SlideShare a Scribd company logo
1 of 48
Cahen-Hodes Weizmann Inst. of Science 1-2015
Photovoltaics:
Fundamental concepts and novel
systems
Preeti Choudhary
chaudharypreeti1997@gmail.com
MSc (Applied Physics)
Cahen-Hodes Weizmann Inst. of Science 1-2015
Photovoltaics:
Fundamental concepts and novel systems
First practical photovoltaic cell:
Chapin, Fuller, Pearson,
Bell Labs, 1954: 6% efficiency
Cahen-Hodes Weizmann Inst. of Science 1-2015
Outline
ā€¢ Energy levels ļƒ  bands
ā€¢ Doping of semiconductors
ā€¢ Energy band alignments between different phases
ā€¢ Space charge layers
ā€¢ p-n junctions, Schottky barriers
ā€¢ p-n cells, Si cells, thin film cells
ā€¢ Schottky cells (solid and liquid junction)
ā€¢ p-i-n cells
ā€¢ Fundamental limits of photovoltaic cells
ā€¢ How to overcome/ bypass these limits
ā€¢ New generation cells (brief survey)
ā€¢ PV stability, efficiencies and economics
Cahen-Hodes Weizmann Inst. of Science 1-2015
From energy levels to bands
E
If EG < ~100-150x kTB
ļƒ  semiconductor
1
e
-
energy
EG
EV
EC
CB
VB
HOMO
LUMO
Cahen-Hodes Weizmann Inst. of Science 1-2015
Doping of semiconductors
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si
Si Si Si Si
Si Si Si Si
As
B C N
Al Si P
Ga Ge As
EC
E
EV
EG 1.1 eV
n-type
As5+ ---> 4e-+ e-
donors (ND)
EF = Fermi level (~electrochemical
potential of electrons
+ + + + + + + + + + + +
ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ
Free electrons in CB
Cahen-Hodes Weizmann Inst. of Science 1-2015
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si Si
B C N
Al Si P
Ga Ge As
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si
B
1018
1016
DE = kTln(ND/NC)
0 or
ND=NA
1010
1
e
-
energy
Doping of semiconductors -2
p-type
B3+ ---> 3e- - e-
Acceptors (NA)
EC
EV
EF
ļ‚¢ ļ‚¢ ļ‚¢ ļ‚¢ ļ‚¢ ļ‚¢ ļ‚¢ ļ‚¢ ļ‚¢
Free holes
in VB
Cahen-Hodes Weizmann Inst. of Science 1-2015
Energy band alignments between different phases
n-type
semiconductor
Evac
metal
EF
work function
electron affinity
e-
space charge
layer
ļƒ  Formation of a metal - semiconductor junction
n-type p-type
space charge layer
ļƒ  Formation of a p-n homojunction
1
e
-
energy
1
e
-
energy
space coordinate
Cahen-Hodes Weizmann Inst. of Science 1-2015
Space Charge layers
Width of space charge layer inversely proportional
to [doping density]1/2
2ee0V
qND(A)
1/2
W =
Typical widths of space charge layer:
N = 1022/cc (metallic) ƅngstroms (~ 1-2 atomic layers)
N = 1018/cc (heavily doped semiconductor) 10s of nm
N = 1016/cc (medium doped semiconductor) 100s of nm
N = 1014/cc (low doped semiconductor) few Āµm
In a photovoltaic cell, the width of the space charge layer should be wide enough
to absorb most of the light in the E-field region ā€“a few 100 nm in a typical cell.
Light absorption I = I0e-ad
space charge
layer
Cahen-Hodes Weizmann Inst. of Science 1-2015
Basics of photovoltaic cells
EC
EV
EF
e-
h+
hn
Charge separation in energy
Charge separation in space
e-
hn
h+
space coordinate
1
e
-
energy
1
e
-
energy
Cahen-Hodes Weizmann Inst. of Science 1-2015
e-
hn
h+
Amps
@ short circuit
VOC
Volts
@ open-circuit
V
load
@maximum power
Basics of photovoltaic cells
Cahen-Hodes Weizmann Inst. of Science 1-2015
ISC
VOC
max power
fill factor = (I mp . Vmp) / (I SC . VOC)
mp : max power
Voltage
Current
Dark- and Photo- I-V (current-voltage)
characteristics of a PV cell
Cahen-Hodes Weizmann Inst. of Science 1-2015
Other ways of creating a built-in field to separate charges
p-n heterojunction
CdTe/CdS
CdS
CdTe
back contact (Cu/Cu2Te)
TCO front contact
CdTe
CdS
e-
h+
Silicon
homojunction
Cahen-Hodes Weizmann Inst. of Science 1-2015
Ginley, Collins & Cahen in Ginley & Cahen,
Fundamentals of Materials for Energyā€¦
space
1
e
-
energy
ā€¢Absorb light
ā€¢Absorbed light creates carriers
ā€¢Carrier collection, by diffusion, drift
Summary of how p-n junction PV cell works
Cahen-Hodes Weizmann Inst. of Science 1-2015
n-type
semiconductor
E0
metal
EF
work function
electron affinity
space charge
layer
Metal-semiconductor junction
(with semiconductor/ liquid electrolyte junction ļƒ 
photoelectrochemical cell [PEC], where EF ā‰… ERedox
Other ways of creating a built-in field to separate charges -2
Cahen-Hodes Weizmann Inst. of Science 1-2015
p-i-n (I = insulator) cell
EO
EC
EV
N = 1018/cc (heavily doped semiconductor)
10s of nm
N = 1016/cc (medium doped semiconductor)
100s of nm
N = 1014/cc (low doped semiconductor)
few Āµm
Reminder of
typical space charge layer widths
Other ways of creating a built-in field to separate charges -3
Cahen-Hodes Weizmann Inst. of Science 1-2015
Chapin
Fuller
Pearson
1954
2014
Cahen-Hodes Weizmann Inst. of Science 1-2015
Si (crystalline) cells : 1st generation cells
(thin film) CdTe, CIGS, Ī±-Si : 2nd generation cells
Dye cells, organic cells and related ones : 3rd generation cells
There are newer ones and ā€˜generation numberā€™ becomes fuzzy at this stage
Solar cell generations
Cahen-Hodes Weizmann Inst. of Science 1-2015
Organic
CdTe
GaAs
ā€œthe
single
crystal
divideā€
Cahen-Hodes Weizmann Inst. of Science 1-2015
one
electron
energy
space
Generalized picture
ā€¢Metastable high and low energy
states
ā€¢Absorber transfers charges into
high and low energy state
ā€¢Driving force brings charges to
contacts
ā€¢Selective contacts
(1) cf. e.g., Green, M.A., Photovoltaic principles. Physica E, 14 (2002) 11-17
The Photovoltaic (PV) effect:
High
energy
state
Low
energy
state
Absorber
e-
p+
contact
contact
Cahen-Hodes Weizmann Inst. of Science 1-2015
e -
-
voltage ( qV)
e -
n-type
p-type
hn
h +
e -
useable photo -
voltage ( qV)
Energy
e -
n-type
p-type
hn
h +
Fundamental losses in single junction
solar cell
O. Niitsoo
space
high energy photon ā€“ partial loss
low energy photon ā€“ total loss
Cahen-Hodes Weizmann Inst. of Science 1-2015
>Eg
thermalized
< Eg
not absorbed
Etendu; Photon entropy ā€“TD
~0.3eV @RT, lack of concentration
Carnot factor ā€“TD
Emission loss- (current)
Electrical power out
Current ā€“ Voltage Characteristics
After Hirst & Ekins-Daukes
Prog.Photovolt:Res:Appl. (2010)
All fundamental losses in PV cell
0 1 2 3 4
0
10
20
30
40
50
60
70
80
Current
(mA/cm
2
)
Energy (eV)
Eg
Nayak, ā€¦ā€¦, Cahen., Energy Environ. Sci., 2012
Cahen-Hodes Weizmann Inst. of Science 1-2015
Shockley-Queisser* (SQ) Limit
0.5 1.0 1.5 2.0 2.5
5
10
15
20
25
30
OPV
CIGS
c-Si
Efficiency
(%)
Band Gap (eV)
GaAs
InP
CdTe
DSC
a-Si
SQ Limit
detailed balance,
photons-in = electrons-out + photons-
out;
on earth, @ RT,
for single absorber / junction;
