SlideShare a Scribd company logo
Restriction Endonucleases
Made by :
Adel Mohie
Under supervision of
Dr:Sofia Khalil
What are restriction enzymes?
• Molecular scissors that cut double stranded
DNA molecules at specific points.
• Found naturally in a wide variety of
prokaryotes
• An important tool for manipulating DNA.
Biological Role
• Most bacteria use Restriction Enzymes as a
defence against bacteriophages.
• Restriction enzymes prevent the replication of
the phage by cleaving its DNA at specific sites.
• The host DNA is protected by Methylases which
add methyl groups to adenine or cytosine bases
within the recognition site thereby modifying the
site and protecting the DNA.
MOLECULAR SCISSORSRestriction enzymes are
molecular scissors
History Of Restriction Enzyme
• First restriction enzyme was isoltaed in 1970 by
Hindll.
• He also done the subsequent discovery and
characterization of numerous restriction
endonucleases.
• From then Over 3000 restriction enzymes have
been studied in detail, and more than 600 of
these are available commercially and are
routinely used for DNA modification and
manipulation in laboratories.
Mechanism of Action
Restriction Endonuclease scan the length of the DNA
, binds to the DNA molecule when it recognizes a
specific sequence and makes one cut in each of the
sugar phosphate backbones of the double helix – by
hydrolyzing the phoshphodiester bond.
Specifically,the bond between the 3’ O atom and the
P atom is broken.
Direct hydrolysis by nucleophilic attack at the
phosphorous atom
3’OH and 5’ PO4
3- is produced. Mg2+ is required for
the catalytic activity of the enzyme. It holds the
water molecule in a position where it can attack the
phosphoryl group and also helps polarize the water
molecule towards deprotonation .
Palindrome Sequences
• The mirror like palindrome in which the same forward
and backwards are on a single strand of DNA strand, as
in GTAATG
• The Inverted repeat palindromes is also a sequence that
reads the same forward and backwards, but the forward
and backward sequences are found in complementary
DNA strands (GTATAC being complementary to CATATG)
• Inverted repeat palindromes are more common and
have greater biological importance than mirror- like
palindromes.
Ends Of Restriction Fragments
Blunt ends
Sticky ends
Blunt ends
• Some restriction enzymes cut DNA at opposite base
• They leave blunt ended DNA fragments
• These blunt ended fragments can be joined to any other
DNA fragment with blunt ends.
• Enzymes useful for certain types of DNA cloning experiments
.
Sticky ends
• Most restriction enzymes make staggered
cuts
• Staggered cuts produce single stranded
“sticky-ends”
“Sticky Ends” Are Useful
DNA fragments with complimentary sticky ends
can be combined to create new molecules which
allows the creation and manipulation of DNA
sequences from different sources.
ISOSCHIZOMERS & NEOSCHIZOMERS
• Restriction enzymes that have the same recognition
sequence as well as the same cleavage site are Isoschizomers
• Restriction enzymes that have the same recognition
sequence but cleave the DNA at a different site within that
sequence are Neoshizomers
Eg: SmaI and XmaI
C C C G G G C C C G G G
G G G C C C G G G C C C
Xma I Sma I
NOMENCLATURE OF RESTRICTION ENZYME
• Each enzyme is named after the bacterium from
which it was isolated using a naming system based
on bacterial genus, species and strain.
For e.g EcoRI
Derivation of the EcoRI name
Abbreviation Meaning Description
E Escherichia genus
co coli species
R RY13 strain
I First identified
order of identification
in the bacterium
TYPES OF RESTRICTION ENZYMES
• Restriction endonucleases are categorized into
three general groups.
• Type I
• Type II
• Type III
• These types are categorization based on:
Their composition.
Enzyme co-factor requirement.
the nature of their target sequence.
position of their DNA cleavage site relative to
the target sequence.
Type I
• Capable of both restriction and modification
activities
• The co factors S-Adenosyl Methionine(AdoMet), ATP,
and mg+are required for their full activity
• Contain:
two R(restriction) subunits
two M(methylation) subunits
one S(specifity) subunits
• Cleave DNA at random length from recognition sites
Type II
• These are the most commonly available and used
restriction enzymes
• They are composed of only one subunit.
• Their recognition sites are usually undivided and
palindromic and 4-8 nucleotides in length,
• they recognize and cleave DNA at the same site.
• They do not use ATP for their activity
• they usually require only Mg2+ as a cofactor.
Type III
• Type III restriction enzymes ) recognize two separate
non-palindromic sequences that are inversely
oriented.
• They cut DNA about 20-30 base pairs after the
recognition site.
• These enzymes contain more than one subunit.
• And require AdoMet and ATP cofactors for their roles
in DNA methylation and restriction
Type IV
• Cleave only normal and modified DNA
(methylated, hydroxymethylated and glucosyl-
hydroxymethylated bases).
• Recognition sequences have not been well
defined
• Cleavage takes place ~30 bp away from one of
the sites
APPLICATION OF RESTRICTION ENZYMES
• They are used in gene cloning and protein expression
experiments.
• Restriction enzymes are used in biotechnology to cut
DNA into smaller strands in order to study fragment
length differences among individuals (Restriction
Fragment Length Polymorphism – RFLP).
• Each of these methods depends on the use of
agarose gel electrophoresis for separation of the
DNA fragments.
RFLP is a difference in homologous
DNA sequences that can be detected by the
presence of fragments of different lengths after
digestion of the DNA samples.
What is RFLP
The method of analysis of DNA by RFLP involves
the following steps:
1- In the first step fragmentation of a sample of
DNA is done by a restriction enzyme, which can
recognize and cut DNA wherever a specific
short sequence occurs, in a process known as a
restriction digest.
Method of DNA analysis by RFLP
2- The resulting DNA fragments are then separated by
length through a process known as agarose gel
electrophoresis.
3- Then transferred to a membrane via the Southern blot
procedure.
4- Hybridization of the membrane to a labeled DNA
probe will done and then determines the length of the
fragments which are complementary to the probe.
5- Then we will observe the fragments of different
length.
An RFLP occurs when the length of a detected
fragment varies between individuals. Each fragment
length is considered an allele, and can be used in
genetic analysis.

