﺎ اﻟﻤﻌﺎدﻟﺘﯿﻦ ﺑﺤﻞ اﻟﻤﻨﺤﻨﯿﯿﻦ ﺗﻘﺎﻃﻊ ﻧﻘﻂ ﻧﺠﺪ)ﻧﺠﻌﻞ( ) ( )f x g x(اﻟﺘﻘﺎﻃﻊ ﻧﻘﻂ وﺗﻜﻮناﻟﺘﻜﺎﻣﻞ ﺣﺪود ھﻲ
ذﻟﻚ ﻏﯿﺮ اﻟﺴﺆال ﻓﻲ ﯾﺬﻛﺮ ﻣﺎﻟﻢ.
أﻣﺜﻠﺔ: 1اﻟﻤﻨﺤﻨﯿﯿﻦ ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﺟﺪ:3
( ) ; g(x) = xf x x
اﻟﺤﻞ:
2 3 3
1 2 x = 0 , 1 , -1 x 1 = 0 - x = 0 = x yx x x y
0 10 1
3 3 4 2 4 2
1 0 1 0
2
1 1 1 1
+
4 2 4 2
1 1 1 1 1
0 0
4 2 4 2 2
A x x dx x x dx x x x x
unit
2اﻟﻤﻨﺤﻨﯿﯿﻦ ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﺟﺪ:3
; y = xy x
اﻟﺤﻞ:
0 10 1 4 4
2 23 3 3 3
1 0 1 0
2
1 3 1 3
+
2 4 2 4
1 3 1 3 1
0 0
2 4 2 4 2
A x x dx x x dx x x x x
unit
3
2 3 3 3
1 2 x = 0 , 1 , -1 x 1 = 0 - x = 0 = x = x yx x x x y
239.
239
3اﻟﻤﻨﺤﻨﯿﯿﻦ ﺑﯿﻦاﻟﻤﺴﺎﺣﺔ ﺟﺪ: sin ; y = cosy x xاﻟﻔﺘﺮة وﻋﻠﻰ ,
2 2
اﻟﺤﻞ:
ﻟﻔﯿﻤﺔ واﺣﺪة اﺟﺎﺑﺔ اﺳﺘﻌﻤﻠﺖxأﻷو ﻟﻠﺮﺑﻌﯿﻦ اﻟﻤﻌﻄﺎة اﻟﻔﺘﺮة ﻷنﻓﻘﻂ واﻟﺮاﺑﻊ ل.
4اﻟﻤﻨﺤﻨﻲ ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﺟﺪ: ( ) sin 2 ; g(x) = sinf x x xاﻟﻔﺘﺮة وﻋﻠﻰ0 ,
2
اﻟﺤﻞ:
-sinx = 0 -sin = 0 sin 2 = sin ( ) g(x)
sin ( 2cos 1 ) 0
1
sin 0 0 cos
2sinx cosx sin
2
2
3
x x x f x
x x
x x or
x
x x
1 2 sin = cos y
4
x x yx
4 2
4 2
2 4
2 4
2
cos sin + cos sin sin cos sin cos
1 1 1 1
1 0 1 0
2 2 2 2
2 2
1 1 2 1 1 2 2 1= 2 1 = 2 2
2 2
A x x dx x x dx x x x x
unit
3 2 3 2
0 0
3
3
1
sin2x -sinx -sinx cos cos2 cos
2
1 2 1 1 1 2
cos cos - cos0 co
1
s
s0 cos cos cos cos
2 3 6 2 2 2 2 3 3
1
in2x cos
2
4
2A dx dx xx x x
21 1 1 1 1 1
1 0
2 2 2 4 2 2
unit
240.
240
1
1 4 A
5اﻟﻤﻨﺤﻨﯿﯿﻦﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﺟﺪ 2
g = 4 2x x x :واﻟﻤﺴﺘﻘﯿﻢ6 0x y
اﻟﺤﻞ:2
2 1y = 6- x ; y = 4 2x x
2 2
1 24 1 = 0 3 4 0 4 2 = 6- x y = y x x x x x x
x = 4 ; x = -1
44
42 3 2 3 2
-1
-11
2
1 3 1
3 4 4 2 9 24
3 2 6
1 125
128 144 96 2 9 24
6 6
A x x dx x x x x x x
unit
6اﻟﻤﻨﺤﻨﻲ ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﺟﺪ:
1
( ) ; g(x) = x -1
2
f x xوﻋﻠﻰاﻟﻔﺘﺮة 2 , 5
اﻟﺤﻞ:
2 2 2
2
1 1
x -4x + 4 = 0 x = 4x -4 x = x -1 = x -1
4 2
2 0 x = 2
x
x
55 5
3 32 2
222
3 23
2 1
1 8 1 3
1 1
1
3 4
1 1 7
8 4 75 8 1 12 64 75 8 12
2 1
2
2
1 12 12
xA dx x x xx x
unit
7اﻟﻤﻨﺤﻨﻲ ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﺟﺪ: ( ) sin ; g(x) = 2 sinx +1f x xاﻟﻔﺘﺮة وﻋﻠﻰ
3
0 ,
2
اﻟﺤﻞ: sinx = -1 2 sinx +
3
1x sin=
2
= x
3
2 3
2
2
0
0
3 3
1 sin cos 0 (0 1) 1
2 2
A x dx x x unit
241.
241
1 2
0 2 A A
8اﻟﻤﻨﺤﻨﻲ ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﺟﺪ: ( ) sin ; g(x) = sinx cosxf x xاﻟﻔﺘﺮة وﻋﻠﻰ 0 , 2
اﻟﺤﻞ:
sin x cos x -1 = 0 sin x cos x - = 0 sin x cos x =
cos x =1 or x = sin x = 0 x = 0 , x = 0
x x
sin sin
9اﻟﻤﻨﺤﻨﯿﯿ ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﺟﺪﻦ:واﻟﻤﺴﺘﻘﯿﻤﯿﻦ
– 1 , 2x x
اﻟﺤﻞ:
2
0
2
22 2
0
1 1
0 1 0 1 0 1 0 1 4
2 2
A x x x dx x x x dx
x x x x unit
sin cos sin sin cos sin
sin cos sin cos
2
( ) 1 and ( ) 3f x x g x x
2
2
1
1 3 A x x dx
2
2
1
2 x x dx
2
3 2
1
2
3 2
x x
x
8 1 1
2 4 2
3 3 2
215
2
unit
242.
242
ﺍﳊﺍﻟﺪﻭﺭﺍﻧﻴﺔ ﺠﻮﻡVOLUMES OFREVOLUTION
دوراﻧﯿ ﯾﺴﻤﻰﺟﺴﻤﺎ اﻟﺪوران ﻣﻦ اﻟﻨﺎﺷﺊ اﻟﺠﺴﻢ ﻓﺈن ﺛﺎﺑﺖ ﻣﺴﺘﻘﯿﻢ ﺣﻮل ﻛﺎﻣﻠﺔ دورة ﻣﺴﺘﻮﯾﺔ ﻣﻨﻄﻘﺔ دارت إذاﺎ.
اﻟﺪوراﻧﻲ اﻟﺠﺴﻢ ﺣﺠﻢ:اﻟﻤﺴﺘﻤﺮة اﻟﺪاﻟﺔ ﺗﺤﺖ اﻟﻮاﻗﻌﺔ اﻟﻤﻨﻄﻘﺔ دارت إذاfﻓﻲ ﺳﺎﻟﺒﺔ واﻟﻐﯿﺮ a b,واﻟﻤﺤﺪدة
ﺑﺎﻟﻤﺴﺘﻘﯿﻤﻦ , x = bx aﺑﺎﻟﻘﺎﻧﻮن ﯾﻌﻄﻰ اﻟﺤﺠﻢ ھﺬا ﻓﺎن اﻟﺴﯿﻨﺎت ﻣﺤﻮر ﺣﻮل ﻛﺎﻣﻠﺔ دورة:
2 3
( )
b
a
V R x dx unit
واذاﺑﺎﻟﻤﺴﺘﻘﯿﻤﯿﻦ واﻟﻤﺤﺪدة اﻟﺼﺎدات ﻣﺤﻮر ﺣﻮل اﻟﻤﺴﺘﻮﯾﺔ اﻟﻤﻨﻄﻘﺔ دارت , y = dy cدورة
ﺑﺎﻟﻘﺎﻧﻮن ﯾﻌﻄﻰ اﻟﺪوران ﻣﻦ اﻟﻨﺎﺷﺊ اﻟﺤﺠﻢ ﻓﺎن ﻛﺎﻣﻠﺔ:
2 3
( )
d
c
V R y dy unit
ﻣﺜﺎل)1(اﻟﻤﻨﺤﻨﻲ ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ دارت( ) cosf x xاﻻو اﻟﺮﺑﻊ ﻓﻲﺟﺪ ، اﻟﺴﯿﻨﺎت ﻣﺤﻮر ﺣﻮل ﻛﺎﻣﻠﺔ دورة ل
اﻟﺪوران ﻣﻦ اﻟﻨﺎﺷﺊ اﻟﺠﺴﻢ ﺣﺠﻢ.
اﻟﺤﻞ:ھﻲ اﻟﻔﺘﺮة ﺗﻜﻮن اﻻول اﻟﺮﺑﻊ ﻓﻲ0
2
,
22 322 2
0 0
0
1 1
1 2 2 0 0
2 2 2 2 2 4
cos cos sinV x dx x dx x x unit
243.
243
ﻣﺜﺎل)2(اﻟﻤﻨﺤﻨﻲ ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔدارت2
2( )f x x x ﺣﺠﻢ ﺟﺪ ، ﻛﺎﻣﻠﺔ دورة اﻟﺴﯿﻨﺎت ﻣﺤﻮر وﻓﻮق
اﻟﺪوران ﻣﻦ اﻟﻨﺎﺷﺊ اﻟﺠﺴﻢ.
اﻟﺴﯿﻨﺎت ﻣﺤﻮر ﻣﻊ اﻟﺘﻘﺎﻃﻊ ﻟﻨﺠﺪ:
2
; 2 0 2 0x = 2 x = 0 ( )x x x x
2
2 2 2
2 3 4 3 4 5
0 0 0
0
2 33 4 5
0
2
2 2 4 1
4 4
3 5
16
20 15 3 160 240 96 0
15 15 15
2V dx dx x x x dx x x x
x x x unit
y x x
ﻣﺜﺎل)3(ﻧﺎﻗﺺ ﻗﻄﻊ ﻣﻨﺤﻨﻲ ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ دارت2
16 4( )f x x ﻛﺎﻣﻠﺔ دورة اﻟﺴﯿﻨﺎت ﻣﺤﻮر وﻓﻮق
اﻟﺪوران ﻣﻦ اﻟﻨﺎﺷﺊ اﻟﺠﺴﻢ ﺣﺠﻢ ﺟﺪ ،.
