SlideShare a Scribd company logo
1 of 28
ADVANCE
MATH-(IV)
PRESENTED TO:
MAโ€™AM SABA
PRESENTED BY:
AMENAH
SAMEEN
CLASS:
BS.ED VII
OBJECTIVES
Today we will discuss:
โ€ข EULERโ€™S DYNAMICAL EQUATION
โ€ข DEDUCTIONS FROM EULERโ€™S EQUATION
โ€ข GENERAL MOTION OF A RIGID BODY
MOTION OF A RIGID
BODY IN SPACE
RIGID BODY:
โ€œA rigid body is a solid body in which deformation is zero or so small it can
be neglected. The distance between any two given points on a rigid body
remains constant in time regardless of external forces or moments exerted
on it. A rigid body is usually considered as a continuous
distribution of mass.โ€
Rigid body Non-Rigid body
CHARACTERISTICS OF RIGIDBODY MOTION
All lines on a rigid body have the same angular velocity and the same
angular acceleration.
Rigid motion can be decomposed into the translation of an arbitrary
point, followed by a rotation about the point.
EULERโ€™S DYNAMICAL
EQUATIONS
LEONHARD EULER
โ€ข Leonhard Euler15 April 1707 โ€“ 18
September 1783) was a Swiss
mathematician, physicist, astronomer,
geographer, logician and engineer who
made important and influential discoveries in
many branches of mathematics.
โ€ข Amongst his many discoveries and
developments, Euler is credited for
introducing the Greek letter pi.
Let the rigid body be rotating with angular velocity ๐œ” about a point O fixed both in space
and in the body. Let OX, OY, OZ be principal axes at O. If L, ๐ผ๐‘–๐‘— , ๐œ” be angular
momentum, M.I. matrix and angular velocity at O, then
๐‘ณ = ๐‘ฐ [๐Ž]
๐‘ณ = ๐‘ฐ๐’Š๐’‹ [๐Ž]
๐‘ณ๐’™
๐‘ณ๐’š
๐‘ณ๐’›
=
๐‘ฐ๐’™๐’™ ๐‘ฐ๐’™๐’š ๐‘ฐ๐’™๐’›
๐‘ฐ๐’™๐’š ๐‘ฐ๐’š๐’š ๐‘ฐ๐’š๐’›
๐‘ฐ๐’™๐’› ๐‘ฐ๐’š๐’› ๐‘ฐ๐’›๐’›
๐Ž๐’™
๐Ž๐’š
๐Ž๐’›
โˆต the axes OX, OY, OZ are principal axes,
๐‘ฐ๐’™๐’š= ๐‘ฐ๐’™๐’› = ๐‘ฐ๐’š๐’› = ๐ŸŽ
โˆตso the product of inertia about these axis will be zero
โˆด we can write
๐‘ณ๐’™
๐‘ณ๐’š
๐‘ณ๐’›
=
๐‘ฐ๐’™๐’™ ๐ŸŽ ๐ŸŽ
๐ŸŽ ๐‘ฐ๐’š๐’š ๐ŸŽ
๐ŸŽ ๐ŸŽ ๐‘ฐ๐’›๐’›
๐Ž๐’™
๐Ž๐’š
๐Ž๐’›
=
๐Ž๐’™๐‘ฐ๐’™๐’™
๐Ž๐’š๐‘ฐ๐’š๐’š
๐Ž๐’›๐‘ฐ๐’›๐’›
Or
๐‘ณ = ๐Ž๐’™๐‘ฐ๐’™๐’Š + ๐Ž๐’š๐‘ฐ๐’š๐’‹ + ๐Ž๐’›๐‘ฐ๐’›๐’Œ
= ๐Ž๐Ÿ๐‘ฐ๐Ÿ๐’Š + ๐Ž๐Ÿ๐‘ฐ๐Ÿ๐’‹ + ๐Ž๐Ÿ‘๐‘ฐ๐Ÿ‘๐’Œ
where ๐‘ฐ๐Ÿ, ๐‘ฐ๐Ÿ, ๐‘ฐ๐Ÿ‘ are principal moments
Now the rate of change of any vector function F in fixed and rotating coordinate systems is
related by
๐’…๐‘ญ
๐’…๐’• ๐’‡
=
๐’…๐‘ญ
๐’…๐’• ๐’“
+ ๐Ž ร— ๐‘ญ
๐’…๐‘ณ
๐’…๐’• ๐’‡
=
๐’…๐‘ณ
๐’…๐’• ๐’“
+ ๐Ž ร— ๐‘ณ
=
๐’…
๐’…๐’•
๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘๐’Œ + ๐Ž ร— ๐‘ณ
= ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘๐’Œ + ๐Ž ร— ๐‘ณ
Where the symbols on the R.H.S refer to the rotating coordinate system. But
๐‘‘๐ฟ
๐‘‘๐‘ก
= ๐บ, the total
external torque (in the fixed or inertial coordinate system).