cf. also Duysens (1958) ā€œThe path of light in photosynthesisā€; Brookhaven Symp. Biol.
Prince, JAP 26 (1955) 534
Loferski, JAP 27 (1956) 777
Shockley & Queisser JAP (1961)
Cahen-Hodes Weizmann Inst. of Science 1-2015
How to circumvent SQ and other losses?
Better utilization of sunlight: Photon management:
Multi-bandgap, multi-junction photovoltaics
GaInP2 Eg = 1.8-1.9 eV up to 1.45 V VOC
Cahen-Hodes Weizmann Inst. of Science 1-2015
Up-conversion for a single junction
2 photons of energy 0.5 Eg< hĪ½< Eg
are converted to 1 photon of hĪ½> Eg
How to circumvent these losses?
Cahen-Hodes Weizmann Inst. of Science 1-2015
Down-conversion for a single junction
1 photon of energy hĪ½ > 2Eg
is converted into 2 photons of hĪ½ > Eg
How to circumvent these losses?
Cahen-Hodes Weizmann Inst. of Science 1-2015
Other ways to beat the SQ limit
e-
h+
e-
e-
h+ h+
Multiple exciton generation
Hot electrons
Intermediate bandgap
EG
EV
EC
EC
*
Cahen-Hodes Weizmann Inst. of Science 1-2015
e-
h+
Multiple exciton generation
Hot electrons
Intermediate bandgap
EG
EV
EC
EC
*
e-
EF
EF
Other ways to beat the SQ limit
Cahen-Hodes Weizmann Inst. of Science 1-2015
e-
h+
Multiple exciton generation
Hot electrons
Intermediate bandgap
EG
EV
Ei
EC
e-
Other ways to beat the SQ limit
Cahen-Hodes Weizmann Inst. of Science 1-2015
The principle of nanostructured cells
contact
contact
electron conductor hole conductor
absorber
light absorption
depth
e-
h+
light-absorbing
semiconductor
e-
h+
Advantage of high surface area:
Allows the use of locally thin absorber and therefore poor quality
(wider range of) absorbers
e-
h+
hole
selective
contact
electron
selective
contact
EC
EV
electron (hole) selective contact; conductor; transport medium
Cahen-Hodes Weizmann Inst. of Science 1-2015
Organic photovoltaic cells OPV
Two problems of OPV:
1. Low diffusion lengths of electron/hole
2. Low dielectric constant ā€“ high binding energy
e-
h+
Cahen-Hodes Weizmann Inst. of Science 1-2015
e-
h+
Wannier-Mott excitons ā€“ extended; low BE few/tens meV
Frenkel excitons ā€“ localized; high BE hundreds meV
Binding energy of H atom = me4
2h2Īµ2 = 13.6 eV
e-
e-
h+
h+
e-
e-
h+
Two problems of OPV:
1. Low diffusion lengths of electron/hole
2. Low dielectric constant and high effective mass ā€“ high binding energy
Binding energy of exciton ?
effective mass of
electrons and holes
dielectric constant
of material
Cahen-Hodes Weizmann Inst. of Science 1-2015
Notwithstanding these problems, OPV is now at ~ 11% conversion efficiency
Stability still not good enough for practical use, but improving
Advantages: Cheap (in capital and in energy)
Roll-to-roll manufacturing (large scale possible)
Cahen-Hodes Weizmann Inst. of Science 1-2015
Dye sensitized solar cell (DSC or DSSC)
HOMO
LUMO e-
e-
h+
light
e-
I- + h+ ---> I
2I + I- ---> I3
- (I is soluble in I-)
At counter electrode, I is reduced back to I-
Important difference between this cell and ā€œstandardā€™ photovoltaic cells
or previous nanocrystalline cell:
Charge generation and charge separation occur in different phases:
recombination is inherently low.
semiconductor
dye
TiO2
EC
EV
TiO2
Need single monolayer
dye on TiO2
But then low absorption
Cahen-Hodes Weizmann Inst. of Science 1-2015
Solution - use high surface area semiconductor
Early attempts increased surface area by roughening electrode - several times increase
Breakthrough: porous, nanocrystalline TiO2
Made by sintering a colloid or suspension of TiO2
Oā€™Regan, B.; GrƤtzel, M. Nature 1991, 353, 737.
Dye molecule bonded to TiO2
Only a monolayer of dye at most on each TiO2
Cahen-Hodes Weizmann Inst. of Science 1-2015
The most common dye: Ru(dcbpyH2)2(NCS)2 or RuL2(NCS)2
cis-bis(4,4ā€™-dicarboxy-2,2ā€™-bipyridine)-bis(isothiocyanato)ruthenium(II)
Ti
N
Ru
N
C
-O
O
C
-O
O
e-
Excitation of dye is a metal-to-ligand
charge transfer
Ru d-orbitals
ligand p* orbital
Ti4+/3+
ca. 1.7 eV
N=C=S
N=C=S
h+
Cahen-Hodes Weizmann Inst. of Science 1-2015
Change the dye in a DSC to a semiconductor
ā€¢ Semiconductor-sensitized solar cells (quantum dot cells)
ā€¢ ETA (extremely thin absorber) solar cells
Variations:
Hole conductor ā€“ liquid or solid (if solid, commonly called ETA cell)
Semiconductor may be in the form of quantum dots ā€“ increase in Eg
Semiconductor does not have to be a single monolayer ā€“ typically few nm to few tens nm
Cahen-Hodes Weizmann Inst. of Science 1-2015
Hybrid Organic-Inorganic Perovskites
most common one- CH3NH3PbI3
Preparation
CH3NH2+HI ļƒ  CH3NH3I(solid) in methanol, at 0ĖšC
CH3NH3X + PbI2 ļƒ  CH3NH3PbI3 in organic solvent
Solution processable, easy to scale
Heat at ca. 100ĀŗC
Another +: very high VOC for CH3NH3PbI3 EG = 1.55 eV, VOC up to 1.2 V
Cahen-Hodes Weizmann Inst. of Science 1-2015
Evolution of hybrid I-O perovskite
solar cells
Cahen-Hodes Weizmann Inst. of Science 1-2015
The three important parameters for commercial cells
1. Efficiency
Cahen-Hodes Weizmann Inst. of Science 1-2015
ļƒ  Shockley-Queisser* (SQ) Limit
0.5 1.0 1.5 2.0 2.5
5
10
15
20
25
30
CH3
NH3
SnI3
CZTS
CZTSS
PbS
Sb2
S3
GaInP
CdTe
OPV
CIGS
c-Si
Efficiency
(%)
Band Gap (eV)
GaAs
InP
CH3
NH3
PbClx
I3-x
DSC
a-Si
SQ Limit
Cahen-Hodes Weizmann Inst. of Science 1-2015
2. Stability Long term stability of PV modules/systems
Jordan & Kurtz, 2011 (August), National Renewable Energy
Laboratory (NREL)
Photovoltaic degradation rates ā€“ An analytical review
<2000 >2000 <2000 >2000 <2000 >2000 <2000 >2000 <2000 >2000
mean
Cahen-Hodes Weizmann Inst. of Science 1-2015
3. Cost (money and energy)
$/WP Energy payback time
$0.6/WP in 2030
Predicted cost
Cahen-Hodes Weizmann Inst. of Science 1-2015
(US)
Cahen-Hodes Weizmann Inst. of Science 1-2015
Solar PV Costs in the USA and Germany (2013)
A C O L D S H O W E R
Cahen-Hodes Weizmann Inst. of Science 1-2015
from
First Solar
websiteā€¦
Peng, Lu, Yang,
Renew. Sustain. Energy Rev.
19 (2013) 255ā€“274
Estimated Solar Cell Energy Payback Times 2013
Cahen-Hodes Weizmann Inst. of Science 1-2015
Wikipedia
And finally, PV production history and forecast
Cumulative PV
Cahen-Hodes Weizmann Inst. of Science 1-2015
Worldā€™s Largest Solar-Electric Plant
30 TWp (~ 6 TWC)
requires 1 such plant,
every HOUR, for ~ 12 years(+ storageā€¦)
Solar Cell Power Stations TODAY
In 12/2014 Global
Cumulative Installed PV
Power ~ 0.15 TWp
PRC goal >2012
ā‰„ 0.01 TWp/yr
0.55 GWp (ļƒ  ~100 MWc) Topaz Solar farm (CA, USA)
Cahen-Hodes Weizmann Inst. of Science 1-2015
Thanking-You
ļŠļŠļŠļŠļŠ