اﻟﺴﯿﻨﺎت ﻣﺤﻮر ﻣﻊ اﻟﺘﻘﺎﻃﻊ ﻟﻨﺠﺪ:2
02 16 4 x x
2 2
2
2 2 2
3 3
22 2
2
3
4
16 48 4
3 3
128
= 96 32 96 32
6
3
1 4
3
( )
V y dx dx x x xx x
unit
ﻣﺜﺎل)3(ﻣﻜﺎﻓﺊ ﻗﻄﻊ ﻣﻨﺤﻨﻲ ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ دارت2
y xاﻟﻔﺘﺮة ﻓﻲ اﻟﺼﺎدات ﻣﺤﻮر و 0 2,، ﻛﺎﻣﻠﺔ دورة
اﻟﺪوران ﻣﻦ اﻟﻨﺎﺷﺊ اﻟﺠﺴﻢ ﺣﺠﻢ ﺟﺪ.
اﻟﺤﻞ: 0 0 4 2,when x why en x y
4
4 4 32
0 0
0
2 1
16 8
2 2
V dy dyx y y unit
ﻣﺜﺎل)3(اﻟﺪاﻟﺔ ﻣﻨﺤﻨﻲ ﺑﯿﻦ اﻟﻤﺤﺼﻮرة اﻟﻤﺴﺎﺣﺔ دوران ﻣﻦ اﻟﻨﺎﺗﺞ اﻟﺤﺠﻢ ﺟﺪ 2
1f x x واﻟﻤﺴﺘﻘﯿﻢ
4y ﻛﺎﻣﻠﺔ دورة اﻟﺴﯿﻨﻲ اﻟﻤﺤﻮر ﺣﻮل.
اﻟﺤﻞ:اﻟﺘﻘﺎﻃﻊ ﻧﻘﻂ ﻧﺠﺪﻣﻊy: 1,4The interval 1 0y x
4
4 4 4 32 2
11 0
1
2 1 9
2
2 2
1
2
V dy dy y y y y unitx y
244.
244
ﻣﺜﺎل)4(داﺋﺮة ﻧﺼﻒ ﻣﺴﺎﺣﺔدوران ﻣﻦ اﻟﻨﺎﺗﺞ اﻟﻜﺮة اﻟﺤﺠﻢ ﺟﺪ.
اﻟﺤﻞ:ھﻲ اﻟﺪاﺋﺮة ﻟﺘﻜﻦ2 2 2
x y r اﻟﺴﯿﻨﻲ اﻟﻤﺤﻮر ﺣﻮل اﻟﺪوران وﻟﯿﻜﻦ
ﻣﺜﺎل)5(اﻟﺪاﻟﺔ ﻣﻨﺤﻨﻲ ﺑﯿﻦ اﻟﻤﺤﺼﻮرة اﻟﻤﺴﺎﺣﺔ دوران ﻣﻦ اﻟﻨﺎﺗﺞ اﻟﺤﺠﻢ ﺟﺪ
1
x =1 , x = 4 , y = 0,
x
f x
x
ﻛﺎﻣﻠﺔ دورة اﻟﺴﯿﻨﻲ اﻟﻤﺤﻮر ﺣﻮل.
اﻟﺤﻞ:
1
2
4 4 4 4
1 1
2 2
41
2
1
3
1
1
1 2 1 1
4 8 4 1
1 2
4 4 0 7 4 ln (l ln ) n
x x x
y x
x xx
V dx dy dx dx
unitx x x
ﺗﺪرﯾﺐ
س1:اﻟﺴﯿﻨﺎت وﻣﺤﻮر اﻟﺘﺎﻟﯿﺔ اﻟﺪوال ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﺟﺪ:
3
2
2
1 ( ) 4 16 : 32
1
2 ( ) ans :
6
3 ( ) 3 6 , 3 , 1 ans : 5
f x x x ans
f x x x
f x x x x x
3
6
4 ( ) x + x , x = -2 , x = 2 ans :12
5 ( ) 7 , 1 , 9 :10 7
6 ( ) sin 2 , : 2
2 2
7 ( ) sin
f x
f x x x ans
f x x x ans
f x
cos , 0 , : 2 2x x x ans
,0r ,0r
2 2 2 2
33 3 3 3
3
33
332
1
3
4
16
2
3 3 2 2 3
3 3 3 3
r
r r
r r
r
r
r
y r x r x x
r x
V dx dx
r r r r r r unr itx
245.
245
س2:ﺑﯿﻦ اﻟﻤﺴﺎﺣﺔ ﺟﺪ:
2
1 2
2
1
1 ( ) , ( ) :
6
1
2 sin 2 , cos : , :
2 2
3 ( ) , ( )
f x x f x x ans
y x y x on ans
f x x g x x
3 3
2
2
1
:
3
4 ( ) 2 , ( ) 7 2 :8
5 ( ) , 2 2 0 : 4.5
6 4 , 4
ans
f x x x h x x x ans
f x x x x y ans
y x y
64
:
3
ans
4( ) 2 6f x x 2,b
24b: 2ans
س5:اﻟﻤﺴﺎﺋ ﻓﻲاﻟﻤﺴﺘﻘﯿﻢ ﺣﻮل اﻟﻤﺴﺘﻮﯾﺔ اﻟﺴﻄﺢ ﻗﻄﻌﺔ ﺑﺪوران اﻟﻨﺎﺗﺞ اﻟﺠﺴﻢ اﻟﺠﺴﻢ ﺣﺠﻢ ﺟﺪ اﻟﺘﺎﻟﯿﺔ ﻞاﻟﻤﻌﻄﻰ
)اﻟﻤﻜﻌﺒﺔ ﺑﺎﻟﻮﺣﺪات اﻹﺟﺎﺑﺔ(
2
.
1 5 , 0 , 0 , 2 2500
2 8 ,
ans
x x y y x about x
x y
2 2
2
2 3
0 , - y =16 256 / 3
3 16 , 0 , 4 32
4 2 , 0 , y = x
x about x
y x y x about y
x y about x
2 4 2
2 2
4
4
5 y = x 1
35
6 4 +9 y = 36 16
7
x about x
x about x
2 2
4 +9 y = 36 24x about y
س6:ﯾﻠﻲ ﻣﻤﺎ ﻟﻜﻞ اﻟﻤﺸﺘﻘﺔ ﺟﺪ:
5
3 sin
1 y = ln(8x + 3) 2 ln 3 y = ln 4 ln ln
1
5 ln 6 y = ln 7 y = ln 5 2 8 y = 2
1
9 y = 3 10
x
x
e
y x x y x
x
y x x x
x
y x
lnln ln
11 y = ln 12
xx x
x y
x
246.
246
س7:ﯾﻠﻲ ﻣﻤﺎ ﻟﻜﻞاﻟﻌﻜﺴﯿﺔ اﻟﻤﺸﺘﻘﺎت ﺟﺪ:
3
4
3
4
2
1 3 1
1 2 3 dx 4 dx
5 4 7 ln1
cos 2 ln dx
5 dx 6 dx 7 8 dx
1 sin 2 1
9 dx
1
x
x
x
dx dx
x x x xx
x x x
x x x x x
e
e
3
2
2
10 dx 11 2 dx
sec 4 1
12 dx 13
2 tan 4 sec 4 1
x x x
x
e e e
x
dx
x x e
س8:ﺟﺪ
س أﺟﻮﺑﺔ8:
1 1 1 1
1 2 2 - 1 3 - 4 5
4 22 3
2 4
6 - 7 8 - 9 10
3 16 8 8 3
3
34 2
2 2 2 2
2 4 2
3
34
4
0 0
2
2 2
2
cot
1 sin 2 3 sin 2 cos cos cot
sin
4 sin 5 sin 6 1 sin 2 cos sin
7 sin cos x
x
x dx dx x x x x dx
x
x dx cec x x dx x x x dx
x dx
3
4 2
2 2
0
2
3
4
3
2
8 sin cos2x 9 cos cos 2
10 cos cos
x dx x x dx
x x dx
(250)
ﺎل ﻣﺜ:ﺎوي ﯾﺴﻞ ﺑﺘﻌﺠﯿ ﺘﻘﯿﻢ ﻣﺴ ﻂ ﺧ ﻰ ﻋﻠ ﻢ ﺟﺴ ﺮك ﯾﺘﺤ2
6 6 / sect cmﻮن ﺗﻜ ﺪة واﺣ ﺔ ﺛﺎﻧﯿ ﺮور ﻣ ﺪ وﺑﻌ
ﺳﺮﻋﺘﮫ12 / seccmﺧﻼل اﻟﺠﺴﻢ ﯾﻘﻄﻌﮭﺎ اﻟﺘﻲ اﻟﻜﻠﯿﺔ اﻟﻤﺴﺎﻓﺔ ﺟﺪ5اﻻﺑﺘﺪاء ﻋﻠﻰ ﺛﻮاﻧﻲ.
اﻟﺤـﻞ:2
( ) 6 6 / seca t t cm اﻟﺘﻌﺠﯿﻞ داﻟﺔ
اﻟﺴﺮﻋـﺔ=اﻟﺘﻌﺠﯿـﻞ ﺗﻜﺎﻣـﻞ
2
( ) ( ) ( ) 6 6 ( ) 3 6v t a t dt v t t dt v t t t c
ﻟﻜﻦ(1) 12v c = -9 12 3 6 c
2
( ) 3 6 9v t t t اﻟﺴﺮﻋــﺔ داﻟﺔ
2 2
0 3( 2 3) 0 3 6 9
t = 3sec 0 3 3 1
t t t t
t t
3 52 2
0 3
3 6 9 3 6 9D t t dt t t dt
3 53 2 3 2
0 3
3 9 3 9
27 27 27 0 125 75 45 (27 27 27) 59
D t t t t t t
cm
ﻣﺜﺎل:ﯾﺴﺎوي ﻣﻨﺘﻈﻢ ﺑﺘﻌﺠﯿﻞ ﻣﺴﺘﻘﯿﻢ ﺧﻂ ﻋﻠﻰ ﺟﺴﻢ ﯾﺘﺤﺮك2
4 / seccm.ﺗﺴﺎوي اﺑﺘﺪاﺋﯿﺔ وﺑﺴﺮﻋﺔ
8 / seccmﺑﻌﺪ ﻋﻠﻰ ﯾﻜﻮن واﺣﺪة ﺛﺎﻧﯿﺔ ﻣﺮور وﺑﻌﺪ ،12cm.