โˆต in rotating, only
derivative ๐œ” , in fixed
derivative L.
โˆต Replace F by L
Therefore on the substitution,
G= ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘๐’Œ + ๐Ž ร— ๐‘ณ
๐‘ฎ๐’™๐’Š + ๐‘ฎ๐’š๐’‹ + ๐‘ฎ๐’›๐’Œ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘๐’Œ +
๐’Š ๐’‹ ๐’Œ
๐Ž๐’™
๐Ÿ ๐Ž๐’š
๐Ÿ ๐Ž๐’›
๐Ÿ‘
๐‘ณ๐Ÿ ๐‘ณ๐Ÿ ๐‘ณ๐Ÿ‘
๐‘ฎ๐’™๐’Š + ๐‘ฎ๐’š๐’‹ + ๐‘ฎ๐’›๐’Œ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘๐’Œ + ๐’Š ๐Ž๐Ÿ๐‘ณ๐Ÿ‘ โˆ’ ๐Ž๐Ÿ‘๐‘ณ๐Ÿ + ๐’‹ ๐Ž๐Ÿ‘๐‘ณ๐Ÿ โˆ’
---------1
Now using the results ๐ฟ1 = ๐œ”1๐ผ1, ๐ฟ2 = ๐œ”2๐ผ2, ๐ฟ3 = ๐œ”3๐ผ3 which are true w.r.t. principal
axes,
we have
๐‘ฎ๐’™ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ โˆ’ ๐‘ฐ๐Ÿ โˆ’ ๐‘ฐ๐Ÿ‘)๐Ž๐Ÿ๐Ž๐Ÿ‘
๐‘ฎ๐’š = ๐‘ฐ๐Ÿ๐Ž๐Ÿ โˆ’ ๐‘ฐ๐Ÿ‘ โˆ’ ๐‘ฐ๐Ÿ)๐Ž๐Ÿ๐Ž๐Ÿ‘
๐‘ฎ๐’› = ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ โˆ’ ๐‘ฐ๐Ÿโˆ’๐‘ฐ๐Ÿ)๐Ž๐Ÿ๐Ž๐Ÿ
These equations are called Eulerโ€™s Dynamical Equations.
They describe the motion of a rigid body fixed at a point.
DEDUCTIONS FROM EULERโ€™S
EQUATIONS
We will discuss some results which follow directly from the Euler dynamical equations.
