Dr. Saurabh Patil
JR-1
Guided by: Dr. Shruti Bhide
Receptor
Tyrosine
Kinase
March 23, 2019
Overview
1. Clinical case
2. Receptor classification
3. ReceptorTyrosine Kinase
4. Structure
5. Activation & Signaling Pathway
6. Families of RTK
7. Manifest Patterns
8. Evolution /Timeline
9. Development & Pipeline
10.Challenges in drug developement
• 58 years old male
• Routine employee check-up
• No complaints
• Incidental splenomegaly
Your patient
Your patient
RT PCR for BCR ABL
mRNA
70%
Blasts 10%
Your patient
RT PCR for BCR ABL
mRNA
70%
Your patient
Chronic Myeloid Leukemia
Your patient
Receptors
Receptors
Neuroscience. 2nd edition. Purves D,Augustine GJ, Fitzpatrick D, et al., editors. Sunderland (MA): Sinauer Associates; 2001.
Receptors
Neuroscience. 2nd edition. Purves D,Augustine GJ, Fitzpatrick D, et al., editors. Sunderland (MA): Sinauer Associates; 2001.
Receptors
Neuroscience. 2nd edition. Purves D,Augustine GJ, Fitzpatrick D, et al., editors. Sunderland (MA): Sinauer Associates; 2001.
Receptors
Neuroscience. 2nd edition. Purves D,Augustine GJ, Fitzpatrick D, et al., editors. Sunderland (MA): Sinauer Associates; 2001.
Receptors
Receptors
Receptors
1. ReceptorTyrosine Kinase
2. Receptor Serine /
Threonine Kinase
3. Receptor Guanylyl
Cyclases
4. Tyrosine-Kinase
Associated Receptors
5. ReceptorTyrosine
Phosphatases
Receptors
1. ReceptorTyrosine Kinase
2. Receptor Serine /
Threonine Kinase
3. Receptor Guanylyl
Cyclases
4. Tyrosine-Kinase
Associated Receptors
5. ReceptorTyrosine
Phosphatases
ReceptorTyrosine Kinase
ReceptorTyrosine Kinase
ReceptorTyrosine Kinase
KINASE
P P P
A P P
A
Target Target
ReceptorTyrosine Kinase
ReceptorTyrosine Kinase
KINASE
P P P
A P P
A
Ty
r
Ty
r
Ty
r
ReceptorTyrosine Kinase
ReceptorTyrosine Kinase
Tyrosine Kinases
Receptor Non-Receptor
ReceptorTyrosine Kinase
Structure
Structure
DYNAMIC
Structure
MONOMER
Structure
MONOMER
DI
Structure
http://www.mun.ca/biology/desmid/brian/BIOL2060/BIOL2060-14/14_16.jpg
Structure
Structure
Structure
Structure
Structure
Structure
Activation
Activation
TETHERED
STATE
TeramuraY, Ichinose J,Takagi H, Nishida K,YanagidaT, SakoY. Single-molecule analysis of epidermal growth factor binding on the surface of
living cells. EMBO J. 2006 Sep 20;25(18):4215–22.
Activation
EXTENDED
STATE
TeramuraY, Ichinose J,Takagi H, Nishida K,YanagidaT, SakoY. Single-molecule analysis of epidermal growth factor binding on the surface of
living cells. EMBO J. 2006 Sep 20;25(18):4215–22.
Activation
PREDIMER
STATE
TeramuraY, Ichinose J,Takagi H, Nishida K,YanagidaT, SakoY. Single-molecule analysis of epidermal growth factor binding on the surface of
living cells. EMBO J. 2006 Sep 20;25(18):4215–22.
Activation
FLUCTUATIO
N
STATE
TeramuraY, Ichinose J,Takagi H, Nishida K,YanagidaT, SakoY. Single-molecule analysis of epidermal growth factor binding on the surface of
living cells. EMBO J. 2006 Sep 20;25(18):4215–22.
Activation
KINETIC
INTERMEDIAT
E
TeramuraY, Ichinose J,Takagi H, Nishida K,YanagidaT, SakoY. Single-molecule analysis of epidermal growth factor binding on the surface of
living cells. EMBO J. 2006 Sep 20;25(18):4215–22.
Activation
SIGNALING
DIMER
TeramuraY, Ichinose J,Takagi H, Nishida K,YanagidaT, SakoY. Single-molecule analysis of epidermal growth factor binding on the surface of
living cells. EMBO J. 2006 Sep 20;25(18):4215–22.
Activation
PREDIMER
HubbardSR, MillerWT. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol. 2007 Apr;19(2):117–23.
Activation
C terminal
N terminal
Lobe
interaction
HubbardSR, MillerWT. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol. 2007 Apr;19(2):117–23.
Activation
Kinase
Activity
HubbardSR, MillerWT. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol. 2007 Apr;19(2):117–23.
How do we know all this?
How do we know all this?
Gherardi E, Sandin S, Petoukhov MV, Finch J,Youles ME, Ofverstedt L-G, et al. Structural basis of hepatocyte growth factor/scatter factor and
MET signalling. Proc Natl Acad Sci USA. 2006 Mar 14;103(11):4046–51.