1(زﻣﻦ أي ﻋﻨﺪ اﻟﺠﺴﻢ ﺑﻌﺪ ﺟﺪt.2(ﺧﻼل ﯾﻘﻄﻌﮭﺎ اﻟﺘﻲ اﻟﻤﺴﺎﻓﺔ ﺟﺪ4اﻟﺤﺮﻛﺔ ﺑﺪء ﻋﻠﻰ ﺛﻮاﻧﻲ
3(اﻟﺮاﺑﻌﺔ اﻟﺜﺎﻧﯿﺔ ﺧﻼل اﻟﺠﺴﻢ ﯾﻘﻄﻌﮭﺎ اﻟﺘﻲ اﻟﻤﺴﺎﻓﺔ ﺟﺪ.
اﻟﺤﻞ:اﻟﺘﻌﺠﯿﻞ داﻟﺔ ھﻲ واﺣﺪة داﻟﺔ ﻣﻮﺟﻮدة2
( ) 4 cm / seca t
اﻟﺴﺮﻋﺔ=اﻟﺘﻌﺠﯿﻞ ﺗﻜﺎﻣﻞ( ) 4v t dt
1( ) 4v t t c ﻟﻜﻦ(0) 8v ﻣﻌﻄﺎة
1 1v (t) = 4 t + 8 c = 0 8 0 c اﻟﺴﺮﻋﺔ داﻟﺔ
اﻟﺒﻌﺪ داﻟﺔ=اﻟﺴﺮﻋﺔ داﻟﺔ ﺗﻜﺎﻣﻞ( ) (4 8) ( ) ( )s t t dt s t v t dt
2
2( ) 2 8s t t t c ﻟﻜﻦ(1) 12s 2 2c = 2 12 2 8 c
2
( ) 2 8 2s t t t زﻣﻦ أي ﻋﻨﺪ اﻟﺒﻌﺪ داﻟﺔt
vst
8--0
--121
530
251.
(251)
2(ﺧﻼل ﯾﻘﻄﻌﮭﺎ اﻟﺘﻲاﻟﻤﺴﺎﻓﺔ ﺟﺪ4اﻟﺤﺮﻛﺔ ﺑﺪء ﻋﻠﻰ ﺛﻮاﻧﻲ.
v (t) = 4 t + 8 > 0 اﻟﻘﯿﻤ ﻻﺳﺘﻌﻤﺎل ﺣﺎﺟﺔ ﻻ ﻟﺬااﻟﻤﺴﺎﻓﺔ إﯾﺠﺎد ﻓﻲ اﻟﻤﻄﻠﻘﺔ ﺔ.
4 42
00
2 + 8t (4 8)
32 32 0 64
D t D t dt
D cm
3(اﻟﺮاﺑﻌﺔ اﻟﺜﺎﻧﯿﺔ ﺧﻼل اﻟﺠﺴﻢ ﯾﻘﻄﻌﮭﺎ اﻟﺘﻲ اﻟﻤﺴﺎﻓﺔ ﺟﺪ.
v (t) = 4 t + 8 > 0 اﻟﻤﺴﺎﻓﺔ إﯾﺠﺎد ﻓﻲ اﻟﻤﻄﻠﻘﺔ اﻟﻘﯿﻤﺔ ﻻﺳﺘﻌﻤﺎل ﺣﺎﺟﺔ ﻻ ﻟﺬا.
4 42
33
2 + 8t (4 8)
32 32 (18 24) 22
D t D t dt
D cm
س:و ﻜﻮناﻟﺴ ﻦﻣ ﻣﺎدﯾﺔ ﻧﻘﻄﺔ ﺗﺘﺤﺮكﺪﺑﻌtﺮﻋﺘﮭﺎﺳ ﺒﺤﺖأﺻ ﺔاﻟﺤﺮﻛ ﺪءﺑ ﻦﻣ ﺔﺛﺎﻧﯿ2
100 6 / sect t m
ﻋﻨﺪھﺎ اﻟﺘﻌﺠﯿﻞ اﺣﺴﺐ ﺛﻢ ﻣﻨﮫ ﺑﺪأت اﻟﺬي اﻷول ﻣﻮﺿﻌﮭﺎ إﻟﻰ اﻟﻨﻘﻄﺔ ﻟﻌﻮدة اﻟﻼزم اﻟﺰﻣﻦ أوﺟﺪ.
اﻟﺤﻞ:2
( ) 100 6 / secv t t t m اﻟﺴﺮﻋﺔ داﻟﺔ
2
( ) ( ) 100 6 dts t v t dt t t
اﻟﺒﻌﺪ داﻟﺔ
3
( ) = 50t 2s t t c
ﻋﻨﺪﻣﺎ ﻟﻜﻦt = 0اﻹزاﺣﺔ ﻓﺎن=0c = 0 0 0 0 c
2 3
( ) 50 2s t t t اﻟﺒﻌﺪ داﻟﺔﯾﻌﻨﻲ اﻻﺑﺘﺪاء ﻟﻨﻘﻄﺔ اﻟﺠﺴﻢ ﻋﻮدة ،اﻹزاﺣﺔ=0
2 2 3
0 2 t (25 ) 0 0 50 2t t t
0t أو اﻟﺒﺪء زﻣﻦ25sect اﻟﺒﺪء ﻟﻨﻘﻄﺔ اﻟﻌﻮدة زﻣﻦ
اﻟﺘﻌﺠﯿﻞ=اﻟﺴﺮﻋﺔ ﻣﺸﺘﻘﺔ
100 - 12 t( ) = (t)= av tاﻟﺘﻌﺠﯿﻞ داﻟﺔ
اﻟﺘﻌﺠﯿﻞ2
(25) 100 12 25 200 / seca m
vst
000
252.
252
ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻌﺎﺩﻻﺕ
ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻌﺎﺩﻟﺔThedifferential equation:اﻟﺘﻔﺎﺿﻼت أو اﻟﻤﺸﺘﻘﺎت ﻋﻠﻰ ﺗﺤﻮي ﻣﻌﺎدﻟﺔ ھﻲ.
ﻣﺜﻼ:
4 53 2
3 2
1) 2 5 0
2) (2 3 )
d y d y
y
dx dx
dy x y dy
ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺭﺗﺒﺔThe order of a differential equation:ﻓﯿﮭﺎ ﺗﻈﮭﺮ ﻣﺸﺘﻘﺔ أﻋﻠﻰ رﺗﺒﺔ ھﻲ
ﻣﺜﺎل ﻓﻤﺜﻼ)1(رﺗﺒﺔاﻟﺜﺎﻟﺜﺔ ھﻲ اﻟﻤﻌﺎدﻟﺔ.
ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺩﺭﺟﺔ:أس ھﻮ)ﻗﻮة(ﻓﺎﻟﻤﻌﺎدﻟﺔ ، ﻓﯿﮭﺎ ﺗﻈﮭﺮ ﻟﻤﺸﺘﻘﺔ رﺗﺒﺔ أﻛﺒﺮ)1(ا اﻟﺪرﺟﺔ ﻣﻦﻟﺮاﺑﻌﺔ.
ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺣﻞ:اﻟﻤﻌﺎدﻟﺔ وﺗﺤﻘﻖ اﻟﺘﻔﺎﺿﻼت أو اﻟﻤﺸﺘﻘﺎت ﻣﻦ ﺧﺎﻟﯿﺔ اﻟﻤﺘﻐﯿﺮات ﺑﯿﻦ ﻋﻼﻗﺔ أﯾﺔ ھﻮ
ﻣ وﺗﺠﻌﻠﮭﺎﺘﻄﺎﺑﻘﺔ.
أﺧﺮى أﻣﺜﻠﺔ:Example 1
أن ﺑﺮھﻦ:
3
2
( )y x x
اﻟﺘﻔﺎﺿﻠﯿﺔ ﻟﻠﻤﻌﺎدﻟﺔ ﺣﻞ ھﻮ
اﻟﺤﻞ:ﺑﺤﺎﺟﺔ ﻧﺤﻦﻹﯾﺠﺎداﻟﺜﺎﻧﯿﺔ اﻟﻤﺸﺘﻘﺔ:
اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﻓﻲ اﻟﺪوال ھﺬه ﻧﻌﻮض:
ﻟﻠﻤﻌﺎدﻟﺔ ﺣﻞ ھﻲ اﻟﻤﻌﻄﺎة ﻓﺎﻟﻤﻌﺎدﻟﺔ اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﺗﺤﻘﻘﺖ.
أﺧﺮى أﻣﺜﻠﺔ:Example 2
أن ﺑﺮھﻦ:
اﻟﺘﻔﺎﺿﻠﯿﺔ ﻟﻠﻤﻌﺎدﻟﺔ ﺣﻞ ھﻮ:
dy
y x
dx
253.
253
اﻟﺤﻞ:
اﻷﯾﻤﻦ اﻟﻄﺮف ﻓﻲﻧﻌﻮض:
ﻓﺎ اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﺗﺤﻘﻘﺖﻟﻠﻤﻌﺎدﻟﺔ ﺣﻞ ھﻲ اﻟﻤﻌﻄﺎة ﻟﻤﻌﺎدﻟﺔ
Example3
أن ﺑﺮھﻦ:siny xﺣ ھﻮﻟﻠﻤﻌﺎدﻟﺔ ﻞ0y y
اﻟﺤﻞ:s 0ncos i xy x y y y yy
اﻟﻤﻄﻠﻮب ﯾﺘﻢ.
Example 4 :أن ﺑﺮھﻦ:tany xﻟﻠﻤﻌﺎدﻟﺔ ﺣﻞ ھﻮ
2
2 (1 )y y y
اﻟﺤﻞ:
22 2
tatan s 1nec 1y x y x x y
اﻟﻤﻄﻠﻮب ﯾﺘﻢ ﺑﮭﺬا 2 2
1 2 2 1y y y y y y y y
Example 5:أن ﺑﺮھﻦ2 2
2 1x y ﻟﻠﻤﻌﺎدﻟﺔ ﺣﻞ ھﻮ:
3
2y y
اﻟﺤﻞ:
2 2 2
2 1 4 2 0
x
x y x y y y
y
2 2
( , ) 1
2 2 2 2
3
3 3 3
2
( 2) 2
2 ( 2) 2
2 4 2( 2 ) 2
2
f x y
x
y x
x y x y yy
y y y
y y y y
y x y x
y y y y y
y y y
اﻟﻤﻄﻠﻮب ﯾﺘﻢ.