In the absence of external forces, G=0, and the Euler equations (1) reduce to
๐’…๐‘ณ
๐’…๐’•
= ๐ŸŽ โ‡’ ๐‘ณ = ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’•
๐‘ฐ๐Ÿ๐Ž๐Ÿ โˆ’ ๐‘ฐ๐Ÿ โˆ’ ๐‘ฐ๐Ÿ‘ ๐Ž๐Ÿ๐Ž๐Ÿ‘ = ๐ŸŽ ----- 1
๐‘ฐ๐Ÿ๐Ž๐Ÿ โˆ’ ๐‘ฐ๐Ÿ‘ โˆ’ ๐‘ฐ๐Ÿ ๐Ž๐Ÿ๐Ž๐Ÿ‘ = ๐ŸŽ ----- 2
๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ โˆ’ ๐‘ฐ๐Ÿโˆ’๐‘ฐ๐Ÿ)๐Ž๐Ÿ๐Ž๐Ÿ = ๐ŸŽ ----- 3
Multiply 1,2,3 by ๐œ”1, ๐œ”2, ๐œ”3 respectively and adding, we have
๐‘ฐ๐Ÿ๐Ž๐Ÿ๐Ž๐Ÿ + ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐Ž๐Ÿ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘๐Ž๐Ÿ‘ = ๐ŸŽ
๐Ÿ
๐Ÿ
๐’…
๐’…๐’•
๐‘ฐ๐Ÿ๐Ž๐Ÿ
๐Ÿ
+ ๐‘ฐ๐Ÿ๐Ž๐Ÿ
๐Ÿ
+ ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘
๐Ÿ
= ๐ŸŽ
Or ๐‘ฐ๐Ÿ๐Ž๐Ÿ
๐Ÿ
+ ๐‘ฐ๐Ÿ๐Ž๐Ÿ
๐Ÿ
+ ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘
๐Ÿ
= ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’•
Now for the kinetic of a rigid body we have the relation ๐‘ป = ๐Ÿ ๐Ÿ ๐Ž. ๐‘ณ which when referred
to the principal axes reduces to ๐‘ป = ๐Ÿ ๐Ÿ ๐‘ฐ๐Ÿ๐Ž๐Ÿ
๐Ÿ
+ ๐‘ฐ๐Ÿ๐Ž๐Ÿ
๐Ÿ
+ ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘
๐Ÿ
.
In view of this formula we find that in this case T=constant, i.e., the kinetic energy in the
absence of external forces is a constant of motion.
This is so because no work is being done by the external forces, and therefore the potential
energy is a constant.
Another integral of the force-free equations can be obtained by multiplying 1, 2, 3 by
๐ผ1๐œ”1, ๐ผ2๐œ”2, ๐ผ3๐œ”3 respectively and adding. We get
๐‘ฐ๐Ÿ
๐Ÿ
๐Ž๐Ÿ๐Ž๐Ÿ + ๐‘ฐ๐Ÿ
๐Ÿ
๐Ž๐Ÿ๐Ž๐Ÿ + ๐‘ฐ๐Ÿ‘
๐Ÿ
๐Ž๐Ÿ‘๐Ž๐Ÿ‘ = ๐ŸŽ
Or
๐’…
๐’…๐’•
๐‘ฐ๐Ÿ
๐Ÿ
๐Ž๐Ÿ
๐Ÿ
+ ๐‘ฐ๐Ÿ
๐Ÿ
๐Ž๐Ÿ
๐Ÿ
+ ๐‘ฐ๐Ÿ‘
๐Ÿ
๐Ž๐Ÿ‘
๐Ÿ
) = ๐ŸŽ
Or ๐‘ฐ๐Ÿ
๐Ÿ
๐Ž๐Ÿ
๐Ÿ
+ ๐‘ฐ๐Ÿ
๐Ÿ
๐Ž๐Ÿ
๐Ÿ
+ ๐‘ฐ๐Ÿ‘
๐Ÿ
๐Ž๐Ÿ‘
๐Ÿ
= ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• ------4
Now the angular momentum L w.r.t. the triad of principal axes is given by
๐‘ณ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘๐’Œ
And therefore ๐‘ณ๐Ÿ = ๐‘ณ ๐Ÿ = ๐‘ฐ๐Ÿ
๐Ÿ
๐Ž๐Ÿ
๐Ÿ
+ ๐‘ฐ๐Ÿ
๐Ÿ
๐Ž๐Ÿ
๐Ÿ
+ ๐‘ฐ๐Ÿ‘
๐Ÿ
๐Ž๐Ÿ‘
๐Ÿ
Hence eq.4 expresses the fact that the magnitude of L is a constant of motion.
This can be related to the absence of the external torque about the point O.
GENERAL MOTION
OF A
RIGID BODY
General Motion = Translational Motion + Rotational Motion
TRANSLATIONAL MOTION
โ€œThe motion by which a body shifts from one point in
space to another.โ€ Or
โ€œA body moves along a line without any rotation. The
line may be straight or curved.โ€
Example: A bullet fired from a gun, Ferris wheel etc.
