SlideShare a Scribd company logo
Nomex® 
 
 
 
by Chris Woodford. Last updated: September 22, 2014. 
It's a racing driver's worst nightmare. You come down the straight at over 200mph (300 kph), 
a tire blows out, and you skid off into the crash barrier. You survive the crash but the energy 
of the impact generates enough heat to make your fuel tank explode. Suddenly, the car that 
could have carried you to victory has turned into a fireball. You manage to escape, but now 
there's another terrifying threat: your overalls catch fire! Fortunately, you're wearing an inner 
body-suit made of an amazing flame-resistant material called Nomex®. So, as you pelt from 
the car, the fire goes out all by itself. Shaken but unharmed, you owe your life to an piece of 
amazing chemical technology. Let's take a closer look at how Nomex works and some of the 
other things it can be used for! 
Photo: A soldier puts on a Nomex® hood and a flameproof suit. Photo by Ryan C. Matson 
courtesy of US Army. 
What is Nomex? 
Photo: A pair of Nomex® gloves like these could make nasty oven burns a thing of the past. 
Nomex® is the brand name for a heat- and flame-resistant textile made by the DuPont™ 
chemical company. Technically, it's called a synthetic aromatic polyamide polymer—which 
sounds complex but starts to make more sense if you consider it one word at a time: 
 Synthetic textiles are made in a chemical laboratory (unlike natural textiles such as 
cotton, which grows on plants, and wool, which comes from animals). 
 Aromatic means its molecules have a strong, ring-like structure not unlike that of 
benzene.
 Polyamide means the ring-like aromatic molecules connect together to form long 
chains. These run inside (and parallel to) the fibers of Nomex a bit like the steel bars 
in reinforced concrete. 
 Polymer means that Nomex is made from many identical molecules bonded together 
(each one of which is called a monomer). Plastics are the most familiar polymers in 
our world. As we've seen, the monomers in Nomex are based on a modified, benzene-like 
ring structure. 
In short, what we have in Nomex is a man-made textile whose ring-like monomers are 
bonded together into tough, long chains to make immensely strong fibers. Break Nomex up 
and sort it into its atoms and you'd have four neat piles of carbon hydrogen, oxygen, and 
nitrogen. 
Photo: Left: Turn Nomex gloves inside out and you can see how very thickly woven they are. 
Although they look much like ordinary woollen gloves, wool alone could never give such 
amazing heat protection. Right: Inspect the label carefully and you'll see this is actually 
Nomex III, which is roughly 95 percent Nomex, 5 percent Kevlar, and a little carbon fiber to 
reduce static. 
Aromatic polyamides such as Nomex are often called aramids for short. Kevlar® (another 
DuPont textile) is also an aramid, but with a slightly different chemical structure. If you're 
interested, the full chemical name of Nomex is poly (m-phenylenediamine isophthalamide), 
while Kevlar is poly (p-phenylenediamine terephthalamide); Nomex is a meta-aramid 
polymer while Kevlar is a para-aramid polymer. 
Aramids are made in a two-stage process. First, the basic polymer is made by reacting 
together organic (carbon-based) substances to form a liquid. In the second stage, the liquid is 
spun out to make solid fibers, which can then be woven into textiles or converted into sheet 
form. 
Nomex generally comes in three kinds. It's either used by itself (as 100 percent Nomex), 
blended with up to 60 percent Kevlar, or blended with Kevlar and some anti-static fibers. In 
this last form, it's known as Nomex III. 
What makes Nomex fireproof? 
Two superb properties of Nomex make it a perfect protective material for race-car drivers. 
Although Nomex burns when you hold a flame up to it, it stops burning as soon as the heat 
source is removed. In other words, it is inherently flame resistant. Just as important, the thick
woven structure of synthetic fibers is a very poor conductor of heat. It takes time for heat to 
travel through Nomex; hopefully by that time, you're away from the flames and out of 
danger. 
The tough, woven structure of Nomex is extremely strong, has high heat resistance, is flame 
retardant (it doesn't melt or drip) and doesn't react with water. 
What is Nomex used for? 
Photo: Ready for battle: soldiers put on body armor made from Kevlar and Nomex and used 
by explosives experts. Photo by courtesy of US Army and Defense Visual Information 
Center. 
Nomex is best known as a barrier to fire and heat. Apart from race-car drivers, it's worn by 
astronauts, fire-fighters, and military personnel. It's also widely used in more mundane ways, 
such as in my household oven gloves. In sheet form, heatproof Nomex finds many uses in 
automobiles, including high-temperature hoses and insulation for spark plugs. 
But Nomex isn't just useful for protective clothing. The molecular structure that stops heat 
passing through stops electricity flowing through it as well. That means Nomex is an 
extremely poor conductor—almost a perfect insulator, in fact. Nomex, made into the form of 
a paper sheet or board, is a superb insulating material for all kinds of electrical equipment, 
from motors and generators to transformers and other electrical equipment. For these 
applications, Nomex is often laminated with Mylar® (polyester film) to make a stronger, 
tougher insulating material that works at high temperatures without the individual layers 
coming apart. Two-ply Nomex-Mylar laminate is called NM; three-ply is known as NMN 
(where the Nomex goes either side of the Mylar); and four ply is NMNM. 
Like Kevlar, Nomex is both very strong and very light, so it's often used in aerospace 
applications. Nomex sheet is widely used to make the honeycomb reinforcement inside 
helicopter blades and airplane tail fins.
Photo: Nomex isn't the only fire-retardant fabric. Textiles used to cover chairs are often made 
from fire-resistant polyesters and other materials. This simple demonstration in Think Tank 
(the science museum in Birmingham, England) shows very clearly how fabrics like these can 
save lives. On the left, we have a chair made from ordinary fabric. A cigarette or match burn 
sets the fabric alight very quickly and gives off toxic fumes. Had this fire been left to burn, 
the whole chair (and the rest of the room) would have been completely destroyed. On the 
right, a chair made from fire-retardant fabric burns much slower. Often the fire goes out 
before too much damage is done. 
Who invented Nomex? 
The credit for this excellent invention goes to Dr Wilfred Sweeny, a Scottish-born scientist 
working at the world-famous DuPont laboratory in Wilmington, Delaware that also spawned 
nylon and Kevlar. While researching polymers, he developed one with with particularly good 
thermal properties that could be woven into a very tough fiber. Since Nomex was introduced 
in 1967, it has saved the lives of countless firefighters, pilots, soldiers, industrial workers— 
and, of course, racing drivers! 
Velocidade, curvas perigosas e muita adrenalina. Para arriscar a vida a mais de 300 km/h os 
pilotos precisam ter certeza de que estão bem protegidos. Para ter confiança e ousar em 
ultrapassagens que os motoristas comuns nem podem imaginar, os pilotos precisam, entre as 
muitas coisas que essa atividade exige, de uma roupa especial. Por isso, ao longo dos anos, os 
macacões para pilotos de corrida evoluíram muito e se transformaram em itens 
tecnologicamente sofisticados, que combinam máxima proteção com um impecável conforto. 
O macacão é produzido com um tecido importado à base de aramida e é resistente ao fogo. 
Todo material é produzido para não pegar fogo: o forro, o zíper, a malha e até a linha de costura. 
Mas como você está acostumado, os macacões são também os responsáveis por marcar o estilo 
de cada piloto e sua equipe, além de ser uma grande vitrine para os patrocinadores. 
Por isso, a produção final do macacão acontece quando o cliente leva o seu logotipo e escolhe
as cores que serão predominantes na peça. Em seguida é feito o molde e por ultimo é colocado 
o forro. Somente após sua confecção completa é que são bordados os patrocínios e o macacão 
finalmente fica pronto para encarar as pistas. E isso tudo leva em aproximadamente quinze 
dias, além de garantir muito estilo, esses macacões são parte muito importante para que os 
pilotos profissionais corram total tranquilidade e segurança 
Aramids are a family of nylons, including Nomex® and Kevlar®. Kevlar® is used to 
make things like bullet proof vests and puncture resistant bicycle tires. I suppose one 
could even make bullet proof bicycle tires from Kevlar® if one felt the need. 