Example 6أن ﺑﺮھﻦ sin 5y x xﻟﻠﻤﻌﺎدﻟﺔ ﺣﻼ:2 5 0xy y yx
اﻟﺤﻞ:
. . .
sin 5 5cos5
( ) ( 5cos5 ) 5 ( 5sin 5 )
2 5
L H S equation
yx
d d
yx x y xy x
dx dx
d d
y xy x y x y y x
dx dx
y x y yx ﺎﻟﻤﻄﻠﻮب ﯾﺘﻤ
254.
254
Example 7:أن ﺑﯿﻦ:
x
ya e
ﻟﻠﻤﻌﺎدﻟﺔ ﺣﻼ ھﻮ0 , ,y y a
اﻟﺤﻞ:
x x
x x
d d
y a e y a e
dx dx
d d
y a e y a e y y
dx dx
اﻟﻤﻄﻠﻮب ﯾﺘﻢ.
Example8:أن ﺑﯿﻦ
2
Ln y x c ﻟﻠﻤﻌﺎدﻟﺔ ﺣﻼ ھﻮ:
2
4 2y x y y
اﻟﺤﻞ:
2
2
1
2 2
2 2 2 2 (2 ) 2
4 2
d d
Ln y x c y x y x y
dx dx y
d d
y x y y x y y x x y y
dx dx
y x y y
اﻟﻤﻄﻠﻮب ﯾﺘﻢ.
Example9:ﺑﯿﻦﻛﻼاﻟﺘﺎﻟﯿﺔ اﻟﺪوال ﻣﻦ
sin
1) sin 1 , 2) , 3) sinx
y x y e y x
ﻟﻠﻤﻌﺎدﻟﺔ ﺣﻼ ھﻮ:
1
cos sin 2 0
2
y y x x
اﻟﺤﻞ:1(اﻟﺪاﻟﺔاﻷوﻟﻰ:cos sin 1y x y x
ﺑﺎﻟﻤﻌﺎد ﯾﻌﻮﺿﺎناﻟﺘﻔﺎﺿﻠﯿﺔ ﻟﺔ:
1 1
. . . cos sin 2 cos (sin 1)cos
2 2
L H S y y x x x x x 2 sin cos
cos
x x
x
sin cosx x cosx sin cosx x 0 . . .R H S
ﻟﮭﺎ ﺣﻞ ﻓﮭﻲ اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﺣﻘﻘﺖ اﻷوﻟﻰ اﻟﺪاﻟﺔ.
2(اﻟﺪاﻟﺔاﻟﺜﺎﻧﯿﺔ
sin sin
cos x x
y x e y e
ﻟﻠﻤﻌﺎدﻟﺔ اﻷﯾﺴﺮ ﺑﺎﻟﻄﺮف ﯾﻌﻮﺿﺎن
اﻟﺘﻔﺎﺿﻠﯿﺔ.
sin sin1 1
. . . cos sin 2 cos cos sin 2
2 2
1
sin 2 . . .
2
x x
L H S y y x x x e e x x
x R H S
اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﺗﺤﻘﻖ ﻟﻢ اﻟﺜﺎﻧﯿﺔ اﻟﺪاﻟﺔ ﻟﺬاﻟﯿﺴ ﻓﮭﻲﺖﻟﮭﺎ ﺣﻼ.
255.
255
3(اﻟﺜﺎﻟﺜﺔ اﻟﺪاﻟﺔ:cos sinyx y x اﻟﺘﻔﺎﺿﻠﯿﺔ ﻟﻠﻤﻌﺎدﻟﺔ اﻷﯾﺴﺮ ﺑﺎﻟﻄﺮف ﯾﻌﻮﺿﺎن.
1 1
. . . cos sin 2 cos sin cos
2 2
L H S y y x x x x x ( 2 sin cos )
cos . . .
x x
x R H S
ﻟﮭﺎ ﺣﻼ ﻟﯿﺲ ﻓﮭﻲ اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﺗﺤﻘﻖ ﻟﻢ اﻟﺜﺎﻟﺜﺔ اﻟﺪاﻟﺔ ﻟﺬا.
Example10اﻟﺪاﻟﺔ ﻛﺎﻧﺖ إذا:
1
,
3
cx x
y e e c اﻟﺘﻔﺎﺿﻠﯿﺔ ﻟﻠﻤﻌﺎدﻟﺔ ﺣﻼ ھﻲ
2 2 xy y e ﻗﯿﻤﺔ ﻓﺠﺪc.
اﻟﺤﻞ:اﻟﺪاﻟﺔ
1
3
cx x
y e e وﻣﺸﺘﻘﺘﮭﺎ
1
3
cx x
y c e e اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﺗﺤﻘﻖ:
1 1
2 2( )
3 3
1
3
x cx x cx x x
cx x
y y e c e e e e e
c e e
2
2
3
cx x
e e x
e 2 0
0 , 2 0 2
cx
cx
c e
e c c
(11)Exampleاﻟﻤﻌﺎدﻟﺔ ﺑﺮھﻦ2
c
y
x
ﺣﯿﺚ ، 0 ,x اﻟﺘﻔﺎﺿﻠﯿﺔ ﻟﻠﻤﻌﺎدﻟﺔ ﺣﻞ ھﻲ
1
(2 )
dy
y
dx x
اﻟﺤﻞ:2
2
dy c c
y
dx x x
ﺑﺎﻟﻤﻌﺎدﻟﺔ ﺗﻌﻮﺿﺎناﻟﺘﻔﺎﺿﻠﯿﺔ:
2
1 1
(2 ) ( 2
dy c
y
dx x x x
2
c
x
2 2
)
c c
x x
ﻋاﻟﻤﻄﻠﻮب ﻓﯿﺘﻢ ﺻﺎﺋﺒﺔ ﺒﺎرة.
(12)Example:أن ﺑﺮھﻦ
2
1 , 0y c x c اﻟﻤﻌﺎدﻟﺔ ﺣﻠﻮل ﻣﻦ ﺣﻼ ھﻮ 1 2
dy
x y
dx
اﻟﺤﻞ:
2
1 , x -1 , 0y c x c اﻟﻄﺮﻓﯿﻦ ﻟﻮﻏﺎرﯾﺘﻢ ﻧﺄﺧﺬ: Ln 2 1 Ln y c Ln x
اﻟﻄﺮﻓﯿﻦ ﻣﺸﺘﻘﺔ ﺑﺈﯾﺠﺎدﻋﻠﻰ ﻧﺤﺼﻞ:
1 2
1 2 0
1
dy dy
x y
dx y dx x
اﻟﻤﻄﻠﻮب ﯾﺘﻢ.
256.
256
(13)Example:اﻟﺘﻔﺎﺿﻠﯿﺔ ﻟﻠﻤﻌﺎدﻟﺔ اﻟﻌﺎماﻟﺤﻞ ﺟﺪ:
3
3 3
8
12sin 2
d y
x
dx x
اﻟﺤﻞ:ﯾﺘﻜﺎﻣﻞاﻟﻄﺮﻓﯿﻦﻣﺘﺘﺎﻟﯿﺔ ﻣﺮات ﺛﻼثﻟﻠﻤﺘﻐﯿﺮ ﺑﺎﻟﻨﺴﺒﺔx
3
3 2
8
12sin 2
d y
dx x dx
dx x
(14)Example:ﻟﺘﻜﻦy = f (x)ﻟﻠﺪاﻟ وﻟﯿﻜﻦﺔfھﻲ اﻧﻘﻼب ﻧﻘﻄﺔ( 1 , - 11 )ﺣﺮﺟﺔ ﻧﻘﻄﺔ وﻟﻠﺪاﻟﺔ
ﻋﻨﺪx = -1ن ﻛﺎ ﻓﺈذا 6f x اﻟﻤﻨﺤﻨﻲ ﻣﻌﺎدﻟﺔ ﻓﺠﺪ.
6 6 6 x + c f x f x dx dx f x
ﻟﻜﻦ( 1 , - 11 )اﻧﻘﻼب ﻧﻘﻄﺔ 3 1 0f و 1 1 11f
3 1 0f 6 x + cf x 1 6 +c = 0f c = -
6 6 x -6f x
اﻟﻄﺮﻓﯿﻦ ﻧﻜﺎﻣﻞ: 6 x -6f x
2
6 x -6 3 x -6x + b f x dx dx f x
ﻋﻨﺪx = -1ﺣﺮﺟﺔ ﻧﻘﻄﺔ ﺗﻮﺟﺪ: 2 1 0f
ﻟﻜﻦ 1 3 6 0 f b 9 b 2
3 x -6x -9 f x
ﺑﻘﻲﺗﻄﺒﯿﻖ 1ﻟﻼﻧﻘﻼب: 2
3 x -6x -9 f x ﯾﺘﻜﺎﻣﻞاﻟﻄﺮﻓﯿﻦ:
2 3 2
3 x -6x -9 = x -3x -9x +hf x dx dx f x
1: 1 = 1-3-9 +h = -11+hfﻟﻜﻦ 1 1 11f h = 0 -11= -11+ h
اﻟﻤﻌﺎدﻟﺔ ﺗﻜﻮن: 3 2
= x -3x -9xf x
(15)Example:ﻟﻠﻤﻌﺎدﻟﺔ اﻟﻌﺎم اﻟﺤﻞ ﺟﺪ
3 2
2
1
sec tan secy x x x
x
اﻟﺤﻞ: 2
2
1
sec sec tan sec tany x x x x x
x
2 2
1 12 2 2 2
1 2 1 2
4 4
6cos2 + c 6cos2 + c
4 4
3 sin 2 c 3 sin 2 c
d y d y
x dx x dx
dx x dx x
dy
x x c dx x x c dx
dx x x
1 2 3
3 1
y = cos2x + 4Ln x + c + x + c
2 2
x c
257.