More Related Content

What's hot

Radiation technologies
Radiation technologiesRadiation technologies
Radiation technologiesSergey Korenev
Ā 
Interband and intraband electronic transition in quantum nanostructures
Interband and intraband  electronic transition in quantum nanostructuresInterband and intraband  electronic transition in quantum nanostructures
Interband and intraband electronic transition in quantum nanostructuresGandhimathi Muthuselvam
Ā 
Semiconductor nanodevices
Semiconductor nanodevicesSemiconductor nanodevices
Semiconductor nanodevicesAtif Syed
Ā 
Introduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water SplittingIntroduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water SplittingAnamika Banerjee
Ā 
quantum dots
quantum dotsquantum dots
quantum dotsHoang Tien
Ā 
Semiconductor part-2
Semiconductor part-2Semiconductor part-2
Semiconductor part-2Santanu Paria
Ā 
Ntc 2-new-cnt-43
Ntc 2-new-cnt-43Ntc 2-new-cnt-43
Ntc 2-new-cnt-43Santanu Paria
Ā 
Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)cdtpv
Ā 
Optical properties of nanomaterials
Optical properties of nanomaterialsOptical properties of nanomaterials
Optical properties of nanomaterialsudhay roopavath
Ā 
Semiconductor Nanomaterials
Semiconductor NanomaterialsSemiconductor Nanomaterials
Semiconductor NanomaterialsSantanu Paria
Ā 
Adiabatic technologies
Adiabatic technologiesAdiabatic technologies
Adiabatic technologiesSergey Korenev
Ā 
Scanning electron microscopy
Scanning electron microscopy Scanning electron microscopy
Scanning electron microscopy Shivaji Burungale
Ā 
ELECTRON ENERGY LOSE SPECTROSCOPY (EELS)
	ELECTRON ENERGY LOSE  SPECTROSCOPY (EELS)	ELECTRON ENERGY LOSE  SPECTROSCOPY (EELS)
ELECTRON ENERGY LOSE SPECTROSCOPY (EELS)khushbakhat nida
Ā 
2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONSHarsh Mohan
Ā 
properties of nanomaterials
properties of nanomaterialsproperties of nanomaterials
properties of nanomaterialsprasad addanki
Ā 
Electron beam technology
Electron beam technologyElectron beam technology
Electron beam technologyAdarsh M.kalla
Ā 
Nuclear magnetic resonance
Nuclear magnetic resonanceNuclear magnetic resonance
Nuclear magnetic resonanceTakeen Khurshid
Ā 
Hebatalrahman nanotreatment
Hebatalrahman nanotreatmentHebatalrahman nanotreatment
Hebatalrahman nanotreatmentHebatalrahman Ahmed
Ā 
The Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesThe Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesUniversity of Liverpool
Ā 

