SlideShare a Scribd company logo
Mathematical Modeling of Bio-Hybrid Devices:
Towards Polymeric Artificial Retina
Matteo Porro1,2∗
, Nicola Martino1,3
, Sebastiano Bellani1,3
, Caterina Bossio1
,
Riccardo Sacco2
, Guglielmo Lanzani1,3
and Maria Rosa Antognazza1
1
Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Italy - 2
Dipartimento di Matematica,
Politecnico di Milano, Italy - 3
Dipartimento di Fisica, Politecnico di Milano, Italy - ∗
email: matteo.porro@iit.it
Problem
Recently neuroprosthetic interfaces based
on organic photovoltaic materials have been
demonstrated to generate upon illumination
action potentials, with spatial and temporal
resolution, both in cultured neurons [1] and
in blinded dissected rat retina [2].
Working principle: electric or thermal phenomenon?
Electric effect Thermal effect
Active layer
ITO/Glass
Solution
Cell
Pipette
OH‒
Cl‒
Cl‒
OH‒
Na+
K+
Na+
H+
H+
‒
‒
‒ ‒ ‒ ‒
+
+
+
++
hν
K+
+
OH‒ Cl‒OH‒
Na+ K+
Na+
H+
hν
K+
Cl‒
OH‒
Cl‒
Heat
Light is absorbed and free charge carri-
ers are generated in the active layer
Charge displacement determines
capacitive effects in the solution cleft
Light is absorbed and heat is produced
The temperature of the solution in-
creases and the cell capacitance and
ion channel conductances change
Ions rearrange in the electrolyte
The membrane is depolarized and an action potential is generated
Substrate electrical model
Transient photovoltage measurements have been performed chang-
ing device thickness, illumination intensity and direction.
0 100 200 300
−150
−100
−50
0
Time [ms]
Voltage[mV]
0 100 200 300
−150
−100
−50
0
Time [ms]
Voltage[mV]
65
115
161
187
400
20
23
26
26
33
0 100 200 300
−120
−100
−80
−60
−40
−20
0
Time [ms]
Voltage[mV]
4.68
8.08
18.5
39.2
76.4
121.0
197.5
267.5
Change thickness
Light from ITO
Change thickness
Light from solution
Change intensity
Light from ITO
From these evidences we propose the following working principle:
ITO
Electrolyte
+
_
+
_
Exciton
hυ
+
_
Diffusion
Electron
Hole
Electric
field
Exciton dissociation at the ITO in-
terface
Electrons are trapped at the surface
and holes diffuse in the polymer
Charge displacement determines
the photovoltage
When light is switched off, holes
move back to the ITO interface, re-
combine with electrons and the pho-
tovoltage vanishes.
Continuum-based device model with the following assumptions:
Drift-Diffusion fluxes
No reactions and negligible
electric field at the interface
with the solution
Bimolecular recombination
Light absorption:
Beer-Lambert law
Trapped electrons deter-
mine a surface charge dis-
tribution at the ITO.
0 100 200 300 400
50
75
100
125
150
175
Thickness [nm]
Peakvoltage[mV]
0 100 200 300 400
0
5
10
15
Thickness [nm]
Risetime[ms]
ITO side exp
ITO side sim
Solution side exp
Solution side sim
0 50 100 150 200 250 300
0
25
50
75
100
125
Intensity [µW mm−2
]
Peakvoltage[mV]
0 50 100 150 200 250 300
0
5
10
15
20
25
30
35
Intensity [µW mm−2
]
Characteristictime[ms]
Experiment
Simulation
With light from the solution
side, most of the excitons are
generated far from the dissoci-
ation region. Hence for thick
devices charge generation is
less efficient.
Changing light intensity Ilight,
photovoltage peak values and
rise time scale as Ilight and
1/ Ilight respectively.
Thermal and cell model
Temperature is probed with a
pipette close to the polymer
interface.
The phenomenon is modeled
using standard heat diffusion
theory and assuming that all
the absorbed energy is trans-
ferred to the solution as heat. 0 100 200 300 400 500
22
24
26
28
30
Time [ms]
T[°C]
0 100 200 300 400 500
−1.5
−1
−0.5
0
0.5
1
1.5
Time [ms]
ΔV[mV]
Patch clamp technique is used
to measure changes in membrane
voltage, resistance and capaci-
tance of several cells (n=51).
Normalizedcapacitance[−]
Time [ms]
0 200 400 600 800
0.8
0.9
1
1.1
Normalizedresistance[−]
1
1.01
1.02
1.03
0 200 400 600 800
Time [ms]
Cell membrane is
modeled with an RC
circuit and temper-
ature dependence
of the parameters is
included.
gM(T) = gM,0
T − T0
10
Q10
VR(T) = VR,0
T
T0
αVR
CM(T) = CM,0 1 + αCM
(T − T0)
cM
VC
gM
VR
I =0P
Vσ
0 100 200 300 400 500
−33
−32.5
−32
−31.5
−31
Time [ms]
V
C
[mV]
Measure
Resting voltage
Capacitive
Model
Good agreement between mea-
surements and model results.
Fitted value of αCM
(0.0031 K−1
) is
consistent with previous results in
literature [3].
Funding
This work was supported by EU project OLIMPIA, FP7-PEOPLE- 212-ITN 316832
References
[1] D. Ghezzi, M.R. Antognazza, M. dal Maschio, E. Lanzarini, F. Benfenati and G. Lan-
zani. A hybrid bioorganic interface for neuronal photoactivation. Nature Communi-
cations, 2, 166, 2011.
[2] D. Ghezzi, M.R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino,
M. Mete, G. Pertile, S. Bisti, G. Lanzani and F. Benfenati. A polymer optoelectronic
interface restores light sensitivity in blind rat retinas. Nature Photonics, 7(5), 400-
406, 2013.
[3] M.G. Shapiro, K. Homma, S. Villarreal, C.P. Richter, F. Bezanilla. Infrared light
excites cells by changing their electrical capacitance. Nature communications, 3,
736, 2012.