More Related Content

What's hot

Linker, Adaptor, Homopolymeric Tailing & Terminal Transferase
Linker, Adaptor, Homopolymeric Tailing & Terminal TransferaseLinker, Adaptor, Homopolymeric Tailing & Terminal Transferase
Linker, Adaptor, Homopolymeric Tailing & Terminal Transferase
Utsa Roy
 
P br322
P br322P br322
DNA Libraries
DNA LibrariesDNA Libraries
DNA Libraries
Krishna Moorthy
 
Complementary DNA (cDNA) Libraries
Complementary DNA 	(cDNA) LibrariesComplementary DNA 	(cDNA) Libraries
Complementary DNA (cDNA) LibrariesRamesh Pothuraju
 
Cloning vectors
Cloning vectorsCloning vectors
Cloning vectors
Effat Jahan Tamanna
 
Cosmid
CosmidCosmid
Cosmid
Swati Pawar
 
P uc vectors
P uc vectorsP uc vectors
Restriction Mapping
Restriction MappingRestriction Mapping
Restriction Mapping
Sunil Bhandari
 
Transformation
TransformationTransformation
Transformation
sridevi244
 
DNA footprinting
DNA footprintingDNA footprinting
DNA footprinting
Saajida Sultaana
 
DNA Ligation
DNA LigationDNA Ligation
DNA Ligation
Amany Elsayed
 
Prokaryotic and eukaryotic genome
Prokaryotic and eukaryotic genomeProkaryotic and eukaryotic genome
Prokaryotic and eukaryotic genome
Shreya Feliz
 
Plasmid
Plasmid Plasmid
Plasmid
Kaberi Nath
 
Selection and screening of recombinant clones
Selection and screening of recombinant clones Selection and screening of recombinant clones
Selection and screening of recombinant clones
neeru02
 
Bacteriophage vectors
Bacteriophage vectorsBacteriophage vectors
Bacteriophage vectors
priyanka raviraj
 
bacterial artificial chromosome & yeast artificial chromosome
bacterial artificial chromosome & yeast artificial chromosomebacterial artificial chromosome & yeast artificial chromosome
bacterial artificial chromosome & yeast artificial chromosome
ashapatel676
 
Maxam-Gilbert method of DNA sequencing
Maxam-Gilbert method of DNA sequencingMaxam-Gilbert method of DNA sequencing
Maxam-Gilbert method of DNA sequencing
maryamshah13
 