What's hot (20)

Radiation technologies
Radiation technologiesRadiation technologies
Radiation technologies
Ā 
Interband and intraband electronic transition in quantum nanostructures
Interband and intraband  electronic transition in quantum nanostructuresInterband and intraband  electronic transition in quantum nanostructures
Interband and intraband electronic transition in quantum nanostructures
Ā 
Semiconductor nanodevices
Semiconductor nanodevicesSemiconductor nanodevices
Semiconductor nanodevices
Ā 
Introduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water SplittingIntroduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water Splitting
Ā 
Electron spectroscopy
Electron spectroscopyElectron spectroscopy
Electron spectroscopy
Ā 
quantum dots
quantum dotsquantum dots
quantum dots
Ā 
Semiconductor part-2
Semiconductor part-2Semiconductor part-2
Semiconductor part-2
Ā 
Ntc 2-new-cnt-43
Ntc 2-new-cnt-43Ntc 2-new-cnt-43
Ntc 2-new-cnt-43
Ā 
Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)
Ā 
Optical properties of nanomaterials
Optical properties of nanomaterialsOptical properties of nanomaterials
Optical properties of nanomaterials
Ā 
Semiconductor Nanomaterials
Semiconductor NanomaterialsSemiconductor Nanomaterials
Semiconductor Nanomaterials
Ā 
Adiabatic technologies
Adiabatic technologiesAdiabatic technologies
Adiabatic technologies
Ā 
Scanning electron microscopy
Scanning electron microscopy Scanning electron microscopy
Scanning electron microscopy
Ā 
ELECTRON ENERGY LOSE SPECTROSCOPY (EELS)
	ELECTRON ENERGY LOSE  SPECTROSCOPY (EELS)	ELECTRON ENERGY LOSE  SPECTROSCOPY (EELS)
ELECTRON ENERGY LOSE SPECTROSCOPY (EELS)
Ā 
2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS
Ā 
properties of nanomaterials
properties of nanomaterialsproperties of nanomaterials
properties of nanomaterials
Ā 
Electron beam technology
Electron beam technologyElectron beam technology
Electron beam technology
Ā 
Nuclear magnetic resonance
Nuclear magnetic resonanceNuclear magnetic resonance
Nuclear magnetic resonance
Ā 
Hebatalrahman nanotreatment
Hebatalrahman nanotreatmentHebatalrahman nanotreatment
Hebatalrahman nanotreatment
Ā 
The Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesThe Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting Oxides
Ā 

Similar to Photovoltaic cell

1-2015_pv_principles2.pptx
1-2015_pv_principles2.pptx1-2015_pv_principles2.pptx
1-2015_pv_principles2.pptxHengkiR
Ā 
Ch1 lecture slides Chenming Hu Device for IC
Ch1 lecture slides Chenming Hu Device for IC Ch1 lecture slides Chenming Hu Device for IC
Ch1 lecture slides Chenming Hu Device for IC Chenming Hu
Ā 
THE LIGHT EMITTING DIODE
THE LIGHT EMITTING DIODETHE LIGHT EMITTING DIODE
THE LIGHT EMITTING DIODEPoojith Chowdhary
Ā 
Dielectrics 2015
Dielectrics 2015Dielectrics 2015
Dielectrics 2015Chris Bowen
Ā 
xpspresentation-180225211042 (1).pptx
xpspresentation-180225211042 (1).pptxxpspresentation-180225211042 (1).pptx
xpspresentation-180225211042 (1).pptxAshikBabu10
Ā 
The Science Behind Dye-Sensitized Solar Cells
The Science Behind Dye-Sensitized Solar CellsThe Science Behind Dye-Sensitized Solar Cells
The Science Behind Dye-Sensitized Solar Cellsswissnex San Francisco
Ā 
X-ray Photoelecctron Spectroscopy (XPS)
X-ray Photoelecctron Spectroscopy (XPS)X-ray Photoelecctron Spectroscopy (XPS)
X-ray Photoelecctron Spectroscopy (XPS)faheem maqsood
Ā 
Nanomaterials
NanomaterialsNanomaterials
NanomaterialsSwaraj Wase
Ā 
Short note on Semiconductors
Short note on SemiconductorsShort note on Semiconductors
Short note on SemiconductorsPBhaskar2
Ā 
EDC Lecture Notes.pdf
EDC Lecture Notes.pdfEDC Lecture Notes.pdf
EDC Lecture Notes.pdfGunaG14
Ā 
Fundamentals of Photovoltaics: Lecture 1
Fundamentals of Photovoltaics: Lecture 1Fundamentals of Photovoltaics: Lecture 1
Fundamentals of Photovoltaics: Lecture 1University of Liverpool
Ā 
Basics of Solar Cell.pptx
Basics of Solar Cell.pptxBasics of Solar Cell.pptx
Basics of Solar Cell.pptxFahimFaisalAmio
Ā 
Solar Energy Presentation.ppt
Solar Energy Presentation.pptSolar Energy Presentation.ppt
Solar Energy Presentation.pptnaveen kumar
Ā 
Lecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaouiLecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaouiProf. Dr. Ahmed Ennaoui
Ā 
Opto electronics notes
Opto electronics notesOpto electronics notes
Opto electronics notesSAURAVMAITY
Ā 
SINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMS
SINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMSSINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMS
SINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMSVLSICS Design
Ā 
Single Electron Transistor: Applications & Problems
Single Electron Transistor: Applications & Problems  Single Electron Transistor: Applications & Problems
Single Electron Transistor: Applications & Problems VLSICS Design
Ā 

Similar to Photovoltaic cell (20)