257
2
1
sec tan
d
y x x
dx x
ﺑﺎﻟ اﻟﻄﺮﻓﯿﻦ ﻧﻜﺎﻣﻞ ﺛﻢﻟﻠﻤﺘﻐﯿﺮ ﻨﺴﺒﺔx
2
1
1
1 2
1
sec tan
1
= sec tan
1
= sec tan
sec
d
y dx x x dx dx
dx x
y x x c
x
y dx x x dx dx c dx
x
y x Ln x c x c
: (16)Example:ﻟﺘﻜﻦy = f (x)ﻟﻠﺪاﻟﺔ وﻟﯿﻜﻦfھﻲ ﺣﺮﺟﺔ ﻧﻘﻄﺔ 1 , 4وﻛﺎن 6-6xf x
اﻟﺪاﻟﺔ ﻣﻨﺤﻨﻲ ﻣﻌﺎدﻟﺔ ﻓﺠﺪ.
اﻟﺤﻞ:( - 1 , 4)ﺣﺮﺟﺔ ﻧﻘﻄﺔﻧﺤﺼﻞﻋﻠﻰ:ﻧﻄﺒﻖ 2اﻟﺤﺮﺟﺔ ﻋﻨﺪ اﻷوﻟﻰ اﻟﻤﺸﺘﻘﺔ=0
ﻧﻄﺒﻖ 1اﻟﻤﻨﺤﻨﻲ ﻣﻌﺎدﻟﺔ ﺗﺤﻘﻖ اﻟﻨﻘﻄﺔ.
2
1
2
1 1
2 2 3
2
2 2
6-6x 6 3
1 6 3 0 9 6 3 9
6 3 9 ( ) 3 9
( 1) 3 1 9 ( 1) 4 4 13
d
f x dx dx f x x x c
dx
f c c f x x x
f x dx x x dx f x x x x c
f c but f then c
2 3
2
( ) 3 9 9
= -9
c
tf x x x he equat onx i
: (17)Exampleاﻟﺪاﻟﺔ ﻟﻤﻨﺤﻨﻲ اﻟﻤﻤﺎس ﻣﯿﻞ ﻛﺎن اذاfﻧﻘﻄﺔ اﯾﺔ ﻋﻨﺪ ,x yﯾﺴﺎوي اﻟﺪاﻟﺔ ﻧﻘﻂ ﻣﻦ
2
6 6x xوﻛﺎﻧﺖ6اﻟ اﻟﻨﮭﺎﯾﺔ ﺗﻤﺜﻞﻌﻈﻤﻰاﻟﻤﻨﺤﻨﻲ ﻣﻌﺎدﻟﺔ ﻓﺠﺪ ، اﻟﺪاﻟﺔ ﻟﻤﻨﺤﻨﻲ اﻟﻤﺤﻠﯿﺔ.
اﻟﺤﻞ:6=ﻧﮭﺎﯾﺔﻋﻈﻤﻰﻣﺤﻠﯿﺔ=إﺣﺪاﺛﻲﻗﯿﻤﺔ ﻋﻦ ﻓﻠﻨﺒﺤﺚ ﺻﺎديxﻟﮭﺎ اﻟﻤﻨﺎﺳﺒﺔ.
ﺣﺮﺟﺘﺎن ﻧﻘﻄﺘﺎن 2
( ) 6 6 0 6 (1 ) 0 1f x x x x x x or x
أن ﻧﻼﺣﻆ اﻷوﻟﻰ اﻟﻤﺸﺘﻘﺔ أﻋﺪاد ﺧﻂ ﻣﻦ
1 , 6ﻣﺤﻠﯿﺔ ﻋﻈﻤﻰ ﻧﮭﺎﯾﺔ ﻧﻘﻄﺔ ھﻲ
اﻟﻤﻨﺤﻨﻲ ﻣﻌﺎدﻟﺔ ﺗﺤﻘﻖ وھﻲ.
258.
258
2 322
( ) 6 6 ( ( ) 6 6 3 2 ) f x x x cf x x x f x dx x x dx
اﻟﻨﻘﻄﺔ ﻧﻌﻮض 1 , 6: 6 3 2 5c c
ﻟھﻲ اﻟﻤﻨﺤﻨﻲ ﻣﻌﺎدﻟﺔ ﺗﻜﻮن ﺬا:
2 3
( ) 3 2 5f x x x
: (17)Exampleﻟﮫ اﻟﺬي اﻟﻤﻨﺤﻨﻲ ﻣﻌﺎدﻟﺔ ﺟﺪ
2
2
12 4
d y
x
dx
اﻟﻤﺴﺘﻘﯿﻢ وﻛﺎن2 6x y ﻋﻨﺪ ﻟﮫ ﻣﻤﺎﺳﺎ
اﻟﻨﻘﻄﺔx = 2.
اﻟﺤﻞ:2 6x y وx = 2ﻋﻠﻰ ﻧﺤﺼﻞ ﺑﺎﻟﺘﻌﻮﯾﺾy = -2 2 2 6y
ھﻲ اﻟﺘﻤﺎس ﻧﻘﻄﺔ: 2 , 2
اﻟﻤﻨﺤﻨﻲ ﻣﻌﺎدﻟﺔ ﻣﻦ واﻟﻤﯿﻞ اﻟﻤﻤﺎس ﻣﻌﺎدﻟﺔ ﻣﻦ اﻟﻤﻤﺎس ﻣﯿﻞ ﻧﺠﺪ.
اﻟﻤﻤﺎس ﻣﻌﺎدﻟﺔ ﻣﻦ:12 6 2 6 2
dy
x y y x S
dx
اﻟﻤﻨﺤﻨﻲ ﻣﻌﺎدﻟﺔ ﻣﻦ:
2 2
2
2 2
12 4 12 4 6 -4x + c
d y d y dy
x dx x dx x
dx dx dx
2
2
(2, 2)
6 2 - 4 2 + c = 1 = S6 + c
a t
dy
dx
1 2 2 16 14S S cc
2 2 3 2
Hence 6 - 4x -14 dy = 6 - 4x -14 2 2 14
dy
x x dx y x x x b
dx
2 , 2اﻟﻤﻨﺤﻨﻲ ﻣﻌﺎدﻟﺔ ﺗﺤﻘﻖ:
3 2
2 2 2 2 2 14 2 18b b
ﺗﻜﻮن اﻟﻤﻨﺤﻨﻲ ﻣﻌﺎدﻟﺔ ﻟﺬا:
3 2
2 2 14 18y x x x
259.
KAMIL ALNASSIRY 259
ﺑﺘﻜﺎﻣﻞاﻟﻤﻌﺎدﻟﺔﺗﺤﻞ اﻟﻄﺮﻓﯿﻦ
1st – order differential equation ﺍﻷﻭﱃ ﺍﻟﺮﺗﺒﺔ ﻣﻦ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻌﺎﺩﻟﺔ.
ﻣﻨﮭﺎ ﻣﺨﺘﻠﻔﺔ ﺻﯿﻎ اﻟﻤﻌﺎدﻟﺔ ﻟﮭﺬه:
1. Derivative form: اﻟﻤﺸﺘﻘﺔ ﺻﯿﻐﺔ
1 0( ) ( ) ( )
dy
a x a x y g x
dx
2. Differential form: ﺻﯿﻐﺔاﻟﺘﻔﺎﺿﻠﺔ
( , ) ( , ) 0M x y dy N x y dx
3. General form: اﻟﻌﺎﻣﺔ اﻟﺼﯿﻐﺔ
( , ) , , 0
dy dy
f x y Or f x y
dx dx
ﺍﻷﻭﱃ ﻭﺍﻟﺪﺭﺟﺔ ﺍﻷﻭﱃ ﺍﻟﺮﺗﺒﺔ ﻣﻦ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺣﻞ ﻃﺮﻕ ﺑﻌﺾ.
Solution of Differential Equation
1(ﺍﳌﺘﻐﲑﺍﺕ ﻓﺼﻞ ﻃﺮﻳﻘﺔSeparation of variables
ﺑﺼﻮر اﻟﺘﻲ اﻟﺘﻔﺎﺿﻠﯿﺔ ﻓﺎﻟﻤﻌﺎدﻟﺔة:
ﺑﺎﻟﺸﻜﻞ اﻟﻤﺘﻐﯿﺮات ﻓﺼﻞ وﯾﻤﻜﻦ:
260.
KAMIL ALNASSIRY 260
EXAMPLE1 اﻟﻤﻌﺎدﻟﺔ ﺣﻞ:
( ) ( )f x dx g y dy ﻣﺘﻐﯿﺮﯾﮭﺎ وﺑﻔﺼﻞ اﻟﺘﻔﺎﺿﻼت ﺑﺼﯿﻐﺔ اﻟﻤﻌﺎدﻟﺔ ﺗﻜﺘﺐ:
ﺛﻢاﻟﻤﺸﺘﻘﺔ ﻣﻘﺎﺑﻼت ﻧﺴﺘﺨﺪم.
اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ
اﻟﻤﺘﻐﯿﺮات ﻓﺼﻞ
اﻟﻤﺸﺘﻘﺔ ﻣﻘﺎﺑﻼت
2EXAMPLE
2
y x y اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﺣﻞ
اﻟﺤﻞ:
3 3 3
1
1
2 2 2
1 1 1
3 3 3 3
1
1
y if y 0 =
1
e y = c
3
x c x x
c
dy
y x x dx dy x dx
y y
Ln y x c y e y e e
3 :EXAMPLE 2( 3) 0y dx xy dy اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﺣﻞ:
2 3 2 3
2 3
: 2( 3) 0
2
2( 3)
3
2 2 3 3
3 3
2 3
1 2 ln( ) ln( ) 3 ln( 3)
3
ln( ) ln ( 3) ln ( 3)
( 3) y
S olution y dx xy dy
y
y dx xy dy dx dy
x y
y y
dx dy dx dy
x y x y
dx dy x c y y
x y
cx y y cx y y
cx y e
261.
KAMIL ALNASSIRY 261
4:EXAMPLE
2
3 tan (1 ) sec 0x x
e y dx e y dy اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﺣﻞ:
2
2 2
3
3
: 3 tan ( 1) sec
sec 3 3 sec
tan 1 1 tan
3 ln( 1) ln ln tan ln ( 1) ln tan
( 1) tan
x x
x x
x x
x x
x
Solution e y dx e y dy
y e e y
dy dx dx dy
y e e y
e c y c e y
c e y
5 :EXAMPLE
y x x ydy
e e
dx
اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﺣﻞ:
1
:
1
y x x y y x x
x x y x x
y
y x x y x x
dy dy
Solution e e e e e e e
dx dx
dy e e dx e dy e e dx
e
e e e c e e e c
3
6 : cos sin
dy
EXAMPLE Solve the differential equation x x
dx
3 3
2
3 2
: sin cos sin cos
cos 1
sin cos sec
2 2
dy
Solution x x dy x x dx
dx
x
dy x x dx y c y x c
2
7 :
dy
EXAMPLE Solve the differential equation x y xy
dx
3 2 3 2 3 2
1
1
2 2
2 3 2
1
1 1 1 1 1 1
3 2 3 2 3 2
: ( ) ( )
1 1 1
( )
3 2
y = c
x x c x x x x
c
dy dy
Solution y x x x x dx
dx y
dy x x dx Ln y x x c
y
y e y e e e
262.