Cosmid Vectors, YAC and BAC Expression Vectors
Cosmid Vectors, YAC and BAC Expression VectorsCosmid Vectors, YAC and BAC Expression Vectors
Cosmid Vectors, YAC and BAC Expression Vectors
CharthaGaglani
 

What's hot (20)

Linker, Adaptor, Homopolymeric Tailing & Terminal Transferase
Linker, Adaptor, Homopolymeric Tailing & Terminal TransferaseLinker, Adaptor, Homopolymeric Tailing & Terminal Transferase
Linker, Adaptor, Homopolymeric Tailing & Terminal Transferase
 
P br322
P br322P br322
P br322
 
DNA Libraries
DNA LibrariesDNA Libraries
DNA Libraries
 
Complementary DNA (cDNA) Libraries
Complementary DNA 	(cDNA) LibrariesComplementary DNA 	(cDNA) Libraries
Complementary DNA (cDNA) Libraries
 
Cloning vectors
Cloning vectorsCloning vectors
Cloning vectors
 
Cosmid
CosmidCosmid
Cosmid
 
Gene transfer (2)
Gene transfer (2)Gene transfer (2)
Gene transfer (2)
 
P uc vectors
P uc vectorsP uc vectors
P uc vectors
 
Restriction Mapping
Restriction MappingRestriction Mapping
Restriction Mapping
 
Transformation
TransformationTransformation
Transformation
 
DNA footprinting
DNA footprintingDNA footprinting
DNA footprinting
 
GENOME ORGANISATION IN EUKARYOTES
GENOME ORGANISATION IN EUKARYOTESGENOME ORGANISATION IN EUKARYOTES
GENOME ORGANISATION IN EUKARYOTES
 
DNA Ligation
DNA LigationDNA Ligation
DNA Ligation
 
Prokaryotic and eukaryotic genome
Prokaryotic and eukaryotic genomeProkaryotic and eukaryotic genome
Prokaryotic and eukaryotic genome
 
Plasmid
Plasmid Plasmid
Plasmid
 
Selection and screening of recombinant clones
Selection and screening of recombinant clones Selection and screening of recombinant clones
Selection and screening of recombinant clones
 
Bacteriophage vectors
Bacteriophage vectorsBacteriophage vectors
Bacteriophage vectors
 
bacterial artificial chromosome & yeast artificial chromosome
bacterial artificial chromosome & yeast artificial chromosomebacterial artificial chromosome & yeast artificial chromosome
bacterial artificial chromosome & yeast artificial chromosome
 
Maxam-Gilbert method of DNA sequencing
Maxam-Gilbert method of DNA sequencingMaxam-Gilbert method of DNA sequencing
Maxam-Gilbert method of DNA sequencing
 
Cosmid Vectors, YAC and BAC Expression Vectors
Cosmid Vectors, YAC and BAC Expression VectorsCosmid Vectors, YAC and BAC Expression Vectors
Cosmid Vectors, YAC and BAC Expression Vectors
 

Viewers also liked

Restriction enzymes powerpoint (1)
Restriction enzymes powerpoint (1)Restriction enzymes powerpoint (1)
Restriction enzymes powerpoint (1)Chris Ceccopieri
 
Genetic engineering,recombinant DNA technology..
Genetic engineering,recombinant DNA technology..Genetic engineering,recombinant DNA technology..
Genetic engineering,recombinant DNA technology..
ganeshbond
 
recombinant DNA technology enzymes
recombinant DNA technology enzymesrecombinant DNA technology enzymes
recombinant DNA technology enzymes
shldtpaul2
 
Restriction Enzymes
Restriction EnzymesRestriction Enzymes
Restriction Enzymes
Amany Elsayed
 
Bacteriophage
BacteriophageBacteriophage
Bacteriophage
niranjay
 
Samim
SamimSamim
Samim
samim khan
 
Presenatation On Restriction Enzyme
Presenatation On Restriction EnzymePresenatation On Restriction Enzyme
Presenatation On Restriction EnzymeZahoor Ahmed
 
Enzymes used in Genetic Engineering
Enzymes used in Genetic EngineeringEnzymes used in Genetic Engineering
Enzymes used in Genetic Engineering
Smita Shukla
 
Restriction Enzymes
Restriction Enzymes Restriction Enzymes
Restriction Enzymes
Gol Mohammad Dorrazehi
 

Viewers also liked (10)