1-2015_pv_principles2.pptx
1-2015_pv_principles2.pptx1-2015_pv_principles2.pptx
1-2015_pv_principles2.pptx
Ā 
Band structures
Band structures Band structures
Band structures
Ā 
Ch1 slides-1
Ch1 slides-1Ch1 slides-1
Ch1 slides-1
Ā 
Ch1 lecture slides Chenming Hu Device for IC
Ch1 lecture slides Chenming Hu Device for IC Ch1 lecture slides Chenming Hu Device for IC
Ch1 lecture slides Chenming Hu Device for IC
Ā 
THE LIGHT EMITTING DIODE
THE LIGHT EMITTING DIODETHE LIGHT EMITTING DIODE
THE LIGHT EMITTING DIODE
Ā 
Dielectrics 2015
Dielectrics 2015Dielectrics 2015
Dielectrics 2015
Ā 
xpspresentation-180225211042 (1).pptx
xpspresentation-180225211042 (1).pptxxpspresentation-180225211042 (1).pptx
xpspresentation-180225211042 (1).pptx
Ā 
The Science Behind Dye-Sensitized Solar Cells
The Science Behind Dye-Sensitized Solar CellsThe Science Behind Dye-Sensitized Solar Cells
The Science Behind Dye-Sensitized Solar Cells
Ā 
Solar cell
 Solar cell Solar cell
Solar cell
Ā 
X-ray Photoelecctron Spectroscopy (XPS)
X-ray Photoelecctron Spectroscopy (XPS)X-ray Photoelecctron Spectroscopy (XPS)
X-ray Photoelecctron Spectroscopy (XPS)
Ā 
Nanomaterials
NanomaterialsNanomaterials
Nanomaterials
Ā 
Short note on Semiconductors
Short note on SemiconductorsShort note on Semiconductors
Short note on Semiconductors
Ā 
EDC Lecture Notes.pdf
EDC Lecture Notes.pdfEDC Lecture Notes.pdf
EDC Lecture Notes.pdf
Ā 
Fundamentals of Photovoltaics: Lecture 1
Fundamentals of Photovoltaics: Lecture 1Fundamentals of Photovoltaics: Lecture 1
Fundamentals of Photovoltaics: Lecture 1
Ā 
Basics of Solar Cell.pptx
Basics of Solar Cell.pptxBasics of Solar Cell.pptx
Basics of Solar Cell.pptx
Ā 
Solar Energy Presentation.ppt
Solar Energy Presentation.pptSolar Energy Presentation.ppt
Solar Energy Presentation.ppt
Ā 
Lecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaouiLecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaoui
Ā 
Opto electronics notes
Opto electronics notesOpto electronics notes
Opto electronics notes
Ā 
SINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMS
SINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMSSINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMS
SINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMS
Ā 
Single Electron Transistor: Applications & Problems
Single Electron Transistor: Applications & Problems  Single Electron Transistor: Applications & Problems
Single Electron Transistor: Applications & Problems
Ā 

More from Preeti Choudhary

Basic Quantum Theory
Basic Quantum TheoryBasic Quantum Theory
Basic Quantum TheoryPreeti Choudhary
Ā 
Organic Semiconductor
Organic Semiconductor Organic Semiconductor
Organic Semiconductor Preeti Choudhary
Ā 
Nanomaterial and their application
Nanomaterial and their applicationNanomaterial and their application
Nanomaterial and their applicationPreeti Choudhary
Ā 
High performance liquid chromatography (HPLC)
High performance liquid chromatography (HPLC)High performance liquid chromatography (HPLC)
High performance liquid chromatography (HPLC)Preeti Choudhary
Ā 
FTIR(Fourier transform infrared) spectroscopy
 FTIR(Fourier transform infrared) spectroscopy  FTIR(Fourier transform infrared) spectroscopy
FTIR(Fourier transform infrared) spectroscopy Preeti Choudhary
Ā 
AFM and STM (Scanning probe microscopy)
AFM and STM (Scanning probe microscopy)AFM and STM (Scanning probe microscopy)
AFM and STM (Scanning probe microscopy)Preeti Choudhary
Ā 
Nanoimprint lithography (NIL)
 Nanoimprint lithography (NIL) Nanoimprint lithography (NIL)
Nanoimprint lithography (NIL)Preeti Choudhary
Ā 
Nanoscience and Nanotechnology
 Nanoscience and Nanotechnology  Nanoscience and Nanotechnology
Nanoscience and Nanotechnology Preeti Choudhary
Ā 
Nanoscience: Top down and bottom-up Method
Nanoscience: Top down and bottom-up MethodNanoscience: Top down and bottom-up Method
Nanoscience: Top down and bottom-up MethodPreeti Choudhary
Ā 
Infrared Spectroscopy and UV-Visible spectroscopy
 Infrared Spectroscopy and UV-Visible spectroscopy Infrared Spectroscopy and UV-Visible spectroscopy
Infrared Spectroscopy and UV-Visible spectroscopyPreeti Choudhary
Ā 
Column chromatography
Column chromatographyColumn chromatography
Column chromatographyPreeti Choudhary
Ā 
Operational amplifiers
Operational amplifiers Operational amplifiers
Operational amplifiers Preeti Choudhary
Ā 

More from Preeti Choudhary (20)

Basic Quantum Theory
Basic Quantum TheoryBasic Quantum Theory
Basic Quantum Theory
Ā 
Organic Semiconductor
Organic Semiconductor Organic Semiconductor
Organic Semiconductor
Ā 
Nanomaterial and their application
Nanomaterial and their applicationNanomaterial and their application
Nanomaterial and their application
Ā 
High performance liquid chromatography (HPLC)
High performance liquid chromatography (HPLC)High performance liquid chromatography (HPLC)
High performance liquid chromatography (HPLC)
Ā 
Gas Chromatography
Gas Chromatography Gas Chromatography
Gas Chromatography
Ā 
FTIR(Fourier transform infrared) spectroscopy
 FTIR(Fourier transform infrared) spectroscopy  FTIR(Fourier transform infrared) spectroscopy
FTIR(Fourier transform infrared) spectroscopy
Ā 
Nano-lithography
Nano-lithographyNano-lithography
Nano-lithography
Ā 
AFM and STM (Scanning probe microscopy)
AFM and STM (Scanning probe microscopy)AFM and STM (Scanning probe microscopy)
AFM and STM (Scanning probe microscopy)
Ā 
X-Ray Diffraction
 X-Ray Diffraction X-Ray Diffraction
X-Ray Diffraction
Ā 
Automobile
 Automobile Automobile
Automobile
Ā 
Nanoimprint lithography (NIL)
 Nanoimprint lithography (NIL) Nanoimprint lithography (NIL)
Nanoimprint lithography (NIL)
Ā 
Differentiator
DifferentiatorDifferentiator
Differentiator
Ā 
Nanoscience and Nanotechnology
 Nanoscience and Nanotechnology  Nanoscience and Nanotechnology
Nanoscience and Nanotechnology
Ā 
Nanoscience: Top down and bottom-up Method
Nanoscience: Top down and bottom-up MethodNanoscience: Top down and bottom-up Method
Nanoscience: Top down and bottom-up Method
Ā 
Nanolithography
NanolithographyNanolithography
Nanolithography
Ā 
Infrared Spectroscopy and UV-Visible spectroscopy
 Infrared Spectroscopy and UV-Visible spectroscopy Infrared Spectroscopy and UV-Visible spectroscopy
Infrared Spectroscopy and UV-Visible spectroscopy
Ā 
Detectors
DetectorsDetectors
Detectors
Ā 
Column chromatography
Column chromatographyColumn chromatography
Column chromatography
Ā 
Chromatography
Chromatography Chromatography
Chromatography
Ā 
Operational amplifiers
Operational amplifiers Operational amplifiers
Operational amplifiers
Ā 