KAMIL ALNASSIRY 262
8 : 1 1
dy
EXAMPLE Solve the differential equation x y
dx
2 2
1
1
2 2
1 1
2 2 2
1
1 1
2 2
1
: 1 ( 1)
1 1
1
ln 1 1 1
2
1 1
x x c x x
c
x x x x
dy
Solution x dx dy x dx
y y
y x x c y e y e e
y ce y ce
263.
KAMIL ALNASSIRY 263
32
10: 4 1EXAMPLE Solve the differential equation y y y
3
2 2
2 3
3
2 2
3 1
2 22 2
2
2
( 1)
: 4 ( 1) 4 4
( 1)
1
( 1) 4 ( 1) ( 2) 4
2
1 1
4 1
41
dy y y
Solution y y y dy dx
dx y
y
y y dy dx y x c
x c y
x cy
2
2
2
11: 2 1 4
1
y x dy
EXAMPLE Solve the differential equation y x
dxx
2
2
2
2 2 2 2
: 2 1 4
1
1 1 4
y x dy
Solution y x
dxx
d d
y x x y
dx dx
ﺑﺼﻮرة ﯾﻜﺘﺐ أن وﯾﻤﻜﻦ داﻟﺘﯿﻦ ﺿﺮب ﻣﺸﺘﻘﺔ ﯾﻤﺜﻞ اﻷﯾﺴﺮ اﻟﻄﺮف أن ﻻﺣﻆ:
2 2
1 4
d
y x
dx
2 2
1 4
d
y x dx dx
dx
اﻟﻄﺮﻓﯿﻦ ﻧﻜﺎﻣﻞ:
2 2
1 4y x x c the implicit function
12: :EXAMPLE Solve the differential equation
اﻟﺤﻞ:
264.
KAMIL ALNASSIRY 264
Initialvalue problem (IVP)
ﺍﺑﺘﺪﺍﺋﻴﺔ ﺑﻘﻴﻤﺔ ﺍﳌﺸﺮﻭﻃﺔ ﺍﳌﺴﺄﻟﺔ
13 :EXAMPLE
2
, 0 0x ydy
e y when x
dx
اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ ﺣﻞ:
2 2 2
2
2
2
2 2
, 0
:
1
, 0
2
1 3
1
2 2
1 3 3 2 2
2 2 2 3 3
y x x y x
y
y x
x
y x y y
x x
y
dy dy
Solution e e e dx e dy e dx
dx e
e e c when x
c c
e
e e e e y Ln the equation
e e
3 1
14: 2 ; 0
2
x
EXAMPLE Solve the differential equation y e y y if x
265.
KAMIL ALNASSIRY 265
2
3
13
2
2
2
:2 2 2
2
1 1
4 0 4 4 8
2
1 1
4 8
4 8
x x x
x
x
x
dy y
Solution e dx y dy e dx e c
y
e c But y when x c c
y
e y the implicit function
y e
15:EXAMPLE Solve the differential equation
Apply the initial condition to get the value of c
16:EXAMPLE Solve the differential equation
266.
KAMIL ALNASSIRY 266
HomogenousDifferential Equations
اﻟﻤﺘﺠﺎﻧﺴﺔ اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ
ﺑﺼﻮﺭﺓ ﺍﻟﺘﻲ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻌﺎﺩﻟﺔ( , )
dy
f x y
dx
ﺣﻘﻘﺖ ﺍﺫﺍ ﻣﺘﺠﺎﻧﺴﺔ
ﺑﺎﻟﺼﯿﻐﺔ ﻛﺘﺎﺑﺘﮭﺎ ﯾﻤﻜﻦ اﻟﺘﻲ اﻟﻤﻌﺎدﻟﺔ ھﻲ أو
dy y
f
dx x
أﻣﺜﻠﺔ:اﻟﺘﺎﻟﯿﺔ اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻻت ﺣﻞ:
2 2
Example1 : 2 0
dy
xy y x
dx
ﻋﻠﻰ واﻟﻤﻘﺎم اﻟﺒﺴﻂ ﻧﻘﺴﻢ 2
0x
2 2
:
dy y x
Soluton
dx xy
ﻣﺘﺠﺎﻧﺴﺔ ﻓﺎﻟﻤﻌﺎدﻟﺔ ﻟﺬا
2
1
( )
2
y
dy yx
f
ydx x
x
ﻧﻔﺮض......(1)y v x
....... (2)
dv
v x
dx
dy
dx
ﻧﻌﻮض)1(،)2(اﻟﻤﻌﺎدﻟﺔ ﻓﻲ:
2
1
2
dy
dx
y
x
y
x
2 2 2
2
2
2
12
2 2 2 2 2 2
2
1 1 1 2 1
2 2 2 1
2 1
n( 1) n n 1 n n
1
n n n n n
dv v dv v dv v v
v x x v x dv dx
dx v dx v dx v v x
v y
dv dx L v L x c L L x L c
v x x
y x y x y x
L L x L c L L c c
x x x
2 2
y x c x
, ,n
f tx ty t f x y for all t
267.
KAMIL ALNASSIRY 267
Sol.Let y ux dy udx xdu
ﺑﺪل اﻟﺘﻔﺎﺿﻠﯿﺔ ﺑﺎﻟﻤﻌﺎدﻟﺔ ﻧﻌﻮضyوﺑﺪلdy
اﻟ أن ﻻﺣﻆﻣﺘﺠﺎﻧﺴﺔ ﻓﺎﻟﻤﻌﺎدﻟﺔ اﻟﺪرﺟﺔ ﻧﻔﺲ ﻣﻦ ھﻲ اﻟﺜﻼﺛﺔ ﺤﺪود
2 2
Example3 3 9: 4
dy
xy x y
dx
2 2
2 2 2
2 2 3 2 2 2
3 2 2 2 2 2
2
: 3 4 9 0
,
3 . 4 9
3 3 4 9
3 4 6 4 6
3
4 6
int
solution x y dy x y dx
let y ux dy udx x du
x ux udx x du x u x dx
x u dx ux du x dx u x dx
ux du x dx u x dx x u dx
udu dx
u x
egrating both sides
2 2
Example 2 : 0y xy x dx xydy Homogenous
2 2 2 2 2
2 2
0u x ux x dx u x udx xdu
u x dx
2 2 2 2
ux dx x dx x u dx 3
0 0
( 1)
1
1
1 1 1 1 1 1
(1 )
1 1 1
ln( 1) ln ln 1 ln
ln 1 ln ln( )
y
c
x
x u du u dx dx u x du
u dx u x du
u
du dx
u x
u u
du dx du dx du dx
u x u x u x
y y
u u x c x c
x x
y y y
x c y x c or y x e
x x x
268.
KAMIL ALNASSIRY 268
2
2
2
2
3
46
4 6
12
1
4
1
ln ln
4
1
ln 4 6 ln .
4
udu dx
let z u
u x
d z u du
dz dx
z x
z x c
y
x c
x
Example4: , 0
1
(
3
) .
3
x
x
x
y
dy yx
dy
f Hom
y x
dx x
ogenous
ydx x
x
y dy dv
let v y v x v x
x dx dx
y
ﻣﻦ ﻛﻞ ﺑﺪل اﻟﺘﻔﺎﺿﻠﯿﺔ ﺑﺎﻟﻤﻌﺎدﻟﺔ ﻧﻌﻮض
dy
dx
و
y
x
2 2
2 2
1
1 1
3 33
1 3 2 1
3 3
( 3) 1 ( 1 2 ) 1
( 1) ( 1)
( 1)
(
y
d y d v v d v vx v x x v
yd x d x v d x v
x
d v v v v d v v v
x x
d x v d x v
v v
d v d x d v d x
v x v x
v
2
( 1)v
2
2 1
) in t
( 1)
d v d x eg ratin g b o th sid es
v x
269.
KAMIL ALNASSIRY 269
2
2
12 1
( )
( 1) ( 1)
1 1
2 ( 1)
( 1)
2 2
( 1) ( 1)
1 1
2 2
( ) 1 ( )
1
dv dx
v v x
dv v dv dx
v x
Ln v Ln x c Ln x Ln v c
v v
y x
Ln x Ln c Ln y x c
yx y x
x
اﻟﺜﺎﻧﯿﺔ اﻟﺪرﺟﺔ ﻣﻦ اﻟﺤﺪود ﻛﻞ ﻷن ﻣﺘﺠﺎﻧﺴﺔ اﻟﻤﻌﺪﻟﺔ 2 2
Exam 0ple5: y xy dx x dy
2 2
2 2
2 2 2
. 0
,
( ) 0
solu y x y dx x dy
let y ux dy udx x du
ux x ux dx x udx x du
u x dx u x dx
2
ux dx
2
( 0 )
3
2
2
2
0
0
int
1
ln ln
ln
x
x du
du dx
u dx x du
u x
egrating both sides
du dx x
x c x c
u x u y
x
y
c x
270.
KAMIL ALNASSIRY 270
(2 ) (2 3 )Example( 06) : x y dx x y d Homogenousy
( 0)
( 2 ) (2 3 ) 0
1 2
( 2 )
( )
2 3 2 3
x
x y dx x y dy
y
dy x y dy yx
f
ydx x y dx x
x
y dy dv
let v y xv v x
x dx dx
2
2
2
2 2
1 2
1 2
2 32 3
1 2 1 2 2 3
2 3 2 3
(1 4 3 ) 2 3 1
2 3 1 4 3
int
2 3 1 1 4 6 1
1 4 3 2 1 4 3
1
ln(1 4
2
y
vdy dvx
v x
ydx dx v
x
dv v dv v v v
x v x
dx v dx v
dv v v v
x dv dx
dx v v v x
egrating both sides
v v
dv dx dv dx
v v x v v x
2
2
1
2 2 2
1
2
2 2 2
2 22
2 2 2 2
3 ) ln
ln(1 4 3 ) 2 ln 2 ln(1 4 3 ) ln( )
ln (1 4 3 ) ln 4 3
4 3 4 3c
v v x c
v v x c v v x c
y y
x c x xy y c
x x
x xy y e x xy y c
271.