More Related Content

What's hot

Cassie-Negar Poster 9-28-15 CC
Cassie-Negar Poster 9-28-15 CCCassie-Negar Poster 9-28-15 CC
Cassie-Negar Poster 9-28-15 CC
Cassandra Clark
 
TEM
TEMTEM
TEM
RaguM6
 
Generation of dsa for security application
Generation of dsa for security applicationGeneration of dsa for security application
Generation of dsa for security application
University of Malaya (UM)
 
Why nano is important
Why nano is importantWhy nano is important
Why nano is important
Ashish Goel
 
The Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesThe Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting Oxides
University of Liverpool
 
All-polymer based fabrication process for an all-polymer flexible and paralle...
All-polymer based fabrication process for an all-polymer flexible and paralle...All-polymer based fabrication process for an all-polymer flexible and paralle...
All-polymer based fabrication process for an all-polymer flexible and paralle...
Jilin Yang
 
Measurement of magnetic moments of nanoparticles using theoretical approach.
Measurement of magnetic moments of nanoparticles using theoretical approach.Measurement of magnetic moments of nanoparticles using theoretical approach.
Measurement of magnetic moments of nanoparticles using theoretical approach.
UCP
 
Molecular dynamics simulations of ferroelectrics with feram code
Molecular dynamics simulations of ferroelectrics with feram codeMolecular dynamics simulations of ferroelectrics with feram code
Molecular dynamics simulations of ferroelectrics with feram code
Takeshi Nishimatsu
 
APS march meeting 2012
APS march meeting 2012APS march meeting 2012
APS march meeting 2012
Po-Chun Yeh
 
Elastic moduli measurement of solid using ultrasonic technique
Elastic moduli measurement of solid using ultrasonic techniqueElastic moduli measurement of solid using ultrasonic technique
Elastic moduli measurement of solid using ultrasonic technique
Abu Sufyan Malik
 
Properties of nano materials
Properties of nano materialsProperties of nano materials
Properties of nano materials
Mohd. Bilal
 
Advancements in edm
Advancements in edmAdvancements in edm
Advancements in edm
Vysakh P
 
Photovoltaic cell
Photovoltaic cellPhotovoltaic cell
Photovoltaic cell
Preeti Choudhary
 
APS march meeting 2015
APS march meeting 2015APS march meeting 2015
APS march meeting 2015
Po-Chun Yeh
 
Optical properties materials_studio_55
Optical properties materials_studio_55Optical properties materials_studio_55
Optical properties materials_studio_55
BIOVIA
 
CEO_finalREUposter [3]
CEO_finalREUposter [3]CEO_finalREUposter [3]
CEO_finalREUposter [3]
Catherine Oliver
 
Electron beam processes ppt
Electron beam processes pptElectron beam processes ppt
Electron beam processes ppt
Dipo Elegbs
 