Recently uploaded

zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
Ā 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
Ā 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
Ā 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
Ā 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
Ā 
Call Girls in Munirka Delhi šŸ’ÆCall Us šŸ”8264348440šŸ”
Call Girls in Munirka Delhi šŸ’ÆCall Us šŸ”8264348440šŸ”Call Girls in Munirka Delhi šŸ’ÆCall Us šŸ”8264348440šŸ”
Call Girls in Munirka Delhi šŸ’ÆCall Us šŸ”8264348440šŸ”soniya singh
Ā 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
Ā 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
Ā 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
Ā 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
Ā 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
Ā 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
Ā 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
Ā 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
Ā 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
Ā 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
Ā 
Stunning āž„8448380779ā–» Call Girls In Panchshil Enclave Delhi NCR
Stunning āž„8448380779ā–» Call Girls In Panchshil Enclave Delhi NCRStunning āž„8448380779ā–» Call Girls In Panchshil Enclave Delhi NCR
Stunning āž„8448380779ā–» Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
Ā 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...SĆ©rgio Sacani
Ā 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
Ā 

Recently uploaded (20)

zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
Ā 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
Ā 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Ā 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
Ā 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Ā 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
Ā 
Call Girls in Munirka Delhi šŸ’ÆCall Us šŸ”8264348440šŸ”
Call Girls in Munirka Delhi šŸ’ÆCall Us šŸ”8264348440šŸ”Call Girls in Munirka Delhi šŸ’ÆCall Us šŸ”8264348440šŸ”
Call Girls in Munirka Delhi šŸ’ÆCall Us šŸ”8264348440šŸ”
Ā 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Ā 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Ā 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
Ā 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
Ā 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
Ā 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Ā 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
Ā 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Ā 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
Ā 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Ā 
Stunning āž„8448380779ā–» Call Girls In Panchshil Enclave Delhi NCR
Stunning āž„8448380779ā–» Call Girls In Panchshil Enclave Delhi NCRStunning āž„8448380779ā–» Call Girls In Panchshil Enclave Delhi NCR
Stunning āž„8448380779ā–» Call Girls In Panchshil Enclave Delhi NCR
Ā 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
Ā 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
Ā 