KAMIL ALNASSIRY 271
2
22
2 2
2
( 0 ) 2
2 2
( )E x a m p le ( 7 )
( )
1
0
( )
x
d y y x
y x d x x y d y
y x d
d x x y
y
x x y d y
d y yx f
yd x x
x
ﻣﺘﺠﺎﻧﺴﺔ اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ.
y dy
let v y xv
x dx
dv
v x
dx
2
2 22
2 2 2
2 2
2
( 4 )
2 2
1 1
1
1 1
1 1 2
1 1
1 2 1 2
1 4 1
4 1 2
1
(1 2 ) ( ) (1 2 ) 4 ( ) 4
4
(1
y
d y v d v vx x v
yd x v d x v
x
d v v v d v v
x x
d x v d x v
v v
d v d x d v d x
v x v x
v
d v d x
v x
L n v L n
d v
x c L n v
v x
d x
L n x c
L n
2 2
2 4 2 4
2
4 2 2
2 4
1
2 ) ( ) ( ) (1 2 ) ( )
( 1 2 ) 2
y y c
L n L n c L n L n
x x x x
y c
x x y c
x x
2
3
2
3
3 3
3 3
2
E x am p le(8)
( )
( )
( )
H o mx y d x x o gen ou s
dy x y
y x dy x y d
y
x
d
dx y
y
x
272.
KAMIL ALNASSIRY 272
3
(0)
3
( )
( ) 1
x
y
dy yx f
ydx x
x
ﻣﺘﺠﺎﻧﺴﺔ اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ.
y dy dv
let v y xv v x
x dx dx
3
3
3
( )
1( ) 1
1
y
d y d v vx v x
yd x d x v
x
d v v d v v
x v x
d x v d x
4
v v
3 3
3 3
1
3
13
3
3
4 4
4 4
3
1 13 3
3 3
1 13 3
3
13
3 3
3
1
1 1 1 1 1
( )
1 1 1 1 1 1
( ) ( )
1
ln ln ln ( ) ln
3 3
ln ( ) ln ln ( )
3 3
ln
3
x x
c y y
x
c
y
v
v
d v d x d v d x
v x v v x
d v d x d v d x
v v x v v x
y x
v x c x c
v x y
y x y x
x c x c
x y x y
x
y c o r
y
y e e y c e
y e
2
2 2
2
2
2
2
E xam p le(9)
( )
(
( ) 0
) ( )
dy x y y
x y y dx x dy
dx x
dy y y y
f
dx
y x y d x x d
x x x
y
273.
KAMIL ALNASSIRY 273
ﻣﺘﺠﺎﻧﺴﺔاﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻟﺔ.
y dy dv
let v y xv v x
x dx dx
2
( )
dy y y
v
dx x x
dv
x v
dx
2
2 2
1 1
1
ln ln ln( )
ln( )
v
dv dx
dv dx
v x v x
x x
x c cx y
v y cx
(1 2 )Ex 2 (ample(10) : 1 )
x x
y y x
e dx e dy o
y
ﺗﻔﺎﺿﻠﯿﺔ ﻣﻌﺎدﻟﺔ ھﻲ اﻟﻤﻌﺎدﻟﺔﻣﺘﺠﺎﻧﺴﺔ:
(1 2 ) 2 (1 )
(1 2 )( ) 2 (1 )
2 2
x x
y y
v v
v v
x
let v x y v d x y d v v d y
y
x
e d x e d y o
y
e y d v v d y e v d y
y d v v d y y e d v v e d y
2 2v v
e d y v e d y 0
2 2
2 ) (1 2 )
1 2 1 1 2 1
2 2
( 2 ) ( ) ( )
( 2 ) ( ) ( )
( 2 ) ( )
( 2 ) ( 2 )
v v
v v
v v
v v
v
v
v
x
v y
v d y e d y y d v y e d v
v e d y y e d v
e e
d v d y d v d y
v e y v e y
L n v e L n y L n c
L n v e L n y L n c
L n y v e L n c
x
y v e c y e c
y
274.
KAMIL ALNASSIRY 274
ﺗﺪرﯾﺐ)1(
س1:اﻟﺪوالﻣﻦ ﻛﻼ ان ﺑﯿﻦ:1 2) 3 ; ) 2 ; )x x
a y x b y e c y C e C x
اﻟﺘﻔﺎﺿﻠﯿﺔ ﻟﻠﻤﻌﺎدﻟﺔ ﺣﻞ ھﻲ:(1 ) 0y x y x y
س2:أن ﺑﺮھﻦsin cos cosy x x x اﻟﺘﻔﺎﺿﻠﯿﺔ ﻟﻠﻤﻌﺎدﻟﺔ ﺣﻞ ھﻲ
2
tan cos , (0) 1 int
2 2
y y x x y on the erval x
س3:أن ﺑﺮھﻦ
1
, 0y x x
x
اﻟﺘﻔﺎﺿﻠﯿﺔ ﻟﻠﻤﻌﺎدﻟﺔ ﺣﻞ ھﻮ2x y y x
س4:اﻟﺘﺎﻟﯿﺔ اﻟﺘﻔﺎﺿﻠﯿﺔ اﻟﻤﻌﺎدﻻت ﺣﻞ ﺟﺪ:
1(2 2
2 ( )xy dy x y dx
2(sin ( ) cos ( ) 0
y y
x ydx xdy y xdy ydx
x x
3(2 2
0y dx x dy
4(3 3 2
( ) 3 0x y dx x y dy
5(( sin cos ) cos 0
y y y
x y dx dy
x x x
6(
y
x
dy y
e
dx x
اﻷﺟﻮﺑﺔ:
1(3 2
( 3 ) 1C x x y
2(sin
y
xy C
x
3(y x Cxy
4(4 3
4x x y C
5(sin
y
x C
x
6(
y
x
C
e Ln
x
KAMIL ALNASSIRY 276
ﺗﺪرﯾﺐ)3(اﻟﻤﺘﻐﯿﺮاتﻓﺼﻞ ﻋﻠﻰ)ﻣﻨﻘﻮل(
2
2
2
1 2 1 2
3 4 3 e
5 cos
x y y
dy dy
xy x y
dx dx
dy dy
e x
dx dx
dy
y y
dx
2
sin
2
6
7 sec 8
9 1 10 2 0
11 cos
y x
x y
y x
x y
dy
x e
dx
dy dy e
x e
dx dx e
dy
y x dy y dx
dx
dy
y y
dx
2
2
2 2 2
2
3 1
12
1
13 sec sec 14 cos sin 0
15 2 16 y = xye
17 sec cos 0
y x
y xdy
dx y
y y y x y x dy x dx
y xe x
x dy x y dx
2
2
2
2
18 2 3 csc 0
19 20
21
1
y
x
x
x y
x dx y x dy
dy e dy
dx xy dx
dx e
y
dy e
e
Kamil Alnassiry -282-
A
X
YS
B
M
O
1
AB X
2X
1XAB
ﺣﺮﻑ ﺃﻭ ﻣﺸﱰﻛﺔ ﺣﺎﻓﺔ
Dihedral angle
2 Y XAB
X AB Y
AB
3ﺔاﻟﺰاوﯾ ﺮأﺗﻘ
اﻟﺰوﺟﯿﺔ:M AB K
]ﻣﺸﱰﻙ ﺣﺮﻑ ﳍﻤﺎ ﳐﺘﻠﻔﲔ ﻣﺴﺘﻮﻳﲔ ﻭﺟﻬﻲ ﺍﲢﺎﺩ ﻫﻲ[
ﺍﻟﺰﻭﺟﻴﺔ ﻟﻠﺰﺍﻭﻳﺔ ﺍﻟﻌﺎﺋﺪﺓ ﺍﻟﺰﺍﻭﻳﺔ ﺗﻌﺮﻳﻒ
AB
O AB
OM AB
OM X
OS AB
OS Y
MOSAB
A
B
X
Y
2
M
3
A
B
K
283.
Kamil Alnassiry -283-
1AB MOS
2
3
4(ﺍﳌﺴﺘﻮﻳﲔ ﻓﺎﻥ ﻗﺎﺋﻤﺔ ﺍﻟﺰﻭﺟﻴﺔ ﺍﻟﺰﺍﻭﻳﺔ ﻛﺎﻧﺖ ﻭﺇﺫﺍ ﻗﺎﺋﻤﺔ ﺍﻟﺰﻭﺟﻴﺔ ﺍﻟﺰﺍﻭﻳﺔ ﻓﺎﻥ ﻣﺴﺘﻮﻳﺎﻥ ﺗﻌﺎﻣﺪ ﺇﺫﺍ
ﻣﺘﻌﺎﻣﺪﺍﻥ.
ﻧﺘﻴﺠﺘﻬﺎ ﻭ ﺍﻟﺜﻼﺛﺔ ﺍﻷﻋﻤﺪﺓ ﻣﱪﻫﻨﺔ:
L X
1
A X
1
K X
ﺟﻴﺪﺍ ﻭﺍﺣﻔﻈﻬﺎ ﺃﻓﻬﻤﻬﺎ
L
K
AM
X
K X
M L
K
A
M L
A
A X
MK L
A L
K
M
284.
ﺍﻟﻨﺎﺻﺮﻱﻣﻮﺳﻰﻛﺎﻣﻞ
284
E
X
Y
A
B
C
D
THEOREM 7
Y X X Y A B
D C Y
DC AB
DC X
ﺍﳌﻌﻄﻴﺎﺕGiven Y X X Y AB
DC Y
DC AB
D
ﺇﺛﺒﺎﺗﻪ ﺍﳌﻄﻠﻮﺏProve DC X
ﺍﻟﱪﻫﺎﻥProof:
STATEMENTSREASONS
1DXDE
DE AB
2DC AB
DC Y
DE AB
DE X
3CDEAB
4 Y X
AB
90
5CDE90
-291-
1ABC30O
s A 5BDcm
D AC B
5BD cm
STATEMENTS
REASONS
1
2BE A CB
3 D CB A B
4A C
DE
5AEBE
6
1
30 5
2 10
o EB EB
Sin EB
AB
7DBEB
8
5
tan 1
5
DB
DEB
BE
945o
s BED
10D AC B
45o
Q.E.D.