Poster Presentation Final
Poster Presentation FinalPoster Presentation Final
Poster Presentation Final
mchu4545
 
Sentry TSA Data
Sentry TSA DataSentry TSA Data
Sentry TSA Data
DAE SOON IM
 
Final Presentation
Final PresentationFinal Presentation
Final Presentation
Robert Schurz
 

What's hot (20)

Cassie-Negar Poster 9-28-15 CC
Cassie-Negar Poster 9-28-15 CCCassie-Negar Poster 9-28-15 CC
Cassie-Negar Poster 9-28-15 CC
 
TEM
TEMTEM
TEM
 
Generation of dsa for security application
Generation of dsa for security applicationGeneration of dsa for security application
Generation of dsa for security application
 
Why nano is important
Why nano is importantWhy nano is important
Why nano is important
 
The Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesThe Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting Oxides
 
All-polymer based fabrication process for an all-polymer flexible and paralle...
All-polymer based fabrication process for an all-polymer flexible and paralle...All-polymer based fabrication process for an all-polymer flexible and paralle...
All-polymer based fabrication process for an all-polymer flexible and paralle...
 
Measurement of magnetic moments of nanoparticles using theoretical approach.
Measurement of magnetic moments of nanoparticles using theoretical approach.Measurement of magnetic moments of nanoparticles using theoretical approach.
Measurement of magnetic moments of nanoparticles using theoretical approach.
 
Molecular dynamics simulations of ferroelectrics with feram code
Molecular dynamics simulations of ferroelectrics with feram codeMolecular dynamics simulations of ferroelectrics with feram code
Molecular dynamics simulations of ferroelectrics with feram code
 
APS march meeting 2012
APS march meeting 2012APS march meeting 2012
APS march meeting 2012
 
Elastic moduli measurement of solid using ultrasonic technique
Elastic moduli measurement of solid using ultrasonic techniqueElastic moduli measurement of solid using ultrasonic technique
Elastic moduli measurement of solid using ultrasonic technique
 
Properties of nano materials
Properties of nano materialsProperties of nano materials
Properties of nano materials
 
Advancements in edm
Advancements in edmAdvancements in edm
Advancements in edm
 
Photovoltaic cell
Photovoltaic cellPhotovoltaic cell
Photovoltaic cell
 
APS march meeting 2015
APS march meeting 2015APS march meeting 2015
APS march meeting 2015
 
Optical properties materials_studio_55
Optical properties materials_studio_55Optical properties materials_studio_55
Optical properties materials_studio_55
 
CEO_finalREUposter [3]
CEO_finalREUposter [3]CEO_finalREUposter [3]
CEO_finalREUposter [3]
 
Electron beam processes ppt
Electron beam processes pptElectron beam processes ppt
Electron beam processes ppt
 
Poster Presentation Final
Poster Presentation FinalPoster Presentation Final
Poster Presentation Final
 
Sentry TSA Data
Sentry TSA DataSentry TSA Data
Sentry TSA Data
 
Final Presentation
Final PresentationFinal Presentation
Final Presentation
 

Viewers also liked

porro_msh_2012
porro_msh_2012porro_msh_2012
porro_msh_2012
Matteo Porro
 
Integrating Organic Photovoltaics and Tension Membrane Fabrics
Integrating Organic Photovoltaics and Tension Membrane FabricsIntegrating Organic Photovoltaics and Tension Membrane Fabrics
Integrating Organic Photovoltaics and Tension Membrane Fabrics
Center for Sustainable Energy
 
Oerlikon Solar
Oerlikon SolarOerlikon Solar
Oerlikon Solar
Suat Furkan ISIK
 
MANUFACTURE OF ORGANIC PHOTOVOLTAICS
MANUFACTURE OF ORGANIC PHOTOVOLTAICSMANUFACTURE OF ORGANIC PHOTOVOLTAICS
MANUFACTURE OF ORGANIC PHOTOVOLTAICS
Suat Furkan ISIK
 
Organic Solar Cells
Organic Solar CellsOrganic Solar Cells
Organic Solar Cells
Vishal Shrotriya
 
Polymer based-solar-cells
Polymer based-solar-cellsPolymer based-solar-cells
Polymer based-solar-cells
Mechanical Online
 
OPV Patents - Organext
OPV Patents - OrganextOPV Patents - Organext
OPV Patents - Organext
Julie Leroy
 