Blends of Nomex® and Kevlar® are used to make fireproof clothing. Nomex® is what 
keeps the monster truck and tractor drivers from burning to death should their fire - 
breathing rigs breathe a little too much fire. Thanks to Nomex®, an important part of 
American culture can be practiced safely. (Polymers play another part in the monster 
truck show in the form of elastomers from which those giant tires are made.) Nomex®- 
Kevlar® blends also protect fire fighters. 
Kevlar® is a polyamide, in which all the amide groups are separated by para-phenylene 
groups, that is, the amide groups attach to the phenyl rings opposite to each other, at 
carbons 1 and 4. Kevlar is shown in the big picture at the top of the page. 
Nomex®, on the other hand, has meta-phenylene groups, that is, the amide groups are 
attached to the phenyl ring at the 1 and 3 positions.
Kevlar® is a very crystalline polymer. It took a long time to figure out how to make 
anything useful out of Kevlar® because it wouldn't dissolve in anything. So processing it 
as a solution was out. It wouldn't melt below a right toasty 500 oC, so melting it down 
was out, too. Then a scientist named Stephanie Kwolek came up with a brilliant plan. 
Click here to find out what it was. 
Aramids are used in the form of fibers. They form into even better fibers than non-aromatic 
polyamides, like nylon 6,6. 
Why? Why? 
Ok, since it seems everyone just has to know, I'll tell you. It has to do with a little quirky 
thing that amides do. They have the ability to adopt two different shapes, or 
conformations. You can see this in the picture of a low molecular weight amide. The two 
pictures are the same compound, in two different conformations. The one on the left is 
called the trans conformation, and the one on the right is the cis- conformation. 
In Latin, trans means "on the other side". So when the hydrocarbon groups of the 
amide are on opposite sides of the amide bond, the bond between the carbonyl oxygen 
and the amide nitrogen, it's called a trans-amide. Likewise, cis in Latin means "on the 
same side", and when both hydrocarbon groups are on the same side of the amide bond, 
we call it a cis-amide.
The same amide molecule can twist back and forth between the cis- and trans-conformations, 
given a little bit of energy. 
The same cis- and trans-conformations exist in polyamides, too. When all the amide 
groups in a polyamide, like nylon 6,6 for example, are in the trans conformation, the 
polymer is fully stretched out in a straight line. This is exactly what we want for fibers, 
because long, straight, fully extended chains pack more perfectly into the crystalline 
form that makes up the fiber. But sadly, there's always at least some amide linkages in 
the cis-conformation. So nylon 6,6 chains never become fully extended.
But Kevlar® is different. When it tries to twist into the cis-conformation, the hydrogens 
on the big aromatic groups get in the way! The cis conformation puts the hydrogens just 
a little closer to each other than they want to be. So Kevlar® stays nearly fully in the 
trans- conformation. So Kevlar® can fully extend to form beautiful fibers. 
Now it may help to look at a close-up picture of this. Look at the picture below and you 
can see that when Kevlar® tries to form the cis-conformation, there's not enough room 
for the phenyl hydrogens. So only the trans-conformation is usually found.
But there's another polymer that stretches out even better called ultra-high molecular 
weight polyethylene. It even replaced Kevlar® for making bullet-proof vests! 
But back to Kevlar®... 
Also the phenyl rings of adjacent chains stack on top of each other very easily and 
neatly, which makes the polymer even more crystalline, and the fibers even stronger. 
Nomex 
From Wikipedia, the free encyclopedia
A Canadian firefighter in Toronto affixes a Nomex hood in 2007. 
Nomex is a registered trademark for flame-resistant meta-aramid material developed in the 
early 1960s by DuPont and first marketed in 1967.[1] 
Contents 
 1 Properties 
 2 Production 
 3 Applications 
 4 History 
 5 See also 
 6 References 
 7 External links 
Properties 
Nomex and related aramid polymers are related to nylon, but have aromatic backbones, and 
hence are more rigid and more durable. Nomex is the premier example of a meta variant of 
the aramids (Kevlar is a para aramid). Unlike Kevlar, Nomex cannot align during filament 
formation and has poorer strength. However, it has excellent thermal, chemical, and radiation 
resistance for a polymer material. 
Production 
The polymer is produced by condensation reaction from the monomers m-phenylenediamine 
and isophthaloyl chloride.[1] 
It is sold in both fiber and sheet forms and is used as a fabric wherever resistance from heat 
and flame is required. Nomex sheet is actually a calendered paper and made in a similar 
fashion. Nomex Type 410 paper is the original and one of the larger grade types made, 
mostly for electrical insulation purposes. Nomex fiber is made in the USA and in Spain 
(Asturias). 
Wilfred Sweeny (1926–2011), the DuPont scientist responsible for discoveries leading to 
Nomex, earned a DuPont Lavoisier Medal[2] partly for this work in 2002. 
Applications
The paper is used in electrical laminates such as circuit boards and transformer cores as well 
as fireproof honeycomb structures where it is saturated with a phenolic resin. Honeycomb 
structures such as these, as well as mylar-Nomex laminates are used extensively in aircraft 
construction. Both the firefighting and vehicle racing industries use Nomex to create clothing 
and equipment that can withstand intense heat. 
A Nomex hood is a common piece of racing and firefighting equipment. It is placed on the 
head on top of a firefighter's face mask. The hood protects the portions of the head not 
covered by the helmet and face mask from the intense heat of the fire. 
Wildland firefighters wear Nomex shirts and trousers as part of their personal protective 
equipment during wildfire suppression activities. 
Race car drivers wear driving suits constructed of Nomex and or other fire retardant 
materials, along with Nomex gloves, long underwear, balaclavas, socks, helmet lining and 
shoes to protect them in the event of a fire. The FIA and the SFI Foundation provide 
specifications for flame-resistant drivers clothing to be used in racing. The standards range 
from single layer suits that provide some protection against flash fires to much thicker 
multilayer SFI-15 suits required by the National Hot Rod Association that can protect a driver 
for up to 30 seconds against the intense heat and almost invisible flames generated by the 
nitromethane, ethanol and methanol fuels that are used in championship drag racing. 
Military pilots and aircrew wear flight suits made of over 92 percent Nomex to protect them 
from the possibility of cockpit fires and other mishaps. Recently, troops riding in ground 
vehicles have also begun wearing Nomex. The remaining material is typically Kevlar thread 
used to hold the fabric together at the seams. 
Military tank drivers also typically use Nomex hoods as protection against fire and extreme 
cold. [3] 
In the U.S. space program, Nomex has been used for the Thermal Micrometeoroid Garment 
on the Extravehicular Mobility Unit (in conjunction with Kevlar and Gore-Tex) and ACES 
pressure suit, both for fire and extreme environment (water immersion to near vacuum) 
protection, and as thermal blankets on the payload bay doors, fuselage, and upper wing 
surfaces of the Space Shuttle Orbiter. It has also been used for the airbags for the Mars 
Pathfinder and Mars Exploration Rover missions, the Galileo atmospheric probe, the Cassini- 
Huygens Titan probe, as an external covering on the AERCam Sprint, and is planned to be 
incorporated into NASA's upcoming Crew Exploration Vehicle. 
Nomex has also been used for its acoustic qualities, the first time being used in Troy, NY, at 
Rensselaer Polytechnic Institute's Experimental Media and Performing Arts Center 
(EMPAC's) main concert hall. A ceiling canopy of Nomex reflects high and mid frequency 
sound, providing reverberation, while letting lower frequency sound partially pass through 
the canopy.[4] According to RPI President Shirley Ann Jackson, EMPAC is the first venue in 
the world to use Nomex for acoustic reasons. 
Nomex (like Kevlar) is also used in the production of loudspeaker drivers. 
Honeycomb-structured Nomex paper is also used as a spacer between layers of lead in the 
ATLAS Liquid Argon Calorimeter.[5]
History 
The death of race car drivers in fiery crashes, notably those of Fireball Roberts at Charlotte, 
and Eddie Sachs and Dave MacDonald at Indianapolis, all in 1964, meant something had to 