D
C
E
A
B
H
30
10
5
292.
-292-
2ABC AF ABC
BDCFBE CA
1 DE CAF
2ED CF
XCAF
YABC
1 ,AF X AF Y X Y
2 X Y BE YBE CA
BE X
3 BE X
BD CFED CF
3 X Y AB X
,BD AB BC AB
,BD BC Y
,D C
CD X
H
,B D B C
1,A B B D A B B C
AB H
2 AB H
BA X
X H
3 X H X Y X H CD
CD X
X
Y E A
D
B
C
F
YD
C
AB
H
H
X
293.
-293-
6 1
1
DCE
X AB Y
DCE AB
,DC AB EC AB
D CE AB
2
AB Y
AB X
X Y
AB X
1 AB X
2 AB X
1 AB X
X Y
2 AB X
M XMMH AB
AB X
MH X
AB Y
MH Y
MH X
MH Y
X Y
E
A
B
C
D
Y
X
C
B
H
D
A
B
Y
A
M
X
294.
-294-
3
X y Z X
Z Y
Z X
Z X
Z X AB
HAB
,HM AB HM Z
Z X
HM X
X y
HM Y
,HM Y HM Z
Z Y
4, , ,A B C DAB ACE ABAED
A BC D
CD BD
AEDA BC D
,AE BC DE BC
,AEC AEBE
AC ABAE
AEC AEB BE EC
,DEC DEBE
BE ECDE
AEC AEB
DB DC
X
Y
Z
H
M
AB
CD
A
B
C
D
E
295.
-295-
5
X Y Z AB
CD Z
CE Y
,CD CE
X
AB X
H,CD CE
,CE X CD X
H X
,CD H CD Z
H Z
H Y Y Z AB
AB H
H X
AB X
6ABACD
CDA CDB
1 AC ABD
AD BD
DC BDAABD
2BD DC
BD DA
BD CDA
BD BDC
BDC CDA
A
X
Y
Z
H
E
B
C
D
B
D
A
C
296.
-296-
X
ﻣﺴﺘﻮ ﻋﻠﻰ ﺍﻟﻌﻤﻮﺩﻱﺍﻹﺳﻘﺎﻁ
1
A AC XCCA X
2
1 AC XC
BD XD
CD XAB
3Inclied Line
4Angle of Inclination
90 > > 0o
2AB
XB AC XC
BC
AB
X
5
2CosBC AB
6
X
297.
-297-
4
XABC ABX
XDHAB
HEBC
DH HE
DHAB
HEBC
, ,BH AD CE X
,AD BH CE BH
Z,AD BH
Y,CE BH
Z X DH
AB X
ABﺍﻟﺘﻘﻄﻊ ﺧﻂ ﻳﻮﺍﺯﻱDH
BH X
BH DH
DHAB
BH ABﺍﻟﻮﺍﺣﺪ ﺍﳌﺴﺘﻮﻯ ﰲ
BC AB
AB Yﻣﺴﺘﻘﻴﻤﲔﻣﺘﻘﺎﻃﻌﲔ
DHAB
DH Y
DHHE
X
D
H
E
C
BA
Y
Z
298.
-298-
5
ABC13AB AC cm10BC cm BC X
X60o
1ABC X
2
A XAD AD XD
CDAC X
BDAB
X
BC X
DBCABC X1
A X AD X
AE BC
DE BC
A E DBC
BC60o
60o
S A E D
A B CAE BC
5B E E C cm
AEBE2 2
13 5 12A E cm
ADED
60o ED
Cos
AE
1
ED = 6 cm
2 12
ED
1
Triangle BCD = ( ) ( )
2
AreaOf BC ED
1
(10 )(6 )
2
A 2
30 ( )A cm
BCDABC60o
Cos
60
A
B
C
D
E
13
5
5
X
299.
-299-
ﺗﺪﺭﻳﺐ 6 2
1
AB X
AB XAB
,A B X,C D
CD AB X
AC BD
AB X
AB ﺧ ﻳﻮﺍﺯﻱﺍﻟﺘﻘﺎﻃﻊ ﻂCD
ABDC
A B C D
2
,X Y
L
,X Y
XA YB
L
,X Y
DL
D DE X
E
X Y
DE Y
F
AE
L
X
DAEL
X
Y
X
D
A B
C
X
Y
A E
D
F
B
L
Z
300.
-300-
DBFL
Y
Z,DBDF
Z ,X Y,AE BF
DAEDBF
3
AB CD
,AB CD
X
,B D
AB
XCD
X
A AE XE
C CF XF
FD CD X
EB AB X
BAB X
DCD X
Y,AB AE
Z,CD CF
AB CD
AE CF
Y Z ﻣﺴﺘﻮﻳﻴﻬﻤ ﺗﻮﺍﺯﻯﺎ
Y X EB Z X FD
,FD EB
AB CD
DBﺍﻟﺰ ﺗﺴﺎﻭﺕﺍﺑﺎﻟﻘﻴﺎﺱ ﻭﻳﺘﺎﻥ
X
Y
Z
A
B
C
D
E
F
301.
-301-
4
,AB AC X
AB A C1
AB X2AC X
12
1AB X
AD X
,AD BD AD DC
,ADB ADCC
A B A CAD
0
AB AC
AD AD
0
AD AD
AB AC
2= Sin
AD
AC
1= Sin
AD
AB
1 2<Sin Sin 0 ,
2
ﺩﺍﻟﺔﻣﺘﺰﺍﻳﺪﺓ
21
5
,AB AC X1AB X
2AC X12
A B A C
1AB X AD X
,AD BD AD BC
,ADB ADCC
122 1>Sin Sin
AD AD
AC AB
AC AB
AD AD
AD
AC AB
X
D
C
A
B 1 2
302.
-302-
6
1AB X
BCX2
,AB BC
12
AAE BCE
BC X E BC E X
1AB X
AD X
D X
ADA X
AEAE X
AE AD
AB
AE AD
AB AB
2 1= Sin , = Sin
AE AD
AB AB
2 1Sin Sin
0 ,90o
2 1 2 1Sin Sin >
2 1>
X
2
A
B
C
D
E
1
303.
303
ﳌﺴﺎﺣﺎﺕ ﻗﻮﺍﻧﲔﺍﻷﺷﻜﺎﻝ ﺑﻌﺾﻭﳊﺠﻮﻡ
Cube
3
V x
2
6A x 1
3
Pyramid
V b h
x
x
x
Rectangular prism
x
y
z
2( ) 2
V x y z
A x y z xy
h
b
2
2 +2A r h r
l
2
2
1
:
3
1
( 2 )
2
Cone V r h
A r l r
304.
304
ﺍﳌﻨﺘﻈﻢ ﺍﻷﺭﺑﻌﺔ ﺍﻟﻮﺟﻮﻩﺫﻭ ﺗﻌﺮﻳﻒ:
4
60o
2 21 1 1 3
60
3
42 2 2 2
o
A a b Sin a a Sin a a
22 23
4 3
4
sA a a unit
ﺗﻌﺮﻳﻒ:ﺍﻟﻘﺎﻋﺪﺓ ﻭﻳﻘﻄﻊ ﺍﻟﺮﺃﺱ ﻣﻦ ﳝﺮ ﲟﺴﺘﻮ ﻗﺎﺋﻢ ﺩﺍﺋﻲ ﳐﺮﻭﻁ ﻗﻄﻊ ﺇﺫﺍ
ﻛﺎﻣﻠﺔ ﺩﻭﺭﺓ
1
2
3
4
5
a
a
a
a
a
305.
305
r
h
ﲤﺎﺭﻳﻦ 6 1
12
724 cm 2
132 cm
2
110 cm
=xyz
132x y = 132 ......(1)
110z y = 110 ......(2)
724
2
2 x z + 2 y z + 2 x y = 724 2 z + 2x y = 724......(3)
x z + y z + x y = 362
x z +11
x y
0 +132 = 362 120........(3)x z
3
x y 132 12 12
= z .....(4)
110 10 10
x
x
z y z
21 2
1 2 0 1 2 0 1 0 0 1 0
1 0
x z z z z z
z y = 110 ......(2) 10 110 11y y
x y = 132 ......(1) x 11= 132 12x
10 , 11 ,12 cm
2
2
400 cm
3
2000 cm
2
. 400L A cm
3
2000V cm
r , h
400
2
400 2 200 = ....... 1r h r h
2
2000V r h 2
r 2
....2000 = 2...r hh
2
2000 2002000 = 20 1000 = 20r rr h hr r h
x
y
z
306.
306
3100cm8cm
1cm
VVV
2 2 22
2 1
3
8 100 7 100
(64 49) 100 1500 ( )
V r h r h
cm
4l unit
3
32
12
l
unit
A- B C Dl
3
32
12
l
V unit
60o
2 21 1 1 3
60
3
42 2 2 2
o
A a b Sin a a Sin a a M
UD BC U D B
NC DBN C D
BN , C UM
MCDBA M
AMh
MUBU
1 / 23
30 =
2
o lUB
C os
M B x
1
3
x l
l
30
x
A
h
BC
D
1
2
l
1
2
l
1
2
l
1
2
l
MN
U
7
8
100
307.
307
M AMB
2 2 2 2 2 21
3
2
3
A B A M B M l h l h l
31 1
3 3
V b h 2 2
4 3
l
3
32
1 2
l
l U n it
515 cm
8 cm
102 cm2
12
MCh = 15cm
BD8cm
MBD102cm2
EC BD
EBD
MBD
EM BD
1MCEC
2 2 2
ME MC EC
2 2 2
1 15 87 EE MM
2MBD
1 1
102= 1712
2 2
MBDBD A BD MEBD
EBDBE = ED= 6 cm
308.
308
4
10
C
D B
3CEDE
2 2 2 2 2 2
6 8r = 10 r DC ED EC
4MCDC
2 2 2 2 2 2
cm 15 10l = 325 l MD MC CD
r = 10h = 15l = 325
2 321 1
10 15 = 500
3 3
V r h cm
2
10 325A rl cm
22
r 10 325 100A rl cm
610 cm4 cm
C10cmC4 cm
CDBD
2 2 2
CB CD DB
2 2 2
10 4 DB 6DB cm
A
22
36A r cm
309.
309
7
3
4
r
h
b
3
4
r h
, ,,A B D E
b
h r
1 24V V
1
3
b
1
4
3
h b
4 4
h r
h h r
4 3
3
r = h
4
r h
D
r
h
h - r
b
C
A
B
E