How do we know all this?
Gherardi E, Sandin S, Petoukhov MV, Finch J,Youles ME, Ofverstedt L-G, et al. Structural basis of hepatocyte growth factor/scatter factor and
MET signalling. Proc Natl Acad Sci USA. 2006 Mar 14;103(11):4046–51.
How do we know all this?
Gherardi E, Sandin S, Petoukhov MV, Finch J,Youles ME, Ofverstedt L-G, et al. Structural basis of hepatocyte growth factor/scatter factor and
MET signalling. Proc Natl Acad Sci USA. 2006 Mar 14;103(11):4046–51.
How do we know all this?
Gherardi E, Sandin S, Petoukhov MV, Finch J,Youles ME, Ofverstedt L-G, et al. Structural basis of hepatocyte growth factor/scatter factor and
MET signalling. Proc Natl Acad Sci USA. 2006 Mar 14;103(11):4046–51.
How do we know all this?
Gherardi E, Sandin S, Petoukhov MV, Finch J,Youles ME, Ofverstedt L-G, et al. Structural basis of hepatocyte growth factor/scatter factor and
MET signalling. Proc Natl Acad Sci USA. 2006 Mar 14;103(11):4046–51.
How do we know all this?
Gherardi E, Sandin S, Petoukhov MV, Finch J,Youles ME, Ofverstedt L-G, et al. Structural basis of hepatocyte growth factor/scatter factor and
MET signalling. Proc Natl Acad Sci USA. 2006 Mar 14;103(11):4046–51.
How do we know all this?
Gherardi E, Sandin S, Petoukhov MV, Finch J,Youles ME, Ofverstedt L-G, et al. Structural basis of hepatocyte growth factor/scatter factor and
MET signalling. Proc Natl Acad Sci USA. 2006 Mar 14;103(11):4046–51.
Gherardi E, Sandin S, Petoukhov MV, Finch J,Youles ME, Ofverstedt L-G, et al. Structural basis of hepatocyte growth factor/scatter factor and
MET signalling. Proc Natl Acad Sci USA. 2006 Mar 14;103(11):4046–51.
How do we know all this?
Signaling Pathways
Signaling Pathways
Signaling Pathways
!
Signaling Pathways
Signaling Pathways
Signaling Pathways
Signaling Pathways
Families of RTK
Chartier M, ChénardT, Barker J, Najmanovich R. Kinome Render: a stand-alone and web-accessible tool to annotate the human protein kinome
tree. PeerJ. 2013 Aug 8;1:e126.
Chartier M, ChénardT, Barker J, Najmanovich R. Kinome Render: a stand-alone and web-accessible tool to annotate the human protein kinome
tree. PeerJ. 2013 Aug 8;1:e126.
Chartier M, ChénardT, Barker J, Najmanovich R. Kinome Render: a stand-alone and web-accessible tool to annotate the human protein kinome
tree. PeerJ. 2013 Aug 8;1:e126.
Families of RTK
Families
Families
Clinically significant
Clinically Significant Families
Clinically Significant Families
EGF PDGF
Insulin VEGF
FGF ROR
NGF MuSK
Clinically Significant Families
Gefitinib
Erlotinib
Lapatinib
Cetuximab
Neratinib
Osimertinib
Panitumumab
Vandetanib
Necitumumab
Clinically Significant Families
EGF PDGF
Insulin VEGF
FGF ROR
NGF MuSK
Insulin
IGF-1
XMetA
4548-G05
Mecasermin
Clinically Significant Families
EGF PDGF
Insulin VEGF
FGF ROR
NGF MuSK
Imatinib
Sunitinib
Sorafenib
Pazopanib
Crenolanib
Nilotinib
Cediranib
Clinically Significant Families
EGF PDGF
Insulin VEGF
FGF ROR
NGF MuSK
Sunitinib
Sorafenib
Pazopanib
Cediranib
Motesanib
Axitinib
Linifenib
Ponatinib
Clinically Significant Families
EGF PDGF
Insulin VEGF
FGF ROR
NGF MuSK
Sorafenib
Pazopanib
Cediranib
Lenvatinib
Dovitinib
Brivanib
Nintedanib
Ponatinib
Lucitanib
Clinically Significant Families
EGF PDGF
Insulin VEGF
FGF ROR
NGF MuSK
PD 90780
Clinically Significant Families
EGF PDGF
Insulin VEGF
FGF ROR
NGF MuSK
Clinically Significant Families
EGF PDGF
Insulin VEGF
FGF ROR
NGF MuSK
Insulin Receptor:What’s different?
Insulin Receptor:What’s different?
Typical RTK
Insulin Receptor:What’s different?
Typical RTK
Insulin Receptor:What’s different?
Typical RTK Insulin Receptor
Insulin Receptor:What’s different?
Typical RTK Insulin Receptor
Insulin Receptor:What’s different?