Restriction enzymes powerpoint (1)
Restriction enzymes powerpoint (1)Restriction enzymes powerpoint (1)
Restriction enzymes powerpoint (1)
 
Genetic engineering,recombinant DNA technology..
Genetic engineering,recombinant DNA technology..Genetic engineering,recombinant DNA technology..
Genetic engineering,recombinant DNA technology..
 
recombinant DNA technology enzymes
recombinant DNA technology enzymesrecombinant DNA technology enzymes
recombinant DNA technology enzymes
 
Restriction Enzymes
Restriction EnzymesRestriction Enzymes
Restriction Enzymes
 
Restriction Enzymes
Restriction EnzymesRestriction Enzymes
Restriction Enzymes
 
Bacteriophage
BacteriophageBacteriophage
Bacteriophage
 
Samim
SamimSamim
Samim
 
Presenatation On Restriction Enzyme
Presenatation On Restriction EnzymePresenatation On Restriction Enzyme
Presenatation On Restriction Enzyme
 
Enzymes used in Genetic Engineering
Enzymes used in Genetic EngineeringEnzymes used in Genetic Engineering
Enzymes used in Genetic Engineering
 
Restriction Enzymes
Restriction Enzymes Restriction Enzymes
Restriction Enzymes
 

Similar to Restriction enzymes

ENZYMES USED IN GENETIC ENGINEERING
ENZYMES USED IN GENETIC ENGINEERINGENZYMES USED IN GENETIC ENGINEERING
ENZYMES USED IN GENETIC ENGINEERING
IndrajaDoradla
 
Restriction enzymes genetic enginering
Restriction enzymes genetic engineringRestriction enzymes genetic enginering
Restriction enzymes genetic enginering
Madhusudhana Malaka
 
Rflp wrt Restriction enzymes and pcr
Rflp   wrt Restriction enzymes and pcr Rflp   wrt Restriction enzymes and pcr
Rflp wrt Restriction enzymes and pcr
pratik mahadwala
 
Restriction-enzymes-final.ppt
Restriction-enzymes-final.pptRestriction-enzymes-final.ppt
Restriction-enzymes-final.ppt
Sadia Noreen
 
ENZYMES IN GENETIC ENGINEERING.ppt
ENZYMES IN GENETIC ENGINEERING.pptENZYMES IN GENETIC ENGINEERING.ppt
ENZYMES IN GENETIC ENGINEERING.ppt
EstherShobhaR
 
RE , gene cloning , dna library
RE , gene cloning , dna libraryRE , gene cloning , dna library
RE , gene cloning , dna library
Dr. Indrajay R. Delvadiya
 
Restriction Fragment Length Polymorphism (RFLP)
Restriction Fragment Length Polymorphism (RFLP)Restriction Fragment Length Polymorphism (RFLP)
Restriction Fragment Length Polymorphism (RFLP)
Hafiz Muhammad Zeeshan Raza
 
BCH 405 -MOLECULAR-BIOLOGY-I-II-Recombinant-DNA-Technology-by-Dr.-Friday-Nwal...
BCH 405 -MOLECULAR-BIOLOGY-I-II-Recombinant-DNA-Technology-by-Dr.-Friday-Nwal...BCH 405 -MOLECULAR-BIOLOGY-I-II-Recombinant-DNA-Technology-by-Dr.-Friday-Nwal...
BCH 405 -MOLECULAR-BIOLOGY-I-II-Recombinant-DNA-Technology-by-Dr.-Friday-Nwal...
Ogunsina1
 
Restriction enzyme
Restriction enzymeRestriction enzyme
Restriction enzyme
Ananya Azad Hrisha
 
Enzymes involved in rDNA technology.pptx
Enzymes involved in rDNA technology.pptxEnzymes involved in rDNA technology.pptx
Enzymes involved in rDNA technology.pptx
Poonam Patil
 
Restriction Endonuclease (Cutting of DNA)
Restriction Endonuclease  (Cutting of DNA)Restriction Endonuclease  (Cutting of DNA)
Restriction Endonuclease (Cutting of DNA)
Rajendran Bhuvaneswari
 
Restrictions endonuclease
Restrictions endonucleaseRestrictions endonuclease
Restrictions endonuclease
Apeksha Kesarwani
 