ROTATIONAL MOTION
โ€œ A kind of motion in which the body follows a
curved path.โ€
โ€œThe spinning motion of a body about its axisโ€
Example, the wheel of the car , Earth etc.
In the general motion of a body (i.e., no point of the body is fixed in space).
Let ๐‘ญ๐’„
๐’†๐’™๐’• be the total external force on the rigid body and ๐‘ฎ๐’„
๐’†๐’™๐’• the total external torque about
is mass centre (i.e., centroid).
Then the equations of motion are
๐‘ด๐’‚๐’„ = ๐‘ญ๐’„
๐’†๐’™๐’•
๐‘ณ๐’„ = ๐‘ฎ๐’„
Where ๐‘Ž๐‘ is the acceleration of the centre mass and ๐ฟ๐‘ is the total angular momentum about it.
Now we resolve the vectors ๐‘Ž๐‘, F, ๐บ๐‘ and L along the unit vector ๐‘–, ๐‘—, ๐‘˜ taken along the principal
axes at the mass centre. The triad of vectors ๐‘–, ๐‘—, ๐‘˜ may be referred to as a principal triad. It will
be assumed to be permanently a principal triad. Let ๐›บ be the angular velocity. If the triad is
fixed in the body then ฮฉ = ฯ‰, the angular velocity of the body. Now using the relation
๐’…๐‘ญ
๐’…๐’• ๐’‡
=
๐’…๐‘ญ
๐’…๐’• ๐’“
+ ๐Ž ร— ๐‘ญ
------------ (1)
------------ (2)
๐‘ป๐’๐’“๐’’๐’–๐’† = ๐‘ฎ = ๐‘ณ
๐‘ญ = ๐’Ž๐’‚
Which relates the rate of change of a vector in a fixed (i.e., inertial) frame and a rotating
frame, we have (on dropping the suffix r)
๐’‚๐’‡ =
๐’…๐’—
๐’…๐’• ๐’‡
=
๐’…๐’—
๐’…๐’•
+ ๐œด ร— ๐‚
๐’‚๐’‡ =
๐’…๐’—
๐’…๐’•
+ ๐œด ร— ๐‚
Where ๐‘ฃ = ๐‘ฃ1๐‘– + ๐‘ฃ2๐‘— + ๐‘ฃ3๐‘˜ is the velocity of the mass centre (in the rotating coordinate
system).
๐‚๐’‡ = ๐‚๐’“ = ๐‚
------------ (3)
F = v
Substituting for ๐‘Ž๐‘“ = ๐‘Ž๐‘ form (3) into (1), we obtain
๐‘ด๐’‚๐’„ = ๐‘ญ๐’„
๐’†๐’™๐’•
๐‘ด
๐’…๐’—
๐’…๐’•
+ ๐œด ร— ๐‚ = ๐‘ญ
๐‘ด ๐‚๐Ÿ๐’Š + ๐‚๐Ÿ๐’‹ + ๐‚๐Ÿ‘๐’Œ +
๐’Š
๐œด๐Ÿ
๐‚๐Ÿ
๐’‹
๐œด๐Ÿ
๐‚๐Ÿ
๐’Œ
๐œด๐Ÿ‘
๐‚๐Ÿ‘
= ๐‘ญ๐Ÿ๐’Š + ๐‘ญ๐Ÿ๐’‹ + ๐‘ญ๐Ÿ‘๐’Œ
๐‘ด ๐‚๐Ÿ๐’Š + ๐‚๐Ÿ๐’‹ + ๐‚๐Ÿ‘๐’Œ + ๐’Š ๐œด๐Ÿ ๐‚๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‚๐Ÿ โˆ’ ๐’‹ ๐œด๐Ÿ ๐‚๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‚๐Ÿ + ๐’Œ ๐œด๐Ÿ ๐‚๐Ÿ โˆ’ ๐œด๐Ÿ ๐‚๐Ÿ
= ๐‘ญ๐Ÿ๐’Š + ๐‘ญ๐Ÿ๐’‹ + ๐‘ญ๐Ÿ‘๐’Œ