Nano hub u-oed-boudouris-l4.1
Nano hub u-oed-boudouris-l4.1Nano hub u-oed-boudouris-l4.1
Nano hub u-oed-boudouris-l4.1
Elisabeta Stamate
 
Organic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerations
cdtpv
 
Organic Photovoltaic Solar Cell Technology Strategy
Organic Photovoltaic Solar Cell Technology StrategyOrganic Photovoltaic Solar Cell Technology Strategy
Organic Photovoltaic Solar Cell Technology Strategy
Jimmy Pan
 
SKYSades SoCal - Tensile Architecture Overview
SKYSades SoCal - Tensile Architecture OverviewSKYSades SoCal - Tensile Architecture Overview
SKYSades SoCal - Tensile Architecture Overview
SKYShadesSoCal
 
Polymer Solar Cell
Polymer Solar CellPolymer Solar Cell
Polymer Solar Cell
Ravinder Kumar
 
Organic solar cell
Organic solar cellOrganic solar cell
Organic solar cell
Anish Das
 
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsSolar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic Photovoltaics
Tuong Do
 
Developments in organic solar cells
Developments in organic solar cellsDevelopments in organic solar cells
Developments in organic solar cells
Akinola Oyedele
 
Polymeric materials for organic solar cells
Polymeric materials for organic solar cellsPolymeric materials for organic solar cells
Polymeric materials for organic solar cells
Neslihan Yagmur
 
organic solar cell
organic solar cellorganic solar cell
organic solar cell
Rahul Bibave
 
Maximum power point tracking.......saq
Maximum power point tracking.......saqMaximum power point tracking.......saq
Maximum power point tracking.......saq
Saquib Maqsood
 
Solar photovoltaic powerpoint
Solar photovoltaic powerpointSolar photovoltaic powerpoint
Solar photovoltaic powerpoint
William Wallace
 
Solar photovoltaic systems
Solar photovoltaic systemsSolar photovoltaic systems
Solar photovoltaic systems
anish_hercules
 

Viewers also liked (20)

porro_msh_2012
porro_msh_2012porro_msh_2012
porro_msh_2012
 
Integrating Organic Photovoltaics and Tension Membrane Fabrics
Integrating Organic Photovoltaics and Tension Membrane FabricsIntegrating Organic Photovoltaics and Tension Membrane Fabrics
Integrating Organic Photovoltaics and Tension Membrane Fabrics
 
Oerlikon Solar
Oerlikon SolarOerlikon Solar
Oerlikon Solar
 
MANUFACTURE OF ORGANIC PHOTOVOLTAICS
MANUFACTURE OF ORGANIC PHOTOVOLTAICSMANUFACTURE OF ORGANIC PHOTOVOLTAICS
MANUFACTURE OF ORGANIC PHOTOVOLTAICS
 
Organic Solar Cells
Organic Solar CellsOrganic Solar Cells
Organic Solar Cells
 
Polymer based-solar-cells
Polymer based-solar-cellsPolymer based-solar-cells
Polymer based-solar-cells
 
OPV Patents - Organext
OPV Patents - OrganextOPV Patents - Organext
OPV Patents - Organext
 
Nano hub u-oed-boudouris-l4.1
Nano hub u-oed-boudouris-l4.1Nano hub u-oed-boudouris-l4.1
Nano hub u-oed-boudouris-l4.1
 
Organic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerations
 
Organic Photovoltaic Solar Cell Technology Strategy
Organic Photovoltaic Solar Cell Technology StrategyOrganic Photovoltaic Solar Cell Technology Strategy
Organic Photovoltaic Solar Cell Technology Strategy
 
SKYSades SoCal - Tensile Architecture Overview
SKYSades SoCal - Tensile Architecture OverviewSKYSades SoCal - Tensile Architecture Overview
SKYSades SoCal - Tensile Architecture Overview
 
Polymer Solar Cell
Polymer Solar CellPolymer Solar Cell
Polymer Solar Cell
 
Organic solar cell
Organic solar cellOrganic solar cell
Organic solar cell
 
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsSolar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic Photovoltaics
 
Developments in organic solar cells
Developments in organic solar cellsDevelopments in organic solar cells
Developments in organic solar cells
 