Photovoltaic cell

  • 1. Cahen-Hodes Weizmann Inst. of Science 1-2015 Photovoltaics: Fundamental concepts and novel systems Preeti Choudhary chaudharypreeti1997@gmail.com MSc (Applied Physics)
  • 2. Cahen-Hodes Weizmann Inst. of Science 1-2015 Photovoltaics: Fundamental concepts and novel systems First practical photovoltaic cell: Chapin, Fuller, Pearson, Bell Labs, 1954: 6% efficiency
  • 3. Cahen-Hodes Weizmann Inst. of Science 1-2015 Outline ā€¢ Energy levels ļƒ  bands ā€¢ Doping of semiconductors ā€¢ Energy band alignments between different phases ā€¢ Space charge layers ā€¢ p-n junctions, Schottky barriers ā€¢ p-n cells, Si cells, thin film cells ā€¢ Schottky cells (solid and liquid junction) ā€¢ p-i-n cells ā€¢ Fundamental limits of photovoltaic cells ā€¢ How to overcome/ bypass these limits ā€¢ New generation cells (brief survey) ā€¢ PV stability, efficiencies and economics
  • 4. Cahen-Hodes Weizmann Inst. of Science 1-2015 From energy levels to bands E If EG < ~100-150x kTB ļƒ  semiconductor 1 e - energy EG EV EC CB VB HOMO LUMO
  • 5. Cahen-Hodes Weizmann Inst. of Science 1-2015 Doping of semiconductors Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si As B C N Al Si P Ga Ge As EC E EV EG 1.1 eV n-type As5+ ---> 4e-+ e- donors (ND) EF = Fermi level (~electrochemical potential of electrons + + + + + + + + + + + + ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ ļ‚Ÿ Free electrons in CB
  • 6. Cahen-Hodes Weizmann Inst. of Science 1-2015 Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si B C N Al Si P Ga Ge As Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si B 1018 1016 DE = kTln(ND/NC) 0 or ND=NA 1010 1 e - energy Doping of semiconductors -2 p-type B3+ ---> 3e- - e- Acceptors (NA) EC EV EF ļ‚¢ ļ‚¢ ļ‚¢ ļ‚¢ ļ‚¢ ļ‚¢ ļ‚¢ ļ‚¢ ļ‚¢ Free holes in VB
  • 7. Cahen-Hodes Weizmann Inst. of Science 1-2015 Energy band alignments between different phases n-type semiconductor Evac metal EF work function electron affinity e- space charge layer ļƒ  Formation of a metal - semiconductor junction n-type p-type space charge layer ļƒ  Formation of a p-n homojunction 1 e - energy 1 e - energy space coordinate
  • 8. Cahen-Hodes Weizmann Inst. of Science 1-2015 Space Charge layers Width of space charge layer inversely proportional to [doping density]1/2 2ee0V qND(A) 1/2 W = Typical widths of space charge layer: N = 1022/cc (metallic) ƅngstroms (~ 1-2 atomic layers) N = 1018/cc (heavily doped semiconductor) 10s of nm N = 1016/cc (medium doped semiconductor) 100s of nm N = 1014/cc (low doped semiconductor) few Āµm In a photovoltaic cell, the width of the space charge layer should be wide enough to absorb most of the light in the E-field region ā€“a few 100 nm in a typical cell. Light absorption I = I0e-ad space charge layer
  • 9. Cahen-Hodes Weizmann Inst. of Science 1-2015 Basics of photovoltaic cells EC EV EF e- h+ hn Charge separation in energy Charge separation in space e- hn h+ space coordinate 1 e - energy 1 e - energy
  • 10. Cahen-Hodes Weizmann Inst. of Science 1-2015 e- hn h+ Amps @ short circuit VOC Volts @ open-circuit V load @maximum power Basics of photovoltaic cells
  • 11. Cahen-Hodes Weizmann Inst. of Science 1-2015 ISC VOC max power fill factor = (I mp . Vmp) / (I SC . VOC) mp : max power Voltage Current Dark- and Photo- I-V (current-voltage) characteristics of a PV cell
  • 12. Cahen-Hodes Weizmann Inst. of Science 1-2015 Other ways of creating a built-in field to separate charges p-n heterojunction CdTe/CdS CdS CdTe back contact (Cu/Cu2Te) TCO front contact CdTe CdS e- h+ Silicon homojunction
  • 13. Cahen-Hodes Weizmann Inst. of Science 1-2015 Ginley, Collins & Cahen in Ginley & Cahen, Fundamentals of Materials for Energyā€¦ space 1 e - energy ā€¢Absorb light ā€¢Absorbed light creates carriers ā€¢Carrier collection, by diffusion, drift Summary of how p-n junction PV cell works
  • 14. Cahen-Hodes Weizmann Inst. of Science 1-2015 n-type semiconductor E0 metal EF work function electron affinity space charge layer Metal-semiconductor junction (with semiconductor/ liquid electrolyte junction ļƒ  photoelectrochemical cell [PEC], where EF ā‰… ERedox Other ways of creating a built-in field to separate charges -2
  • 15. Cahen-Hodes Weizmann Inst. of Science 1-2015 p-i-n (I = insulator) cell EO EC EV N = 1018/cc (heavily doped semiconductor) 10s of nm N = 1016/cc (medium doped semiconductor) 100s of nm N = 1014/cc (low doped semiconductor) few Āµm Reminder of typical space charge layer widths Other ways of creating a built-in field to separate charges -3
  • 16. Cahen-Hodes Weizmann Inst. of Science 1-2015 Chapin Fuller Pearson 1954 2014
  • 17. Cahen-Hodes Weizmann Inst. of Science 1-2015 Si (crystalline) cells : 1st generation cells (thin film) CdTe, CIGS, Ī±-Si : 2nd generation cells Dye cells, organic cells and related ones : 3rd generation cells There are newer ones and ā€˜generation numberā€™ becomes fuzzy at this stage Solar cell generations
  • 18. Cahen-Hodes Weizmann Inst. of Science 1-2015 Organic CdTe GaAs ā€œthe single crystal divideā€
  • 19. Cahen-Hodes Weizmann Inst. of Science 1-2015 one electron energy space Generalized picture ā€¢Metastable high and low energy states ā€¢Absorber transfers charges into high and low energy state ā€¢Driving force brings charges to contacts ā€¢Selective contacts (1) cf. e.g., Green, M.A., Photovoltaic principles. Physica E, 14 (2002) 11-17 The Photovoltaic (PV) effect: High energy state Low energy state Absorber e- p+ contact contact
  • 20. Cahen-Hodes Weizmann Inst. of Science 1-2015 e - - voltage ( qV) e - n-type p-type hn h + e - useable photo - voltage ( qV) Energy e - n-type p-type hn h + Fundamental losses in single junction solar cell O. Niitsoo space high energy photon ā€“ partial loss low energy photon ā€“ total loss
  • 21. Cahen-Hodes Weizmann Inst. of Science 1-2015 >Eg thermalized < Eg not absorbed Etendu; Photon entropy ā€“TD ~0.3eV @RT, lack of concentration Carnot factor ā€“TD Emission loss- (current) Electrical power out Current ā€“ Voltage Characteristics After Hirst & Ekins-Daukes Prog.Photovolt:Res:Appl. (2010) All fundamental losses in PV cell 0 1 2 3 4 0 10 20 30 40 50 60 70 80 Current (mA/cm 2 ) Energy (eV) Eg Nayak, ā€¦ā€¦, Cahen., Energy Environ. Sci., 2012
  • 22. Cahen-Hodes Weizmann Inst. of Science 1-2015 Shockley-Queisser* (SQ) Limit 0.5 1.0 1.5 2.0 2.5 5 10 15 20 25 30 OPV CIGS c-Si Efficiency (%) Band Gap (eV) GaAs InP CdTe DSC a-Si SQ Limit detailed balance, photons-in = electrons-out + photons- out; on earth, @ RT, for single absorber / junction; cf. also Duysens (1958) ā€œThe path of light in photosynthesisā€; Brookhaven Symp. Biol. Prince, JAP 26 (1955) 534 Loferski, JAP 27 (1956) 777 Shockley & Queisser JAP (1961)