๐‘ด ๐‚๐Ÿ๐’Š + ๐’Š ๐œด๐Ÿ ๐‚๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‚๐Ÿ + ๐‚๐Ÿ๐’‹ โˆ’ ๐’‹ ๐œด๐Ÿ ๐‚๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‚๐Ÿ
Which is equivalent to
๐‘ด ๐‚๐Ÿ + ๐œด๐Ÿ ๐‚๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‚๐Ÿ = ๐‘ญ๐Ÿ
๐‘ด ๐‚๐Ÿ + ๐œด๐Ÿ‘ ๐‚๐Ÿ โˆ’ ๐œด๐Ÿ ๐‚๐Ÿ‘ = ๐‘ญ๐Ÿ
๐‘ด ๐‚๐Ÿ‘ + ๐œด๐Ÿ ๐‚๐Ÿ โˆ’ ๐œด๐Ÿ ๐‚๐Ÿ = ๐‘ญ๐Ÿ‘
From 2, on using
๐‘‘๐ฟ
๐‘‘๐‘ก ๐‘“
=
๐‘‘๐ฟ
๐‘‘๐‘ก
+ ฮฉ ร— ๐ฟ
๐‘‘๐ฟ
๐‘‘๐‘ก ๐‘“
= ๐ผ1๐œ”1 ๐‘– + ๐ผ2๐œ”2 ๐‘— + ๐ผ3๐œ”3 ๐‘˜ +
๐‘–
ฮฉ1
๐ฟ1
๐‘—
ฮฉ2
๐ฟ2
๐‘˜
ฮฉ3
๐ฟ3
And the relation ๐‘ณ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ ๐’Œ, we obtain the equation
โˆด ๐‘ณ๐’„ = ๐‘ฎ๐’„
------------ (4)
๐’…๐‘ณ
๐’…๐’• ๐’‡
= ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ ๐’Œ + ๐œด๐Ÿ ๐‘ณ๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‘ณ๐Ÿ ๐’Š โˆ’ ๐œด๐Ÿ ๐‘ณ๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‘ณ๐Ÿ ๐’‹ + ๐œด๐Ÿ ๐‘ณ๐Ÿ โˆ’ ๐œด๐Ÿ ๐‘ณ๐Ÿ ๐’Œ = ๐‘ฎ
๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ ๐’Œ + ๐œด๐Ÿ ๐‘ณ๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‘ณ๐Ÿ ๐’Š โˆ’ ๐œด๐Ÿ ๐‘ณ๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‘ณ๐Ÿ ๐’‹ + ๐œด๐Ÿ ๐‘ณ๐Ÿ โˆ’ ๐œด๐Ÿ ๐‘ณ๐Ÿ ๐’Œ
= ๐‘ฎ๐Ÿ๐’Š + ๐‘ฎ๐Ÿ๐’‹ + ๐‘ฎ๐Ÿ‘๐’Œ
From this vector equation we obtain the following three scalar equations
๐‘ฐ๐Ÿ๐Ž๐Ÿ + ๐œด๐Ÿ ๐‘ณ๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‘ณ๐Ÿ = ๐‘ฎ๐Ÿ
๐‘ฐ๐Ÿ๐Ž๐Ÿ + ๐œด๐Ÿ‘ ๐‘ณ๐Ÿ โˆ’ ๐œด๐Ÿ ๐‘ณ๐Ÿ‘ = ๐‘ฎ๐Ÿ
๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ + ๐œด๐Ÿ ๐‘ณ๐Ÿ โˆ’ ๐œด๐Ÿ ๐‘ณ๐Ÿ = ๐‘ฎ๐Ÿ‘
Where we have used the results
๐‘ณ๐Ÿ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ, ๐‘ณ๐Ÿ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ, ๐‘ณ๐Ÿ‘ = ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘
We have
๐‘ฐ๐Ÿ๐Ž๐Ÿ + ๐œด๐Ÿ ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‘ฐ๐Ÿ๐Ž๐Ÿ = ๐‘ฎ๐Ÿ
๐‘ฐ๐Ÿ๐Ž๐Ÿ + ๐œด๐Ÿ‘ ๐‘ฐ๐Ÿ๐Ž๐Ÿ โˆ’ ๐œด๐Ÿ ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ = ๐‘ฎ๐Ÿ
๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ + ๐œด๐Ÿ ๐‘ฐ๐Ÿ๐Ž๐Ÿ โˆ’ ๐œด๐Ÿ ๐‘ฐ๐Ÿ๐Ž๐Ÿ = ๐‘ฎ๐Ÿ‘
Which are the same as for a rigid body with a fixed point.