Polymeric materials for organic solar cells
Polymeric materials for organic solar cellsPolymeric materials for organic solar cells
Polymeric materials for organic solar cells
 
organic solar cell
organic solar cellorganic solar cell
organic solar cell
 
Maximum power point tracking.......saq
Maximum power point tracking.......saqMaximum power point tracking.......saq
Maximum power point tracking.......saq
 
Solar photovoltaic powerpoint
Solar photovoltaic powerpointSolar photovoltaic powerpoint
Solar photovoltaic powerpoint
 
Solar photovoltaic systems
Solar photovoltaic systemsSolar photovoltaic systems
Solar photovoltaic systems
 

Similar to poster_icoe2014

Lecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaouiLecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaoui
Prof. Dr. Ahmed Ennaoui
 
Report_Paulo_Melo_LabI
Report_Paulo_Melo_LabIReport_Paulo_Melo_LabI
Report_Paulo_Melo_LabI
Paulo Melo
 
Physical Modeling and Design for Phase Change Memories
Physical Modeling and Design for Phase Change MemoriesPhysical Modeling and Design for Phase Change Memories
Physical Modeling and Design for Phase Change Memories
IEEE Computer Society Computing Now
 
Ijetcas14 643
Ijetcas14 643Ijetcas14 643
Ijetcas14 643
Iasir Journals
 
Simulation and Modeling of Silicon Based Single Electron Transistor
Simulation and Modeling of Silicon Based Single Electron TransistorSimulation and Modeling of Silicon Based Single Electron Transistor
Simulation and Modeling of Silicon Based Single Electron Transistor
IJECEIAES
 
Electron Microscopy Principle and Application
Electron Microscopy Principle and ApplicationElectron Microscopy Principle and Application
Electron Microscopy Principle and Application
KARTHIK REDDY C A
 
Transmission Electron Microscope
Transmission Electron MicroscopeTransmission Electron Microscope
Transmission Electron Microscope
20was
 
Nanotechnology and display applications.pdf
Nanotechnology and display applications.pdfNanotechnology and display applications.pdf
Nanotechnology and display applications.pdf
NirmalM15
 
lugli_slides.ppt
lugli_slides.pptlugli_slides.ppt
lugli_slides.ppt
NirmalM15
 
poster9_smallfonts_ms
poster9_smallfonts_msposter9_smallfonts_ms
poster9_smallfonts_ms
Matteo Porro
 
JOHN_RAE_1102333_PROJECTREPORT
JOHN_RAE_1102333_PROJECTREPORTJOHN_RAE_1102333_PROJECTREPORT
JOHN_RAE_1102333_PROJECTREPORT
John Rae
 
Uuden millenium palkitun aurinkokennon tulevaisuus
Uuden millenium palkitun aurinkokennon tulevaisuusUuden millenium palkitun aurinkokennon tulevaisuus
Uuden millenium palkitun aurinkokennon tulevaisuus
Sähköklubi
 
4.2.cappelli 06(3)
4.2.cappelli 06(3)4.2.cappelli 06(3)
4.2.cappelli 06(3)
ELIMENG
 
4.2.cappelli 06(2)
4.2.cappelli 06(2)4.2.cappelli 06(2)
4.2.cappelli 06(2)
ELIMENG
 
4.2.cappelli 06
4.2.cappelli 064.2.cappelli 06
4.2.cappelli 06
ELIMENG
 
4.2.cappelli 06(1)
4.2.cappelli 06(1)4.2.cappelli 06(1)
4.2.cappelli 06(1)
ELIMENG
 
Zno and znopbs heterojunction photo electrochemical cells
Zno and znopbs heterojunction photo electrochemical cellsZno and znopbs heterojunction photo electrochemical cells
Zno and znopbs heterojunction photo electrochemical cells
eSAT Journals
 
322253456-NANOELECTRONICS-ppt of engineering
322253456-NANOELECTRONICS-ppt of engineering322253456-NANOELECTRONICS-ppt of engineering
322253456-NANOELECTRONICS-ppt of engineering
t24042567
 
Quantitative Modeling and Simulation of Single-Electron Transistor
Quantitative Modeling and Simulation of Single-Electron TransistorQuantitative Modeling and Simulation of Single-Electron Transistor
Quantitative Modeling and Simulation of Single-Electron Transistor
IRJET Journal
 
Transmission electron microscope
Transmission electron microscopeTransmission electron microscope
Transmission electron microscope
Raj Mohan
 

Similar to poster_icoe2014 (20)

Lecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaouiLecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaoui
 