  • 23. Cahen-Hodes Weizmann Inst. of Science 1-2015 How to circumvent SQ and other losses? Better utilization of sunlight: Photon management: Multi-bandgap, multi-junction photovoltaics GaInP2 Eg = 1.8-1.9 eV up to 1.45 V VOC
  • 24. Cahen-Hodes Weizmann Inst. of Science 1-2015 Up-conversion for a single junction 2 photons of energy 0.5 Eg< hĪ½< Eg are converted to 1 photon of hĪ½> Eg How to circumvent these losses?
  • 25. Cahen-Hodes Weizmann Inst. of Science 1-2015 Down-conversion for a single junction 1 photon of energy hĪ½ > 2Eg is converted into 2 photons of hĪ½ > Eg How to circumvent these losses?
  • 26. Cahen-Hodes Weizmann Inst. of Science 1-2015 Other ways to beat the SQ limit e- h+ e- e- h+ h+ Multiple exciton generation Hot electrons Intermediate bandgap EG EV EC EC *
  • 27. Cahen-Hodes Weizmann Inst. of Science 1-2015 e- h+ Multiple exciton generation Hot electrons Intermediate bandgap EG EV EC EC * e- EF EF Other ways to beat the SQ limit
  • 28. Cahen-Hodes Weizmann Inst. of Science 1-2015 e- h+ Multiple exciton generation Hot electrons Intermediate bandgap EG EV Ei EC e- Other ways to beat the SQ limit
  • 29. Cahen-Hodes Weizmann Inst. of Science 1-2015 The principle of nanostructured cells contact contact electron conductor hole conductor absorber light absorption depth e- h+ light-absorbing semiconductor e- h+ Advantage of high surface area: Allows the use of locally thin absorber and therefore poor quality (wider range of) absorbers e- h+ hole selective contact electron selective contact EC EV electron (hole) selective contact; conductor; transport medium
  • 30. Cahen-Hodes Weizmann Inst. of Science 1-2015 Organic photovoltaic cells OPV Two problems of OPV: 1. Low diffusion lengths of electron/hole 2. Low dielectric constant ā€“ high binding energy e- h+
  • 31. Cahen-Hodes Weizmann Inst. of Science 1-2015 e- h+ Wannier-Mott excitons ā€“ extended; low BE few/tens meV Frenkel excitons ā€“ localized; high BE hundreds meV Binding energy of H atom = me4 2h2Īµ2 = 13.6 eV e- e- h+ h+ e- e- h+ Two problems of OPV: 1. Low diffusion lengths of electron/hole 2. Low dielectric constant and high effective mass ā€“ high binding energy Binding energy of exciton ? effective mass of electrons and holes dielectric constant of material
  • 32. Cahen-Hodes Weizmann Inst. of Science 1-2015 Notwithstanding these problems, OPV is now at ~ 11% conversion efficiency Stability still not good enough for practical use, but improving Advantages: Cheap (in capital and in energy) Roll-to-roll manufacturing (large scale possible)
  • 33. Cahen-Hodes Weizmann Inst. of Science 1-2015 Dye sensitized solar cell (DSC or DSSC) HOMO LUMO e- e- h+ light e- I- + h+ ---> I 2I + I- ---> I3 - (I is soluble in I-) At counter electrode, I is reduced back to I- Important difference between this cell and ā€œstandardā€™ photovoltaic cells or previous nanocrystalline cell: Charge generation and charge separation occur in different phases: recombination is inherently low. semiconductor dye TiO2 EC EV TiO2 Need single monolayer dye on TiO2 But then low absorption
  • 34. Cahen-Hodes Weizmann Inst. of Science 1-2015 Solution - use high surface area semiconductor Early attempts increased surface area by roughening electrode - several times increase Breakthrough: porous, nanocrystalline TiO2 Made by sintering a colloid or suspension of TiO2 Oā€™Regan, B.; GrƤtzel, M. Nature 1991, 353, 737. Dye molecule bonded to TiO2 Only a monolayer of dye at most on each TiO2
  • 35. Cahen-Hodes Weizmann Inst. of Science 1-2015 The most common dye: Ru(dcbpyH2)2(NCS)2 or RuL2(NCS)2 cis-bis(4,4ā€™-dicarboxy-2,2ā€™-bipyridine)-bis(isothiocyanato)ruthenium(II) Ti N Ru N C -O O C -O O e- Excitation of dye is a metal-to-ligand charge transfer Ru d-orbitals ligand p* orbital Ti4+/3+ ca. 1.7 eV N=C=S N=C=S h+
  • 36. Cahen-Hodes Weizmann Inst. of Science 1-2015 Change the dye in a DSC to a semiconductor ā€¢ Semiconductor-sensitized solar cells (quantum dot cells) ā€¢ ETA (extremely thin absorber) solar cells Variations: Hole conductor ā€“ liquid or solid (if solid, commonly called ETA cell) Semiconductor may be in the form of quantum dots ā€“ increase in Eg Semiconductor does not have to be a single monolayer ā€“ typically few nm to few tens nm
  • 37. Cahen-Hodes Weizmann Inst. of Science 1-2015 Hybrid Organic-Inorganic Perovskites most common one- CH3NH3PbI3 Preparation CH3NH2+HI ļƒ  CH3NH3I(solid) in methanol, at 0ĖšC CH3NH3X + PbI2 ļƒ  CH3NH3PbI3 in organic solvent Solution processable, easy to scale Heat at ca. 100ĀŗC Another +: very high VOC for CH3NH3PbI3 EG = 1.55 eV, VOC up to 1.2 V
  • 38. Cahen-Hodes Weizmann Inst. of Science 1-2015 Evolution of hybrid I-O perovskite solar cells
  • 39. Cahen-Hodes Weizmann Inst. of Science 1-2015 The three important parameters for commercial cells 1. Efficiency
  • 40. Cahen-Hodes Weizmann Inst. of Science 1-2015 ļƒ  Shockley-Queisser* (SQ) Limit 0.5 1.0 1.5 2.0 2.5 5 10 15 20 25 30 CH3 NH3 SnI3 CZTS CZTSS PbS Sb2 S3 GaInP CdTe OPV CIGS c-Si Efficiency (%) Band Gap (eV) GaAs InP CH3 NH3 PbClx I3-x DSC a-Si SQ Limit
  • 41. Cahen-Hodes Weizmann Inst. of Science 1-2015 2. Stability Long term stability of PV modules/systems Jordan & Kurtz, 2011 (August), National Renewable Energy Laboratory (NREL) Photovoltaic degradation rates ā€“ An analytical review <2000 >2000 <2000 >2000 <2000 >2000 <2000 >2000 <2000 >2000 mean
  • 42. Cahen-Hodes Weizmann Inst. of Science 1-2015 3. Cost (money and energy) $/WP Energy payback time $0.6/WP in 2030 Predicted cost
  • 43. Cahen-Hodes Weizmann Inst. of Science 1-2015 (US)
  • 44. Cahen-Hodes Weizmann Inst. of Science 1-2015 Solar PV Costs in the USA and Germany (2013) A C O L D S H O W E R
  • 45. Cahen-Hodes Weizmann Inst. of Science 1-2015 from First Solar websiteā€¦ Peng, Lu, Yang, Renew. Sustain. Energy Rev. 19 (2013) 255ā€“274 Estimated Solar Cell Energy Payback Times 2013
  • 46. Cahen-Hodes Weizmann Inst. of Science 1-2015 Wikipedia And finally, PV production history and forecast Cumulative PV
  • 47. Cahen-Hodes Weizmann Inst. of Science 1-2015 Worldā€™s Largest Solar-Electric Plant 30 TWp (~ 6 TWC) requires 1 such plant, every HOUR, for ~ 12 years(+ storageā€¦) Solar Cell Power Stations TODAY In 12/2014 Global Cumulative Installed PV Power ~ 0.15 TWp PRC goal >2012 ā‰„ 0.01 TWp/yr 0.55 GWp (ļƒ  ~100 MWc) Topaz Solar farm (CA, USA)
  • 48. Cahen-Hodes Weizmann Inst. of Science 1-2015 Thanking-You ļŠļŠļŠļŠļŠ