Blotting techniques
Blotting techniquesBlotting techniques
Blotting techniques
IndrajaDoradla
 
presenatationonrestrictionenzyme-100407150234-phpapp02 (1).pdf
presenatationonrestrictionenzyme-100407150234-phpapp02 (1).pdfpresenatationonrestrictionenzyme-100407150234-phpapp02 (1).pdf
presenatationonrestrictionenzyme-100407150234-phpapp02 (1).pdf
Noor Muhammed
 
Assignment on Recombinant DNA Technology and Gene Therapy
Assignment on Recombinant DNA Technology and Gene TherapyAssignment on Recombinant DNA Technology and Gene Therapy
Assignment on Recombinant DNA Technology and Gene Therapy
Deepak Kumar
 
Presentation rdt priya yadav
Presentation rdt priya yadavPresentation rdt priya yadav
Presentation rdt priya yadav
Priya Yadav
 
Presentation rdt priya yadav
Presentation rdt priya yadavPresentation rdt priya yadav
Presentation rdt priya yadav
Priya Yadav
 
Taniya
TaniyaTaniya
Taniya
Taniya M S
 
Steps of r-dna technology
Steps of r-dna technologySteps of r-dna technology
Steps of r-dna technology
Dilip22Morani
 
ppt.pptx
ppt.pptxppt.pptx
ppt.pptx
jishanali22
 

Similar to Restriction enzymes (20)

ENZYMES USED IN GENETIC ENGINEERING
ENZYMES USED IN GENETIC ENGINEERINGENZYMES USED IN GENETIC ENGINEERING
ENZYMES USED IN GENETIC ENGINEERING
 
Restriction enzymes genetic enginering
Restriction enzymes genetic engineringRestriction enzymes genetic enginering
Restriction enzymes genetic enginering
 
Rflp wrt Restriction enzymes and pcr
Rflp   wrt Restriction enzymes and pcr Rflp   wrt Restriction enzymes and pcr
Rflp wrt Restriction enzymes and pcr
 
Restriction-enzymes-final.ppt
Restriction-enzymes-final.pptRestriction-enzymes-final.ppt
Restriction-enzymes-final.ppt
 
ENZYMES IN GENETIC ENGINEERING.ppt
ENZYMES IN GENETIC ENGINEERING.pptENZYMES IN GENETIC ENGINEERING.ppt
ENZYMES IN GENETIC ENGINEERING.ppt
 
RE , gene cloning , dna library
RE , gene cloning , dna libraryRE , gene cloning , dna library
RE , gene cloning , dna library
 
Restriction Fragment Length Polymorphism (RFLP)
Restriction Fragment Length Polymorphism (RFLP)Restriction Fragment Length Polymorphism (RFLP)
Restriction Fragment Length Polymorphism (RFLP)
 
BCH 405 -MOLECULAR-BIOLOGY-I-II-Recombinant-DNA-Technology-by-Dr.-Friday-Nwal...
BCH 405 -MOLECULAR-BIOLOGY-I-II-Recombinant-DNA-Technology-by-Dr.-Friday-Nwal...BCH 405 -MOLECULAR-BIOLOGY-I-II-Recombinant-DNA-Technology-by-Dr.-Friday-Nwal...
BCH 405 -MOLECULAR-BIOLOGY-I-II-Recombinant-DNA-Technology-by-Dr.-Friday-Nwal...
 
Restriction enzyme
Restriction enzymeRestriction enzyme
Restriction enzyme
 
Enzymes involved in rDNA technology.pptx
Enzymes involved in rDNA technology.pptxEnzymes involved in rDNA technology.pptx
Enzymes involved in rDNA technology.pptx
 
Restriction Endonuclease (Cutting of DNA)
Restriction Endonuclease  (Cutting of DNA)Restriction Endonuclease  (Cutting of DNA)
Restriction Endonuclease (Cutting of DNA)
 
Restrictions endonuclease
Restrictions endonucleaseRestrictions endonuclease
Restrictions endonuclease
 
Blotting techniques
Blotting techniquesBlotting techniques
Blotting techniques
 
presenatationonrestrictionenzyme-100407150234-phpapp02 (1).pdf
presenatationonrestrictionenzyme-100407150234-phpapp02 (1).pdfpresenatationonrestrictionenzyme-100407150234-phpapp02 (1).pdf
presenatationonrestrictionenzyme-100407150234-phpapp02 (1).pdf
 