Report_Paulo_Melo_LabI
Report_Paulo_Melo_LabIReport_Paulo_Melo_LabI
Report_Paulo_Melo_LabI
 
Physical Modeling and Design for Phase Change Memories
Physical Modeling and Design for Phase Change MemoriesPhysical Modeling and Design for Phase Change Memories
Physical Modeling and Design for Phase Change Memories
 
Ijetcas14 643
Ijetcas14 643Ijetcas14 643
Ijetcas14 643
 
Simulation and Modeling of Silicon Based Single Electron Transistor
Simulation and Modeling of Silicon Based Single Electron TransistorSimulation and Modeling of Silicon Based Single Electron Transistor
Simulation and Modeling of Silicon Based Single Electron Transistor
 
Electron Microscopy Principle and Application
Electron Microscopy Principle and ApplicationElectron Microscopy Principle and Application
Electron Microscopy Principle and Application
 
Transmission Electron Microscope
Transmission Electron MicroscopeTransmission Electron Microscope
Transmission Electron Microscope
 
Nanotechnology and display applications.pdf
Nanotechnology and display applications.pdfNanotechnology and display applications.pdf
Nanotechnology and display applications.pdf
 
lugli_slides.ppt
lugli_slides.pptlugli_slides.ppt
lugli_slides.ppt
 
poster9_smallfonts_ms
poster9_smallfonts_msposter9_smallfonts_ms
poster9_smallfonts_ms
 
JOHN_RAE_1102333_PROJECTREPORT
JOHN_RAE_1102333_PROJECTREPORTJOHN_RAE_1102333_PROJECTREPORT
JOHN_RAE_1102333_PROJECTREPORT
 
Uuden millenium palkitun aurinkokennon tulevaisuus
Uuden millenium palkitun aurinkokennon tulevaisuusUuden millenium palkitun aurinkokennon tulevaisuus
Uuden millenium palkitun aurinkokennon tulevaisuus
 
4.2.cappelli 06(3)
4.2.cappelli 06(3)4.2.cappelli 06(3)
4.2.cappelli 06(3)
 
4.2.cappelli 06(2)
4.2.cappelli 06(2)4.2.cappelli 06(2)
4.2.cappelli 06(2)
 
4.2.cappelli 06
4.2.cappelli 064.2.cappelli 06
4.2.cappelli 06
 
4.2.cappelli 06(1)
4.2.cappelli 06(1)4.2.cappelli 06(1)
4.2.cappelli 06(1)
 
Zno and znopbs heterojunction photo electrochemical cells
Zno and znopbs heterojunction photo electrochemical cellsZno and znopbs heterojunction photo electrochemical cells
Zno and znopbs heterojunction photo electrochemical cells
 
322253456-NANOELECTRONICS-ppt of engineering
322253456-NANOELECTRONICS-ppt of engineering322253456-NANOELECTRONICS-ppt of engineering
322253456-NANOELECTRONICS-ppt of engineering
 
Quantitative Modeling and Simulation of Single-Electron Transistor
Quantitative Modeling and Simulation of Single-Electron TransistorQuantitative Modeling and Simulation of Single-Electron Transistor
Quantitative Modeling and Simulation of Single-Electron Transistor
 
Transmission electron microscope
Transmission electron microscopeTransmission electron microscope
Transmission electron microscope
 