Typical RTK Insulin Receptor
Monomer Tetramer
Dimerizes during
activation
Already a tetramer
Extracellular
domain
2 Alpha chains
Intracellular
domain
2 Beta chains
α
β β
α
α
β β
α
HubbardSR.The Insulin Receptor: Both a Prototypical andAtypical ReceptorTyrosine Kinase. Cold Spring Harb Perspect Biol. 2013 Mar
1;5(3):a008946.
RTK: Manifest Patterns
RTK: Manifest Patterns
Retinitis pigmentosa
Hypogonadotrophic hypogonadism
Trigoncephaly
Pfeiffer syndrome
Osteoglophonic dysplasia
Apert syndrome
Crouzon syndrome
Jackson–Weiss syndrome
Achondroplasia
Hypochondroplasia
LADD syndrome
Thanatophoric dysplasia
Piebaldism
Myasthenic syndrome
Congenital insensitivity to pain
Robinow syndrome
CML
GIST
Glioma
Renal cell carcinoma
Endocrine pancreatic cancer
Mammary carcinoma
Lung cancer
Colorectal cancer
McDonell LM, Kernohan KD, Boycott KM, Sawyer SL. Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of
the same coin. Hum Mol Genet. 2015 Oct 15;24(R1):R60–6.
RTK: Manifest Patterns
Retinitis pigmentosa
Hypogonadotrophic hypogonadism
Trigoncephaly
Pfeiffer syndrome
Osteoglophonic dysplasia
Apert syndrome
Crouzon syndrome
Jackson–Weiss syndrome
Achondroplasia
Hypochondroplasia
LADD syndrome
Thanatophoric dysplasia
Piebaldism
Myasthenic syndrome
Congenital insensitivity to pain
Robinow syndrome
CML
GIST
Glioma
Renal cell carcinoma
Endocrine pancreatic cancer
Mammary carcinoma
Lung cancer
Colorectal cancer
McDonell LM, Kernohan KD, Boycott KM, Sawyer SL. Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of
the same coin. Hum Mol Genet. 2015 Oct 15;24(R1):R60–6.
Evolution
Understanding
Protein Kinases
Before 1960
1960s
1970
1978
1979
1980-90
Evolution
Discovering
EGF, NGF
1995
Before 1960
1960s
1970
1978
1979
1980-90
Evolution
Insulin
binds to
Cell surface receptor
1995
2001
Before 1960
1960s
1970
1978
1979
1980-90
Evolution
Discovered FGF
1995
2001
2004
Before 1960
1960s
1970
1978
1979
1980-90
Evolution
Discovered PDGF
1995
2001
2004
2008
Before 1960
1960s
1970
1978
1979
1980-90
Evolution
Discovery of various
RTK families
1995
2001
2004
2008
2010
Before 1960
1960s
1970
1978
1979
1980-90
Evolution
PI3KAkt
signaling pathway
established
1995
2001
2004
2008
2010
2011
Before 1960
1960s
1970
1978
1979
1980-90
Evolution
Imatinib
“Gleevec”
FDA Approval
1995
2001
2004
2008
2010
2011
2016
Before 1960
1960s
1970
1978
1979
1980-90
Evolution
Mutations and
resistance,
Gefitinib
1995
2001
2004
2008
2010
2011
2016
2018
Before 1960
1960s
1970
1978
1979
1980-90
Evolution
“Binding
heterogeneity”
for EGFR
1995
2001
2004
2008
2010
2011
2016
2018
1960s
1970
1978
1979
1980-90
Evolution
RTK selectivity and
SH2 domain sites
1995
2001
2004
2008
2010
2011
2016
2018
1970
1978
1979
1980-90
Evolution
FGFR inhibitor
resistance
1995
2001
2004
2008
2010
2011
2016
2018
1978
1979
1980-90 Evolution
RTK role other areas:
First: Renal fibrosis
1995
2001
2004
2008
2010
2011
2016
2018
1979
1980-90
Evolution
ALK family in Cancer
1995
2001
2004
2008
2010
2011
2016
2018
1980-90
Evolution
Development & Pipeline
Development & Pipeline
PIPELINE
Development & Pipeline
Preclinical phase
411
Development & Pipeline
Preclinical phase Clinical phase
411 164
32
Preclinical phase Clinical phase Market
Development &
Pipeline
32
411 164
Development & Pipeline
Imatinib CML 2001
Semaxanib Prematurely ended phase III 2003
Lestaurtinib AML - ORPHAN 2006
Nilotinib CML 2007
Vandetanib Medullary thyroid cancer 2011
Sunitinib RCC 2011
Crizotinib NSCLC 2011
Regorafenib Colorectal cancer 2012
Axitinib Ca Breast 2012
Development & Pipeline
Afatinib NSCLC 2013
Erlotinib NSCLC 2014
Gefitinib Imatinib resitant CML 2015
Dasatinib Discontinued 2016
Tivozanib RCC - EMA 2017
Neratinib Ca Breast 2017
Sorafenib AML
AWAITE
D
Lapatinib Ca Breast
AWAITE
D
• Whether to develop at MTD or OBD?
• Should genome sequencing be done?
• Should we include mutants in the trial?
• Binding to a mutated receptor?
• Therapeutic resistance
Challenges
Open House
Open House
Open House
Open House

Receptor Tyrosine Kinase