Assignment on Recombinant DNA Technology and Gene Therapy
Assignment on Recombinant DNA Technology and Gene TherapyAssignment on Recombinant DNA Technology and Gene Therapy
Assignment on Recombinant DNA Technology and Gene Therapy
 
Presentation rdt priya yadav
Presentation rdt priya yadavPresentation rdt priya yadav
Presentation rdt priya yadav
 
Presentation rdt priya yadav
Presentation rdt priya yadavPresentation rdt priya yadav
Presentation rdt priya yadav
 
Taniya
TaniyaTaniya
Taniya
 
Steps of r-dna technology
Steps of r-dna technologySteps of r-dna technology
Steps of r-dna technology
 
ppt.pptx
ppt.pptxppt.pptx
ppt.pptx
 

More from Adel Mohyeldin

Changing mindset
Changing mindsetChanging mindset
Changing mindset
Adel Mohyeldin
 
Rapport building
Rapport buildingRapport building
Rapport building
Adel Mohyeldin
 
Attitude
AttitudeAttitude
Attitude
Adel Mohyeldin
 
Stat3 in hepatocellular carcinoma
Stat3 in hepatocellular carcinomaStat3 in hepatocellular carcinoma
Stat3 in hepatocellular carcinoma
Adel Mohyeldin
 
Bubonic plague
Bubonic plagueBubonic plague
Bubonic plague
Adel Mohyeldin
 
Ebola virus disease
Ebola virus diseaseEbola virus disease
Ebola virus disease
Adel Mohyeldin
 
G12,13
G12,13G12,13

More from Adel Mohyeldin (7)

Changing mindset
Changing mindsetChanging mindset
Changing mindset
 
Rapport building
Rapport buildingRapport building
Rapport building
 
Attitude
AttitudeAttitude
Attitude
 
Stat3 in hepatocellular carcinoma
Stat3 in hepatocellular carcinomaStat3 in hepatocellular carcinoma
Stat3 in hepatocellular carcinoma
 
Bubonic plague
Bubonic plagueBubonic plague
Bubonic plague
 
Ebola virus disease
Ebola virus diseaseEbola virus disease
Ebola virus disease
 
G12,13
G12,13G12,13
G12,13
 

Recently uploaded

erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
muralinath2
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
IqrimaNabilatulhusni
 
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
NathanBaughman3
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
IvanMallco1
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
Areesha Ahmad
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
Lokesh Patil
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
muralinath2
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Richard Gill
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
Sérgio Sacani
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
Scintica Instrumentation
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
kumarmathi863
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
muralinath2
 

Recently uploaded (20)

erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
 
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
 

Restriction enzymes

  • 1. Restriction Endonucleases Made by : Adel Mohie Under supervision of Dr:Sofia Khalil
  • 2. What are restriction enzymes? • Molecular scissors that cut double stranded DNA molecules at specific points. • Found naturally in a wide variety of prokaryotes • An important tool for manipulating DNA.
  • 3. Biological Role • Most bacteria use Restriction Enzymes as a defence against bacteriophages. • Restriction enzymes prevent the replication of the phage by cleaving its DNA at specific sites. • The host DNA is protected by Methylases which add methyl groups to adenine or cytosine bases within the recognition site thereby modifying the site and protecting the DNA.
  • 4. MOLECULAR SCISSORSRestriction enzymes are molecular scissors
  • 5. History Of Restriction Enzyme • First restriction enzyme was isoltaed in 1970 by Hindll. • He also done the subsequent discovery and characterization of numerous restriction endonucleases. • From then Over 3000 restriction enzymes have been studied in detail, and more than 600 of these are available commercially and are routinely used for DNA modification and manipulation in laboratories.
  • 6. Mechanism of Action Restriction Endonuclease scan the length of the DNA , binds to the DNA molecule when it recognizes a specific sequence and makes one cut in each of the sugar phosphate backbones of the double helix – by hydrolyzing the phoshphodiester bond. Specifically,the bond between the 3’ O atom and the P atom is broken.
  • 7. Direct hydrolysis by nucleophilic attack at the phosphorous atom 3’OH and 5’ PO4 3- is produced. Mg2+ is required for the catalytic activity of the enzyme. It holds the water molecule in a position where it can attack the phosphoryl group and also helps polarize the water molecule towards deprotonation .
  • 8. Palindrome Sequences • The mirror like palindrome in which the same forward and backwards are on a single strand of DNA strand, as in GTAATG • The Inverted repeat palindromes is also a sequence that reads the same forward and backwards, but the forward and backward sequences are found in complementary DNA strands (GTATAC being complementary to CATATG) • Inverted repeat palindromes are more common and have greater biological importance than mirror- like palindromes.
  • 9.
  • 10. Ends Of Restriction Fragments Blunt ends Sticky ends
  • 11. Blunt ends • Some restriction enzymes cut DNA at opposite base • They leave blunt ended DNA fragments • These blunt ended fragments can be joined to any other DNA fragment with blunt ends. • Enzymes useful for certain types of DNA cloning experiments .
  • 12. Sticky ends • Most restriction enzymes make staggered cuts • Staggered cuts produce single stranded “sticky-ends”
  • 13. “Sticky Ends” Are Useful DNA fragments with complimentary sticky ends can be combined to create new molecules which allows the creation and manipulation of DNA sequences from different sources.
  • 14. ISOSCHIZOMERS & NEOSCHIZOMERS • Restriction enzymes that have the same recognition sequence as well as the same cleavage site are Isoschizomers • Restriction enzymes that have the same recognition sequence but cleave the DNA at a different site within that sequence are Neoshizomers Eg: SmaI and XmaI C C C G G G C C C G G G G G G C C C G G G C C C Xma I Sma I
  • 15. NOMENCLATURE OF RESTRICTION ENZYME • Each enzyme is named after the bacterium from which it was isolated using a naming system based on bacterial genus, species and strain. For e.g EcoRI Derivation of the EcoRI name Abbreviation Meaning Description E Escherichia genus co coli species R RY13 strain I First identified order of identification in the bacterium
  • 16. TYPES OF RESTRICTION ENZYMES • Restriction endonucleases are categorized into three general groups. • Type I • Type II • Type III
  • 17. • These types are categorization based on: Their composition. Enzyme co-factor requirement. the nature of their target sequence. position of their DNA cleavage site relative to the target sequence.
  • 18. Type I • Capable of both restriction and modification activities • The co factors S-Adenosyl Methionine(AdoMet), ATP, and mg+are required for their full activity • Contain: two R(restriction) subunits two M(methylation) subunits one S(specifity) subunits • Cleave DNA at random length from recognition sites
  • 19. Type II • These are the most commonly available and used restriction enzymes • They are composed of only one subunit. • Their recognition sites are usually undivided and palindromic and 4-8 nucleotides in length, • they recognize and cleave DNA at the same site. • They do not use ATP for their activity • they usually require only Mg2+ as a cofactor.
  • 20. Type III • Type III restriction enzymes ) recognize two separate non-palindromic sequences that are inversely oriented. • They cut DNA about 20-30 base pairs after the recognition site. • These enzymes contain more than one subunit. • And require AdoMet and ATP cofactors for their roles in DNA methylation and restriction
  • 21. Type IV • Cleave only normal and modified DNA (methylated, hydroxymethylated and glucosyl- hydroxymethylated bases). • Recognition sequences have not been well defined • Cleavage takes place ~30 bp away from one of the sites
  • 22. APPLICATION OF RESTRICTION ENZYMES • They are used in gene cloning and protein expression experiments. • Restriction enzymes are used in biotechnology to cut DNA into smaller strands in order to study fragment length differences among individuals (Restriction Fragment Length Polymorphism – RFLP). • Each of these methods depends on the use of agarose gel electrophoresis for separation of the DNA fragments.
  • 23. RFLP is a difference in homologous DNA sequences that can be detected by the presence of fragments of different lengths after digestion of the DNA samples. What is RFLP
  • 24. The method of analysis of DNA by RFLP involves the following steps: 1- In the first step fragmentation of a sample of DNA is done by a restriction enzyme, which can recognize and cut DNA wherever a specific short sequence occurs, in a process known as a restriction digest. Method of DNA analysis by RFLP
  • 25. 2- The resulting DNA fragments are then separated by length through a process known as agarose gel electrophoresis. 3- Then transferred to a membrane via the Southern blot procedure. 4- Hybridization of the membrane to a labeled DNA probe will done and then determines the length of the fragments which are complementary to the probe.
  • 26. 5- Then we will observe the fragments of different length. An RFLP occurs when the length of a detected fragment varies between individuals. Each fragment length is considered an allele, and can be used in genetic analysis.