be done.[6] In early 1966 Competition Press and Autoweek reported: "During the past season, 
experimental driving suits were worn by Walt Hansgen, Masten Gregory, Marvin Panch and 
Group 44's Bob Tullius; these four representing a fairly good cross section in the sport. The 
goal was to get use-test information on the comfort and laundering characteristics of Nomex. 
The Chrysler-Plymouth team at the recent Motor Trend 500 at Riverside also wore these 
suits."[7] 
Propiedades del Kevlar y 
del Nomex 
Las propiedades de estos dos materiales van ligadas intrínsecamente a las 
aplicaciones que podemos encontrar tanto en la industria como en la vida 
cotidiana, las cuales se ven en el siguiente punto. 
No derriten ni se contraen en llama, y carbonizan 
solamente a temperaturas muy altas. Ofrecen una 
resistencia excelente al agua y al petróleo, incluyendo 
el aceite de motores y lubricantes, además tienen una 
buena resistencia química y son químicamente estables 
bajo una gran variedad de condiciones de exposición. 
Son ambos extremadamente resistentes y con alta 
resistencia a la abrasión, además se cortan y se rasgan. 
NOMEX® es un polímero aromático sintético de poliamida que proporciona altos 
niveles de la integridad eléctrica, química y mecánica. 
Esto es lo que hace que NOMEX® no se contraiga, ni dilate, ni se ablande ni 
derrita durante la exposición a corto plazo a temperaturas tan altas como
300°C. A largo plazo puede estar trabajando como aislante tanto térmico como 
eléctrico o químico soportando continuamente temperaturas de hasta 220°C 
durante más de 10 años. 
La fuerza y la resistencia de los papeles y de los cartones prensados de 
NOMEX® ayudan a ampliar vida del equipo que rota en condiciones de 
funcionamiento severas. Estas condiciones incluyen choque severo y 
vibraciones excesivas propiciadas por desequilibrios rotantes, como por 
ejemplo las que pueden aparecer en molinos de acero, motores para tracción 
ferroviaria, o turbinas de gas. En todos ellos además tenemos grandes 
temperaturas de funcionamiento. 
Fuerza dieléctrica inherente 
En tensiones eléctricas muy elevadas, como 
cortocircuitos, a corto plazo los productos de 
NOMEX® de 18 a 40 V/mil de kV/mm (457 a 1015), 
dependiendo de tipo de producto y grueso, 
proporcionan la protección necesaria y adecuada. 
Dureza mecánica 
Los productos de alta densidad de NOMEX® son 
fuertes, resistentes y (en los grados más finos) 
flexibles, con buena resistencia al rasgado y a la 
abrasión. 
Estabilidad termal 
Las temperaturas hasta 200°C tienen poco o nada de efecto en las 
características eléctricas y mecánicas de los productos de NOMEX®, y los 
valores útiles se conservan en temperaturas considerablemente más altas. 
Además, estas características útiles se mantienen por por lo menos 10 años de 
exposición continua a 220°C de temperatura. 
Compatibilidad química
NOMEX® es esencialmente inerte a la mayoría de 
los disolventes, y es totalmente resistente a los 
ataques de ácidos y álcalis. Es compatible con 
todas las clases de barnices y de pegamentos, de 
líquidos de transformadores, de aceites 
lubricantes, y de refrigerantes. Puesto que los 
productos de NOMEX® no son digestibles, no son 
atacados por insectos, hongos, etc. 
Capacidades criogénicas 
NOMEX® ha encontrado una gran aceptación en una variedad de usos 
criogénicos debido a su estructura polimérica única. En el punto que hierve el 
nitrógeno (77°K), los cartones prensados de papel de NOMEX® resisten 
plenamete las fuerzas de contracción/dilatación que aparecen. 
Insensibilidad a la humedad 
En equilibrio con un 95 por ciento de humedad relativa, los papeles de NOMEX® 
y los cartones prensados mantienen un 90 por ciento de su fuerza dieléctrica, 
mientras que muchas características mecánicas además mejoran. 
Resistencia de la radiación 
NOMEX® es esencialmente inafectado por 800 megarads (8Mgy) de radiación de 
ionización y todavía conserva características mecánicas y eléctricas útiles 
después de ocho veces esta exposición. 
No toxicidad 
Los productos de NOMEX® no producen ninguna 
reacción tóxica conocida en seres humanos o 
animales. Los productos de NOMEX® no se derriten 
y, con un índice limitador del oxígeno (LOI) en 220°C 
sobre 20,8 (el valor crítico para la combustión en 
aire normal), no favorecen la combustión.
Estructura química del 
Kevlar y del Nomex: 
El Kevlar y el Nomex pertenecen a la familia de las aramidas, las cuales , a su 
vez, pertenecen a una familia de nylons. Todos ellos son polímeros. Algunos otros 
polímeros sintéticos comunesson el Teflon, la Lycra, y el poliéster. Un polímero es una 
cadena hecha de muchos grupos moleculares similares, conocido como monómeros, que 
se enlazan juntos. Para conseguir entender mejor todo esto, imagínese que está mirando 
un tren de mercancías muy largo. Cada vagón idéntico podría representar un 
monómero y el tren en su conjunto representaría la cadena del polímero. 
Una sola cadena del polímero de Kevlar podría tener desde cinco hasta un millón de 
monómeros enlazados juntos. Cada monómero de Kevlar es una unidad química que 
contiene 14 átomos de carbono, 2 átomos de nitrógeno, 2 átomos de oxígeno y 10 átomos 
de hidrógeno. 
Químicamente se puede representar un monómero de Kevlar como esto: 
El Kevlar es una poliamida, en la cual todos los grupos amida están separados por 
grupos para-fenileno, es decir, los grupos amida se unen al anillo fenilo en posiciones 
opuestas entre sí, en los carbonos 1 y 4. El Kevlar se muestra en la figura grande, en la 
parte superior de esta página.
El Nomex, por otra parte, posee grupos meta-fenileno, es decir, los grupos amida se 
unen al anillo fenilo en las posiciones 1 y 3. 
Las aramidas se utilizan en forma de fibras. Forman fibras aún 
mejores que las poliamidas no aromáticas, como el nylon 6,6. 
Las cadenas del polímero se pueden juntar aleatoriamente o se pueden 
orientar cuidadosamente de lado a lado en una fila. Resulta que la 
orientación de las cadenas del polímero es muy importante para ciertas 
características tales como flexibilidad, rigidez, y fuerza. 
Una fibra de Kevlar es un arsenal de moléculas orientadas en paralelo como un paquete 
de espaguetis crudos. Esta colocación espacial es lo que proporciona las moléculas con 
estructura cristalina. La cristalinidad es obtenida por un proceso de fabricación que 
implica sacar la solución fundida del polímero a través de agujeros pequeños de la 
extrusora. La cristalinidad de los filamentos del polímero de Kevlar contribuye 
perceptiblemente a su fuerza y rigidez únicas.
¿Cómo son realmente las moléculas de Kevlar? 
Una resistencia excepcional. 
IR 
Las amidas tienen la capacidad de adoptar dos formas diferentes, o conformaciones. 
Usted puede ver ésto en la figura de una amida de bajo peso molecular. Las dos figuras 
son del mismo compuesto, en dos conformaciones diferentes. La que está a la izquierda 
se denomina conformación trans, y la que está a la derecha conformación cis. 
En latín, trans significa "del otro lado". Así, cuando las cadenas hidrocarbonadas de la 
amida están en lados opuestos al enlace peptídico, el enlace entre el oxígeno del 
carbonilo y el nitrógeno de la amida, ésta se denomina amida trans. Asimismo, cis en 
latín significa "en el mismo lado", y cuando las cadenas hidrocarbonadas están del 
mismo lado del enlace peptídico, la llamamos amida cis.
La misma molécula de la amida puede torcerse hacia adelante y hacia atrás entre las 
conformaciones cis y trans, originando una pequeña energía. 
En las poliamidas también existen las conformaciones cis y trans. Cuando en una 
poliamida todos los grupos amida están en su conformación trans, como el nylon 6.6 por 
ejemplo, el polímero se estira completamente en una línea recta. Esto es exactamente lo 
que deseamos para las fibras, porque las cadenas largas y completamente extendidas se 
empaquetan más adecuadamente, dando lugar a la forma cristalina que caracteriza a 
las fibras. Pero lamentablemente, siempre existen unos pocos enlaces amida en la 
conformación cis. Por ello las cadenas del nylon 6.6 nunca llegan a estar completamente 
extendidas.
Sin embargo el Kevlar es diferente. Cuando intenta adoptar la conformación cis, los 
hidrógenos de los voluminosos grupos aromáticos se interponen en el camino. La 
conformación cis coloca a los hidrógenos un poco más cerca de lo que quisieran estar. 
De este modo, el Kevlar permanece casi enteramente en su conformación trans. Y así, 
puede extenderse completamente para formar unas hermosas fibras.
Veamos ésto en un primer plano. Observe la figura de abajo y podrá apreciar que 
cuando el Kevlar intenta adoptar la conformación cis, no queda espacio suficiente para 
los hidrógenos de los fenilos. De modo que la conformación trans es la que se encuentra 
generalmente.
Nomex