poster_icoe2014

  • 1. Mathematical Modeling of Bio-Hybrid Devices: Towards Polymeric Artificial Retina Matteo Porro1,2∗ , Nicola Martino1,3 , Sebastiano Bellani1,3 , Caterina Bossio1 , Riccardo Sacco2 , Guglielmo Lanzani1,3 and Maria Rosa Antognazza1 1 Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Italy - 2 Dipartimento di Matematica, Politecnico di Milano, Italy - 3 Dipartimento di Fisica, Politecnico di Milano, Italy - ∗ email: matteo.porro@iit.it Problem Recently neuroprosthetic interfaces based on organic photovoltaic materials have been demonstrated to generate upon illumination action potentials, with spatial and temporal resolution, both in cultured neurons [1] and in blinded dissected rat retina [2]. Working principle: electric or thermal phenomenon? Electric effect Thermal effect Active layer ITO/Glass Solution Cell Pipette OH‒ Cl‒ Cl‒ OH‒ Na+ K+ Na+ H+ H+ ‒ ‒ ‒ ‒ ‒ ‒ + + + ++ hν K+ + OH‒ Cl‒OH‒ Na+ K+ Na+ H+ hν K+ Cl‒ OH‒ Cl‒ Heat Light is absorbed and free charge carri- ers are generated in the active layer Charge displacement determines capacitive effects in the solution cleft Light is absorbed and heat is produced The temperature of the solution in- creases and the cell capacitance and ion channel conductances change Ions rearrange in the electrolyte The membrane is depolarized and an action potential is generated Substrate electrical model Transient photovoltage measurements have been performed chang- ing device thickness, illumination intensity and direction. 0 100 200 300 −150 −100 −50 0 Time [ms] Voltage[mV] 0 100 200 300 −150 −100 −50 0 Time [ms] Voltage[mV] 65 115 161 187 400 20 23 26 26 33 0 100 200 300 −120 −100 −80 −60 −40 −20 0 Time [ms] Voltage[mV] 4.68 8.08 18.5 39.2 76.4 121.0 197.5 267.5 Change thickness Light from ITO Change thickness Light from solution Change intensity Light from ITO From these evidences we propose the following working principle: ITO Electrolyte + _ + _ Exciton hυ + _ Diffusion Electron Hole Electric field Exciton dissociation at the ITO in- terface Electrons are trapped at the surface and holes diffuse in the polymer Charge displacement determines the photovoltage When light is switched off, holes move back to the ITO interface, re- combine with electrons and the pho- tovoltage vanishes. Continuum-based device model with the following assumptions: Drift-Diffusion fluxes No reactions and negligible electric field at the interface with the solution Bimolecular recombination Light absorption: Beer-Lambert law Trapped electrons deter- mine a surface charge dis- tribution at the ITO. 0 100 200 300 400 50 75 100 125 150 175 Thickness [nm] Peakvoltage[mV] 0 100 200 300 400 0 5 10 15 Thickness [nm] Risetime[ms] ITO side exp ITO side sim Solution side exp Solution side sim 0 50 100 150 200 250 300 0 25 50 75 100 125 Intensity [µW mm−2 ] Peakvoltage[mV] 0 50 100 150 200 250 300 0 5 10 15 20 25 30 35 Intensity [µW mm−2 ] Characteristictime[ms] Experiment Simulation With light from the solution side, most of the excitons are generated far from the dissoci- ation region. Hence for thick devices charge generation is less efficient. Changing light intensity Ilight, photovoltage peak values and rise time scale as Ilight and 1/ Ilight respectively. Thermal and cell model Temperature is probed with a pipette close to the polymer interface. The phenomenon is modeled using standard heat diffusion theory and assuming that all the absorbed energy is trans- ferred to the solution as heat. 0 100 200 300 400 500 22 24 26 28 30 Time [ms] T[°C] 0 100 200 300 400 500 −1.5 −1 −0.5 0 0.5 1 1.5 Time [ms] ΔV[mV] Patch clamp technique is used to measure changes in membrane voltage, resistance and capaci- tance of several cells (n=51). Normalizedcapacitance[−] Time [ms] 0 200 400 600 800 0.8 0.9 1 1.1 Normalizedresistance[−] 1 1.01 1.02 1.03 0 200 400 600 800 Time [ms] Cell membrane is modeled with an RC circuit and temper- ature dependence of the parameters is included. gM(T) = gM,0 T − T0 10 Q10 VR(T) = VR,0 T T0 αVR CM(T) = CM,0 1 + αCM (T − T0) cM VC gM VR I =0P Vσ 0 100 200 300 400 500 −33 −32.5 −32 −31.5 −31 Time [ms] V C [mV] Measure Resting voltage Capacitive Model Good agreement between mea- surements and model results. Fitted value of αCM (0.0031 K−1 ) is consistent with previous results in literature [3]. Funding This work was supported by EU project OLIMPIA, FP7-PEOPLE- 212-ITN 316832 References [1] D. Ghezzi, M.R. Antognazza, M. dal Maschio, E. Lanzarini, F. Benfenati and G. Lan- zani. A hybrid bioorganic interface for neuronal photoactivation. Nature Communi- cations, 2, 166, 2011. [2] D. Ghezzi, M.R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani and F. Benfenati. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nature Photonics, 7(5), 400- 406, 2013. [3] M.G. Shapiro, K. Homma, S. Villarreal, C.P. Richter, F. Bezanilla. Infrared light excites cells by changing their electrical capacitance. Nature communications, 3, 736, 2012.