More Related Content

What's hot

Aramid fibers and water soluble polymers
Aramid fibers and water soluble polymersAramid fibers and water soluble polymers
Aramid fibers and water soluble polymers
hasanjamal13
 
Polyester fibre
Polyester fibrePolyester fibre
Polyester fibre
Today Fasion ware
 
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
MD. SAJJADUL KARIM BHUIYAN
 
Different application of Aramids fiber
Different application of Aramids fiberDifferent application of Aramids fiber
Different application of Aramids fiber
Amal Ray
 
Nylon 6 & Nylon 6,6
Nylon 6 & Nylon 6,6Nylon 6 & Nylon 6,6
Nylon 6 & Nylon 6,6
Rishi Pandey
 
Assignment on Aramid fiber
Assignment on Aramid fiber Assignment on Aramid fiber
Assignment on Aramid fiber
Raselmondalmehedi
 
Polymer Spinning and its different techniques
Polymer Spinning  and its different techniquesPolymer Spinning  and its different techniques
Polymer Spinning and its different techniques
Zubair Awan
 
Needle punch nonwoven applications
Needle punch nonwoven applicationsNeedle punch nonwoven applications
Needle punch nonwoven applications
A.T.E. Private Limited
 
presentation on Nylon Fiber.
presentation on Nylon Fiber.presentation on Nylon Fiber.
presentation on Nylon Fiber.
AbdulAziz1282
 
Aramid Fiber as reinforcement
Aramid Fiber as reinforcementAramid Fiber as reinforcement
Aramid Fiber as reinforcement
Muhammad Zain
 
non woven ppt
non woven pptnon woven ppt
non woven ppt
pranoy debnath
 
FLAME RETARDANT FINISH ON TEXTILES
FLAME RETARDANT FINISH ON TEXTILES FLAME RETARDANT FINISH ON TEXTILES
FLAME RETARDANT FINISH ON TEXTILES
INDIAN INSTITUTE OF TECHNOLOGY DELHI (IIT-DELHI)
 
Flame retardant finishes
Flame retardant finishesFlame retardant finishes
Flame retardant finishes
abhibft
 
Aramid fibers
Aramid fibersAramid fibers
Aramid fibers
SyedAhmed Khizar
 
Nomex Fiber.pdf
Nomex Fiber.pdfNomex Fiber.pdf
Nomex Fiber.pdf
T. M. Ashikur Rahman
 
2. textile reinforced composites
2. textile reinforced composites2. textile reinforced composites
2. textile reinforced composites
Ghent University
 
Glass fibres
Glass fibresGlass fibres
Mobieltech
Mobieltech Mobieltech
Mobieltech
Takbir Ahmed
 

What's hot (20)

Aramid fibers and water soluble polymers
Aramid fibers and water soluble polymersAramid fibers and water soluble polymers
Aramid fibers and water soluble polymers
 
Polyester fibre
Polyester fibrePolyester fibre
Polyester fibre
 
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
 
Different application of Aramids fiber
Different application of Aramids fiberDifferent application of Aramids fiber
Different application of Aramids fiber
 
Nylon 6 & Nylon 6,6
Nylon 6 & Nylon 6,6Nylon 6 & Nylon 6,6
Nylon 6 & Nylon 6,6
 
Nonwoven
NonwovenNonwoven
Nonwoven
 
Assignment on Aramid fiber
Assignment on Aramid fiber Assignment on Aramid fiber
Assignment on Aramid fiber
 
Polymer Spinning and its different techniques
Polymer Spinning  and its different techniquesPolymer Spinning  and its different techniques
Polymer Spinning and its different techniques
 
Needle punch nonwoven applications
Needle punch nonwoven applicationsNeedle punch nonwoven applications
Needle punch nonwoven applications
 
presentation on Nylon Fiber.
presentation on Nylon Fiber.presentation on Nylon Fiber.
presentation on Nylon Fiber.
 
Aramid Fiber as reinforcement
Aramid Fiber as reinforcementAramid Fiber as reinforcement
Aramid Fiber as reinforcement
 
non woven ppt
non woven pptnon woven ppt
non woven ppt
 
FLAME RETARDANT FINISH ON TEXTILES
FLAME RETARDANT FINISH ON TEXTILES FLAME RETARDANT FINISH ON TEXTILES
FLAME RETARDANT FINISH ON TEXTILES
 
Flame retardant finishes
Flame retardant finishesFlame retardant finishes
Flame retardant finishes
 
Aramid fibers
Aramid fibersAramid fibers
Aramid fibers
 
Nomex Fiber.pdf
Nomex Fiber.pdfNomex Fiber.pdf
Nomex Fiber.pdf
 
2. textile reinforced composites
2. textile reinforced composites2. textile reinforced composites
2. textile reinforced composites
 
Glass fibres
Glass fibresGlass fibres
Glass fibres
 
Mobieltech
Mobieltech Mobieltech
Mobieltech
 
Drawing man made fiber
Drawing man made fiberDrawing man made fiber
Drawing man made fiber
 

Viewers also liked

Nomex 2
Nomex 2Nomex 2
Fireman Clothing
Fireman ClothingFireman Clothing
Fireman Clothing
Bernard Chung
 
NOMEX- BUYER PRESENTATION DT 12.05.15
NOMEX- BUYER  PRESENTATION DT 12.05.15NOMEX- BUYER  PRESENTATION DT 12.05.15
NOMEX- BUYER PRESENTATION DT 12.05.15DULAL ACHARYYA
 
Aramid fibers
Aramid fibersAramid fibers
Aramid fibers
Mechanical Online
 
kevlar
kevlarkevlar
kevlar
fahim zauwad
 
đề Cương môn học vật liệu may
đề Cương môn học vật liệu mayđề Cương môn học vật liệu may
đề Cương môn học vật liệu may
https://www.facebook.com/garmentspace
 

Viewers also liked (9)

Nomex 2
Nomex 2Nomex 2
Nomex 2
 
Fireman Clothing
Fireman ClothingFireman Clothing
Fireman Clothing
 
NOMEX- BUYER PRESENTATION DT 12.05.15
NOMEX- BUYER  PRESENTATION DT 12.05.15NOMEX- BUYER  PRESENTATION DT 12.05.15
NOMEX- BUYER PRESENTATION DT 12.05.15
 
Preparation of amide
Preparation of amidePreparation of amide
Preparation of amide
 
Aramid fibers
Aramid fibersAramid fibers
Aramid fibers
 
kevlar
kevlarkevlar
kevlar
 
đề Cương môn học vật liệu may
đề Cương môn học vật liệu mayđề Cương môn học vật liệu may
đề Cương môn học vật liệu may
 
Kevlar
KevlarKevlar
Kevlar
 
Kevlar
KevlarKevlar
Kevlar
 

Similar to Nomex

NOMEX PPT.pptx
NOMEX PPT.pptxNOMEX PPT.pptx
NOMEX PPT.pptx
T. M. Ashikur Rahman
 
Manmade (1).pptx
Manmade (1).pptxManmade (1).pptx
Manmade (1).pptx
rubaiyaislampriya
 
Protective textiles
Protective textilesProtective textiles
Protective textiles
Muhundhan Muhu
 
High pr aero
High pr aeroHigh pr aero
High pr aero
Amal Ray
 
What are textiles?
What are textiles?What are textiles?
What are textiles?
LorettaKreis
 
Presentation on high performance fiber and high performance pliyed yarn
Presentation on high performance fiber and high performance pliyed yarnPresentation on high performance fiber and high performance pliyed yarn
Presentation on high performance fiber and high performance pliyed yarn
Subrata Barmon
 
High perfomance fibre
High perfomance fibreHigh perfomance fibre
High perfomance fibre
Ranita Paul
 
Kevlar Fiber
Kevlar Fiber Kevlar Fiber
Kevlar Fiber
Devansh Gupta
 
AEROSPACE TEXTILES
AEROSPACE TEXTILESAEROSPACE TEXTILES
AEROSPACE TEXTILES
akaashi20
 
polyamides
polyamidespolyamides
polyamides
Dbajwa Pk
 
Special Use Fibres
Special Use FibresSpecial Use Fibres
Special Use Fibres
Nishu Jalotia
 
Aramid fiber
Aramid fiberAramid fiber
Marine applications
Marine applicationsMarine applications
Marine applications
arpana kamboj
 
Military clothing
Military clothingMilitary clothing
Military clothingArka Das
 
militaryclothing-130418073507-phpapp02 (1).pdf
militaryclothing-130418073507-phpapp02 (1).pdfmilitaryclothing-130418073507-phpapp02 (1).pdf
militaryclothing-130418073507-phpapp02 (1).pdf
RecepYardmc
 
properties and application of technical textile fibers
properties and application of technical textile fibersproperties and application of technical textile fibers
properties and application of technical textile fibers
Shahriar Shovon
 
What is the future of Apparel Sourcing?
What is the future of Apparel Sourcing?What is the future of Apparel Sourcing?
What is the future of Apparel Sourcing?
ThreadSol
 
2.fire_fighters_clothing. Its very helpful
2.fire_fighters_clothing. Its very helpful2.fire_fighters_clothing. Its very helpful
2.fire_fighters_clothing. Its very helpful
RuddroIslam
 

Similar to Nomex (20)

NOMEX PPT.pptx
NOMEX PPT.pptxNOMEX PPT.pptx
NOMEX PPT.pptx
 
Manmade (1).pptx
Manmade (1).pptxManmade (1).pptx
Manmade (1).pptx
 
Protective textiles
Protective textilesProtective textiles
Protective textiles
 
All about Carbo Fiber
All about Carbo FiberAll about Carbo Fiber
All about Carbo Fiber
 
High pr aero
High pr aeroHigh pr aero
High pr aero
 
Textile Brochure
Textile BrochureTextile Brochure
Textile Brochure
 
What are textiles?
What are textiles?What are textiles?
What are textiles?
 
Presentation on high performance fiber and high performance pliyed yarn
Presentation on high performance fiber and high performance pliyed yarnPresentation on high performance fiber and high performance pliyed yarn
Presentation on high performance fiber and high performance pliyed yarn
 
High perfomance fibre
High perfomance fibreHigh perfomance fibre
High perfomance fibre
 
Kevlar Fiber
Kevlar Fiber Kevlar Fiber
Kevlar Fiber
 
AEROSPACE TEXTILES
AEROSPACE TEXTILESAEROSPACE TEXTILES
AEROSPACE TEXTILES
 
polyamides
polyamidespolyamides
polyamides
 
Special Use Fibres
Special Use FibresSpecial Use Fibres
Special Use Fibres
 
Aramid fiber
Aramid fiberAramid fiber
Aramid fiber
 
Marine applications
Marine applicationsMarine applications
Marine applications
 
Military clothing
Military clothingMilitary clothing
Military clothing
 
militaryclothing-130418073507-phpapp02 (1).pdf
militaryclothing-130418073507-phpapp02 (1).pdfmilitaryclothing-130418073507-phpapp02 (1).pdf
militaryclothing-130418073507-phpapp02 (1).pdf
 
properties and application of technical textile fibers
properties and application of technical textile fibersproperties and application of technical textile fibers
properties and application of technical textile fibers
 
What is the future of Apparel Sourcing?
What is the future of Apparel Sourcing?What is the future of Apparel Sourcing?
What is the future of Apparel Sourcing?
 
2.fire_fighters_clothing. Its very helpful
2.fire_fighters_clothing. Its very helpful2.fire_fighters_clothing. Its very helpful
2.fire_fighters_clothing. Its very helpful
 

Recently uploaded

Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
MuhammadTufail242431
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
ShahidSultan24
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
DuvanRamosGarzon1
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 

Recently uploaded (20)

Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 

Nomex

  • 1. Nomex®    by Chris Woodford. Last updated: September 22, 2014. It's a racing driver's worst nightmare. You come down the straight at over 200mph (300 kph), a tire blows out, and you skid off into the crash barrier. You survive the crash but the energy of the impact generates enough heat to make your fuel tank explode. Suddenly, the car that could have carried you to victory has turned into a fireball. You manage to escape, but now there's another terrifying threat: your overalls catch fire! Fortunately, you're wearing an inner body-suit made of an amazing flame-resistant material called Nomex®. So, as you pelt from the car, the fire goes out all by itself. Shaken but unharmed, you owe your life to an piece of amazing chemical technology. Let's take a closer look at how Nomex works and some of the other things it can be used for! Photo: A soldier puts on a Nomex® hood and a flameproof suit. Photo by Ryan C. Matson courtesy of US Army. What is Nomex? Photo: A pair of Nomex® gloves like these could make nasty oven burns a thing of the past. Nomex® is the brand name for a heat- and flame-resistant textile made by the DuPont™ chemical company. Technically, it's called a synthetic aromatic polyamide polymer—which sounds complex but starts to make more sense if you consider it one word at a time:  Synthetic textiles are made in a chemical laboratory (unlike natural textiles such as cotton, which grows on plants, and wool, which comes from animals).  Aromatic means its molecules have a strong, ring-like structure not unlike that of benzene.
  • 2.  Polyamide means the ring-like aromatic molecules connect together to form long chains. These run inside (and parallel to) the fibers of Nomex a bit like the steel bars in reinforced concrete.  Polymer means that Nomex is made from many identical molecules bonded together (each one of which is called a monomer). Plastics are the most familiar polymers in our world. As we've seen, the monomers in Nomex are based on a modified, benzene-like ring structure. In short, what we have in Nomex is a man-made textile whose ring-like monomers are bonded together into tough, long chains to make immensely strong fibers. Break Nomex up and sort it into its atoms and you'd have four neat piles of carbon hydrogen, oxygen, and nitrogen. Photo: Left: Turn Nomex gloves inside out and you can see how very thickly woven they are. Although they look much like ordinary woollen gloves, wool alone could never give such amazing heat protection. Right: Inspect the label carefully and you'll see this is actually Nomex III, which is roughly 95 percent Nomex, 5 percent Kevlar, and a little carbon fiber to reduce static. Aromatic polyamides such as Nomex are often called aramids for short. Kevlar® (another DuPont textile) is also an aramid, but with a slightly different chemical structure. If you're interested, the full chemical name of Nomex is poly (m-phenylenediamine isophthalamide), while Kevlar is poly (p-phenylenediamine terephthalamide); Nomex is a meta-aramid polymer while Kevlar is a para-aramid polymer. Aramids are made in a two-stage process. First, the basic polymer is made by reacting together organic (carbon-based) substances to form a liquid. In the second stage, the liquid is spun out to make solid fibers, which can then be woven into textiles or converted into sheet form. Nomex generally comes in three kinds. It's either used by itself (as 100 percent Nomex), blended with up to 60 percent Kevlar, or blended with Kevlar and some anti-static fibers. In this last form, it's known as Nomex III. What makes Nomex fireproof? Two superb properties of Nomex make it a perfect protective material for race-car drivers. Although Nomex burns when you hold a flame up to it, it stops burning as soon as the heat source is removed. In other words, it is inherently flame resistant. Just as important, the thick
  • 3. woven structure of synthetic fibers is a very poor conductor of heat. It takes time for heat to travel through Nomex; hopefully by that time, you're away from the flames and out of danger. The tough, woven structure of Nomex is extremely strong, has high heat resistance, is flame retardant (it doesn't melt or drip) and doesn't react with water. What is Nomex used for? Photo: Ready for battle: soldiers put on body armor made from Kevlar and Nomex and used by explosives experts. Photo by courtesy of US Army and Defense Visual Information Center. Nomex is best known as a barrier to fire and heat. Apart from race-car drivers, it's worn by astronauts, fire-fighters, and military personnel. It's also widely used in more mundane ways, such as in my household oven gloves. In sheet form, heatproof Nomex finds many uses in automobiles, including high-temperature hoses and insulation for spark plugs. But Nomex isn't just useful for protective clothing. The molecular structure that stops heat passing through stops electricity flowing through it as well. That means Nomex is an extremely poor conductor—almost a perfect insulator, in fact. Nomex, made into the form of a paper sheet or board, is a superb insulating material for all kinds of electrical equipment, from motors and generators to transformers and other electrical equipment. For these applications, Nomex is often laminated with Mylar® (polyester film) to make a stronger, tougher insulating material that works at high temperatures without the individual layers coming apart. Two-ply Nomex-Mylar laminate is called NM; three-ply is known as NMN (where the Nomex goes either side of the Mylar); and four ply is NMNM. Like Kevlar, Nomex is both very strong and very light, so it's often used in aerospace applications. Nomex sheet is widely used to make the honeycomb reinforcement inside helicopter blades and airplane tail fins.
  • 4. Photo: Nomex isn't the only fire-retardant fabric. Textiles used to cover chairs are often made from fire-resistant polyesters and other materials. This simple demonstration in Think Tank (the science museum in Birmingham, England) shows very clearly how fabrics like these can save lives. On the left, we have a chair made from ordinary fabric. A cigarette or match burn sets the fabric alight very quickly and gives off toxic fumes. Had this fire been left to burn, the whole chair (and the rest of the room) would have been completely destroyed. On the right, a chair made from fire-retardant fabric burns much slower. Often the fire goes out before too much damage is done. Who invented Nomex? The credit for this excellent invention goes to Dr Wilfred Sweeny, a Scottish-born scientist working at the world-famous DuPont laboratory in Wilmington, Delaware that also spawned nylon and Kevlar. While researching polymers, he developed one with with particularly good thermal properties that could be woven into a very tough fiber. Since Nomex was introduced in 1967, it has saved the lives of countless firefighters, pilots, soldiers, industrial workers— and, of course, racing drivers! Velocidade, curvas perigosas e muita adrenalina. Para arriscar a vida a mais de 300 km/h os pilotos precisam ter certeza de que estão bem protegidos. Para ter confiança e ousar em ultrapassagens que os motoristas comuns nem podem imaginar, os pilotos precisam, entre as muitas coisas que essa atividade exige, de uma roupa especial. Por isso, ao longo dos anos, os macacões para pilotos de corrida evoluíram muito e se transformaram em itens tecnologicamente sofisticados, que combinam máxima proteção com um impecável conforto. O macacão é produzido com um tecido importado à base de aramida e é resistente ao fogo. Todo material é produzido para não pegar fogo: o forro, o zíper, a malha e até a linha de costura. Mas como você está acostumado, os macacões são também os responsáveis por marcar o estilo de cada piloto e sua equipe, além de ser uma grande vitrine para os patrocinadores. Por isso, a produção final do macacão acontece quando o cliente leva o seu logotipo e escolhe
  • 5. as cores que serão predominantes na peça. Em seguida é feito o molde e por ultimo é colocado o forro. Somente após sua confecção completa é que são bordados os patrocínios e o macacão finalmente fica pronto para encarar as pistas. E isso tudo leva em aproximadamente quinze dias, além de garantir muito estilo, esses macacões são parte muito importante para que os pilotos profissionais corram total tranquilidade e segurança Aramids are a family of nylons, including Nomex® and Kevlar®. Kevlar® is used to make things like bullet proof vests and puncture resistant bicycle tires. I suppose one could even make bullet proof bicycle tires from Kevlar® if one felt the need. Blends of Nomex® and Kevlar® are used to make fireproof clothing. Nomex® is what keeps the monster truck and tractor drivers from burning to death should their fire - breathing rigs breathe a little too much fire. Thanks to Nomex®, an important part of American culture can be practiced safely. (Polymers play another part in the monster truck show in the form of elastomers from which those giant tires are made.) Nomex®- Kevlar® blends also protect fire fighters. Kevlar® is a polyamide, in which all the amide groups are separated by para-phenylene groups, that is, the amide groups attach to the phenyl rings opposite to each other, at carbons 1 and 4. Kevlar is shown in the big picture at the top of the page. Nomex®, on the other hand, has meta-phenylene groups, that is, the amide groups are attached to the phenyl ring at the 1 and 3 positions.
  • 6. Kevlar® is a very crystalline polymer. It took a long time to figure out how to make anything useful out of Kevlar® because it wouldn't dissolve in anything. So processing it as a solution was out. It wouldn't melt below a right toasty 500 oC, so melting it down was out, too. Then a scientist named Stephanie Kwolek came up with a brilliant plan. Click here to find out what it was. Aramids are used in the form of fibers. They form into even better fibers than non-aromatic polyamides, like nylon 6,6. Why? Why? Ok, since it seems everyone just has to know, I'll tell you. It has to do with a little quirky thing that amides do. They have the ability to adopt two different shapes, or conformations. You can see this in the picture of a low molecular weight amide. The two pictures are the same compound, in two different conformations. The one on the left is called the trans conformation, and the one on the right is the cis- conformation. In Latin, trans means "on the other side". So when the hydrocarbon groups of the amide are on opposite sides of the amide bond, the bond between the carbonyl oxygen and the amide nitrogen, it's called a trans-amide. Likewise, cis in Latin means "on the same side", and when both hydrocarbon groups are on the same side of the amide bond, we call it a cis-amide.
  • 7. The same amide molecule can twist back and forth between the cis- and trans-conformations, given a little bit of energy. The same cis- and trans-conformations exist in polyamides, too. When all the amide groups in a polyamide, like nylon 6,6 for example, are in the trans conformation, the polymer is fully stretched out in a straight line. This is exactly what we want for fibers, because long, straight, fully extended chains pack more perfectly into the crystalline form that makes up the fiber. But sadly, there's always at least some amide linkages in the cis-conformation. So nylon 6,6 chains never become fully extended.
  • 8. But Kevlar® is different. When it tries to twist into the cis-conformation, the hydrogens on the big aromatic groups get in the way! The cis conformation puts the hydrogens just a little closer to each other than they want to be. So Kevlar® stays nearly fully in the trans- conformation. So Kevlar® can fully extend to form beautiful fibers. Now it may help to look at a close-up picture of this. Look at the picture below and you can see that when Kevlar® tries to form the cis-conformation, there's not enough room for the phenyl hydrogens. So only the trans-conformation is usually found.
  • 9. But there's another polymer that stretches out even better called ultra-high molecular weight polyethylene. It even replaced Kevlar® for making bullet-proof vests! But back to Kevlar®... Also the phenyl rings of adjacent chains stack on top of each other very easily and neatly, which makes the polymer even more crystalline, and the fibers even stronger. Nomex From Wikipedia, the free encyclopedia
  • 10. A Canadian firefighter in Toronto affixes a Nomex hood in 2007. Nomex is a registered trademark for flame-resistant meta-aramid material developed in the early 1960s by DuPont and first marketed in 1967.[1] Contents  1 Properties  2 Production  3 Applications  4 History  5 See also  6 References  7 External links Properties Nomex and related aramid polymers are related to nylon, but have aromatic backbones, and hence are more rigid and more durable. Nomex is the premier example of a meta variant of the aramids (Kevlar is a para aramid). Unlike Kevlar, Nomex cannot align during filament formation and has poorer strength. However, it has excellent thermal, chemical, and radiation resistance for a polymer material. Production The polymer is produced by condensation reaction from the monomers m-phenylenediamine and isophthaloyl chloride.[1] It is sold in both fiber and sheet forms and is used as a fabric wherever resistance from heat and flame is required. Nomex sheet is actually a calendered paper and made in a similar fashion. Nomex Type 410 paper is the original and one of the larger grade types made, mostly for electrical insulation purposes. Nomex fiber is made in the USA and in Spain (Asturias). Wilfred Sweeny (1926–2011), the DuPont scientist responsible for discoveries leading to Nomex, earned a DuPont Lavoisier Medal[2] partly for this work in 2002. Applications
  • 11. The paper is used in electrical laminates such as circuit boards and transformer cores as well as fireproof honeycomb structures where it is saturated with a phenolic resin. Honeycomb structures such as these, as well as mylar-Nomex laminates are used extensively in aircraft construction. Both the firefighting and vehicle racing industries use Nomex to create clothing and equipment that can withstand intense heat. A Nomex hood is a common piece of racing and firefighting equipment. It is placed on the head on top of a firefighter's face mask. The hood protects the portions of the head not covered by the helmet and face mask from the intense heat of the fire. Wildland firefighters wear Nomex shirts and trousers as part of their personal protective equipment during wildfire suppression activities. Race car drivers wear driving suits constructed of Nomex and or other fire retardant materials, along with Nomex gloves, long underwear, balaclavas, socks, helmet lining and shoes to protect them in the event of a fire. The FIA and the SFI Foundation provide specifications for flame-resistant drivers clothing to be used in racing. The standards range from single layer suits that provide some protection against flash fires to much thicker multilayer SFI-15 suits required by the National Hot Rod Association that can protect a driver for up to 30 seconds against the intense heat and almost invisible flames generated by the nitromethane, ethanol and methanol fuels that are used in championship drag racing. Military pilots and aircrew wear flight suits made of over 92 percent Nomex to protect them from the possibility of cockpit fires and other mishaps. Recently, troops riding in ground vehicles have also begun wearing Nomex. The remaining material is typically Kevlar thread used to hold the fabric together at the seams. Military tank drivers also typically use Nomex hoods as protection against fire and extreme cold. [3] In the U.S. space program, Nomex has been used for the Thermal Micrometeoroid Garment on the Extravehicular Mobility Unit (in conjunction with Kevlar and Gore-Tex) and ACES pressure suit, both for fire and extreme environment (water immersion to near vacuum) protection, and as thermal blankets on the payload bay doors, fuselage, and upper wing surfaces of the Space Shuttle Orbiter. It has also been used for the airbags for the Mars Pathfinder and Mars Exploration Rover missions, the Galileo atmospheric probe, the Cassini- Huygens Titan probe, as an external covering on the AERCam Sprint, and is planned to be incorporated into NASA's upcoming Crew Exploration Vehicle. Nomex has also been used for its acoustic qualities, the first time being used in Troy, NY, at Rensselaer Polytechnic Institute's Experimental Media and Performing Arts Center (EMPAC's) main concert hall. A ceiling canopy of Nomex reflects high and mid frequency sound, providing reverberation, while letting lower frequency sound partially pass through the canopy.[4] According to RPI President Shirley Ann Jackson, EMPAC is the first venue in the world to use Nomex for acoustic reasons. Nomex (like Kevlar) is also used in the production of loudspeaker drivers. Honeycomb-structured Nomex paper is also used as a spacer between layers of lead in the ATLAS Liquid Argon Calorimeter.[5]
  • 12. History The death of race car drivers in fiery crashes, notably those of Fireball Roberts at Charlotte, and Eddie Sachs and Dave MacDonald at Indianapolis, all in 1964, meant something had to be done.[6] In early 1966 Competition Press and Autoweek reported: "During the past season, experimental driving suits were worn by Walt Hansgen, Masten Gregory, Marvin Panch and Group 44's Bob Tullius; these four representing a fairly good cross section in the sport. The goal was to get use-test information on the comfort and laundering characteristics of Nomex. The Chrysler-Plymouth team at the recent Motor Trend 500 at Riverside also wore these suits."[7] Propiedades del Kevlar y del Nomex Las propiedades de estos dos materiales van ligadas intrínsecamente a las aplicaciones que podemos encontrar tanto en la industria como en la vida cotidiana, las cuales se ven en el siguiente punto. No derriten ni se contraen en llama, y carbonizan solamente a temperaturas muy altas. Ofrecen una resistencia excelente al agua y al petróleo, incluyendo el aceite de motores y lubricantes, además tienen una buena resistencia química y son químicamente estables bajo una gran variedad de condiciones de exposición. Son ambos extremadamente resistentes y con alta resistencia a la abrasión, además se cortan y se rasgan. NOMEX® es un polímero aromático sintético de poliamida que proporciona altos niveles de la integridad eléctrica, química y mecánica. Esto es lo que hace que NOMEX® no se contraiga, ni dilate, ni se ablande ni derrita durante la exposición a corto plazo a temperaturas tan altas como
  • 13. 300°C. A largo plazo puede estar trabajando como aislante tanto térmico como eléctrico o químico soportando continuamente temperaturas de hasta 220°C durante más de 10 años. La fuerza y la resistencia de los papeles y de los cartones prensados de NOMEX® ayudan a ampliar vida del equipo que rota en condiciones de funcionamiento severas. Estas condiciones incluyen choque severo y vibraciones excesivas propiciadas por desequilibrios rotantes, como por ejemplo las que pueden aparecer en molinos de acero, motores para tracción ferroviaria, o turbinas de gas. En todos ellos además tenemos grandes temperaturas de funcionamiento. Fuerza dieléctrica inherente En tensiones eléctricas muy elevadas, como cortocircuitos, a corto plazo los productos de NOMEX® de 18 a 40 V/mil de kV/mm (457 a 1015), dependiendo de tipo de producto y grueso, proporcionan la protección necesaria y adecuada. Dureza mecánica Los productos de alta densidad de NOMEX® son fuertes, resistentes y (en los grados más finos) flexibles, con buena resistencia al rasgado y a la abrasión. Estabilidad termal Las temperaturas hasta 200°C tienen poco o nada de efecto en las características eléctricas y mecánicas de los productos de NOMEX®, y los valores útiles se conservan en temperaturas considerablemente más altas. Además, estas características útiles se mantienen por por lo menos 10 años de exposición continua a 220°C de temperatura. Compatibilidad química
  • 14. NOMEX® es esencialmente inerte a la mayoría de los disolventes, y es totalmente resistente a los ataques de ácidos y álcalis. Es compatible con todas las clases de barnices y de pegamentos, de líquidos de transformadores, de aceites lubricantes, y de refrigerantes. Puesto que los productos de NOMEX® no son digestibles, no son atacados por insectos, hongos, etc. Capacidades criogénicas NOMEX® ha encontrado una gran aceptación en una variedad de usos criogénicos debido a su estructura polimérica única. En el punto que hierve el nitrógeno (77°K), los cartones prensados de papel de NOMEX® resisten plenamete las fuerzas de contracción/dilatación que aparecen. Insensibilidad a la humedad En equilibrio con un 95 por ciento de humedad relativa, los papeles de NOMEX® y los cartones prensados mantienen un 90 por ciento de su fuerza dieléctrica, mientras que muchas características mecánicas además mejoran. Resistencia de la radiación NOMEX® es esencialmente inafectado por 800 megarads (8Mgy) de radiación de ionización y todavía conserva características mecánicas y eléctricas útiles después de ocho veces esta exposición. No toxicidad Los productos de NOMEX® no producen ninguna reacción tóxica conocida en seres humanos o animales. Los productos de NOMEX® no se derriten y, con un índice limitador del oxígeno (LOI) en 220°C sobre 20,8 (el valor crítico para la combustión en aire normal), no favorecen la combustión.
  • 15. Estructura química del Kevlar y del Nomex: El Kevlar y el Nomex pertenecen a la familia de las aramidas, las cuales , a su vez, pertenecen a una familia de nylons. Todos ellos son polímeros. Algunos otros polímeros sintéticos comunesson el Teflon, la Lycra, y el poliéster. Un polímero es una cadena hecha de muchos grupos moleculares similares, conocido como monómeros, que se enlazan juntos. Para conseguir entender mejor todo esto, imagínese que está mirando un tren de mercancías muy largo. Cada vagón idéntico podría representar un monómero y el tren en su conjunto representaría la cadena del polímero. Una sola cadena del polímero de Kevlar podría tener desde cinco hasta un millón de monómeros enlazados juntos. Cada monómero de Kevlar es una unidad química que contiene 14 átomos de carbono, 2 átomos de nitrógeno, 2 átomos de oxígeno y 10 átomos de hidrógeno. Químicamente se puede representar un monómero de Kevlar como esto: El Kevlar es una poliamida, en la cual todos los grupos amida están separados por grupos para-fenileno, es decir, los grupos amida se unen al anillo fenilo en posiciones opuestas entre sí, en los carbonos 1 y 4. El Kevlar se muestra en la figura grande, en la parte superior de esta página.
  • 16. El Nomex, por otra parte, posee grupos meta-fenileno, es decir, los grupos amida se unen al anillo fenilo en las posiciones 1 y 3. Las aramidas se utilizan en forma de fibras. Forman fibras aún mejores que las poliamidas no aromáticas, como el nylon 6,6. Las cadenas del polímero se pueden juntar aleatoriamente o se pueden orientar cuidadosamente de lado a lado en una fila. Resulta que la orientación de las cadenas del polímero es muy importante para ciertas características tales como flexibilidad, rigidez, y fuerza. Una fibra de Kevlar es un arsenal de moléculas orientadas en paralelo como un paquete de espaguetis crudos. Esta colocación espacial es lo que proporciona las moléculas con estructura cristalina. La cristalinidad es obtenida por un proceso de fabricación que implica sacar la solución fundida del polímero a través de agujeros pequeños de la extrusora. La cristalinidad de los filamentos del polímero de Kevlar contribuye perceptiblemente a su fuerza y rigidez únicas.
  • 17. ¿Cómo son realmente las moléculas de Kevlar? Una resistencia excepcional. IR Las amidas tienen la capacidad de adoptar dos formas diferentes, o conformaciones. Usted puede ver ésto en la figura de una amida de bajo peso molecular. Las dos figuras son del mismo compuesto, en dos conformaciones diferentes. La que está a la izquierda se denomina conformación trans, y la que está a la derecha conformación cis. En latín, trans significa "del otro lado". Así, cuando las cadenas hidrocarbonadas de la amida están en lados opuestos al enlace peptídico, el enlace entre el oxígeno del carbonilo y el nitrógeno de la amida, ésta se denomina amida trans. Asimismo, cis en latín significa "en el mismo lado", y cuando las cadenas hidrocarbonadas están del mismo lado del enlace peptídico, la llamamos amida cis.
  • 18. La misma molécula de la amida puede torcerse hacia adelante y hacia atrás entre las conformaciones cis y trans, originando una pequeña energía. En las poliamidas también existen las conformaciones cis y trans. Cuando en una poliamida todos los grupos amida están en su conformación trans, como el nylon 6.6 por ejemplo, el polímero se estira completamente en una línea recta. Esto es exactamente lo que deseamos para las fibras, porque las cadenas largas y completamente extendidas se empaquetan más adecuadamente, dando lugar a la forma cristalina que caracteriza a las fibras. Pero lamentablemente, siempre existen unos pocos enlaces amida en la conformación cis. Por ello las cadenas del nylon 6.6 nunca llegan a estar completamente extendidas.
  • 19. Sin embargo el Kevlar es diferente. Cuando intenta adoptar la conformación cis, los hidrógenos de los voluminosos grupos aromáticos se interponen en el camino. La conformación cis coloca a los hidrógenos un poco más cerca de lo que quisieran estar. De este modo, el Kevlar permanece casi enteramente en su conformación trans. Y así, puede extenderse completamente para formar unas hermosas fibras.
  • 20. Veamos ésto en un primer plano. Observe la figura de abajo y podrá apreciar que cuando el Kevlar intenta adoptar la conformación cis, no queda espacio suficiente para los hidrógenos de los fenilos. De modo que la conformación trans es la que se encuentra generalmente.