In these equations ๐ผ1, ๐ผ2, ๐ผ3 denote principal moments of inertia at the centroid of the body.
The set of equations 4 and 5 constitute six equations for the components of velocity of the mass
centre and the components of angular velocity of the body.
------------ (5)
For any these six equations, we can substitute the law of conservation of energy, viz.
๐‘ป + ๐‘ฝ = ๐‘ฌ
provided the external forces are conservative.
The last equation is equivalent to
๐Ÿ
๐Ÿ
๐‘ด ๐’—๐Ÿ
๐Ÿ + ๐’—๐Ÿ
๐Ÿ + ๐’—๐Ÿ‘
๐Ÿ +
๐Ÿ
๐Ÿ
๐‘ฐ๐Ÿ๐Ž๐Ÿ
๐Ÿ + ๐‘ฐ๐Ÿ๐Ž๐Ÿ
๐Ÿ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘
๐Ÿ + ๐‘ฝ = ๐‘ฌ
K.E + P.E = Total Energy
๐‘ช๐’๐’๐’”๐’†๐’“๐’—๐’‚๐’•๐’Š๐’—๐’† โ‡’ ๐‘ญ = ๐ŸŽ
๐‘ป = ๐‘ป๐’•๐’“ + ๐‘ป๐’“๐’๐’•
๐‘ป =
๐Ÿ
๐Ÿ
๐‘ด๐’—๐Ÿ +
๐Ÿ
๐Ÿ
๐Ž. ๐‘ณ
ANY
QUESTION
Euler's Dynamical Equations and Rigid Body Motion

More Related Content

What's hot

Poynting theorem & Poynting vector
Poynting theorem & Poynting vectorPoynting theorem & Poynting vector
Poynting theorem & Poynting vectorVIKRAMSINGH1697
ย 
Cylindrical co ordinate system
Cylindrical co ordinate systemCylindrical co ordinate system
Cylindrical co ordinate systemNisarg Amin
ย 
Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.dhrubanka
ย 
Fourier series
Fourier seriesFourier series
Fourier serieskishor pokar
ย 
Equilibrium of rigid bodies
Equilibrium of rigid bodiesEquilibrium of rigid bodies
Equilibrium of rigid bodiesnvkhandare
ย 
Stokeโ€™s theorem
Stokeโ€™s theoremStokeโ€™s theorem
Stokeโ€™s theoremAbhishek Chauhan
ย 
Fourier Transform
Fourier TransformFourier Transform
Fourier TransformNidhi Baranwal
ย 
Electromagnetic Field Theory Lecture Notes
Electromagnetic Field Theory Lecture NotesElectromagnetic Field Theory Lecture Notes
Electromagnetic Field Theory Lecture NotesFellowBuddy.com
ย 
Scalar product of vectors
Scalar product of vectorsScalar product of vectors
Scalar product of vectorsBed Dhakal
ย 
Practical use of vector differentiation
Practical use of vector differentiationPractical use of vector differentiation
Practical use of vector differentiationMd. Asad Chowdhury Dipu
ย 
Unit 5 rigid body dynamics
Unit 5 rigid body dynamicsUnit 5 rigid body dynamics
Unit 5 rigid body dynamicsTHANGA KASI RAJAN S
ย 
De Alembertโ€™s Principle and Generalized Force, a technical discourse on Class...
De Alembertโ€™s Principle and Generalized Force, a technical discourse on Class...De Alembertโ€™s Principle and Generalized Force, a technical discourse on Class...
De Alembertโ€™s Principle and Generalized Force, a technical discourse on Class...Manmohan Dash
ย 
Divrgence theorem with example
Divrgence theorem with exampleDivrgence theorem with example
Divrgence theorem with exampleDhwanil Champaneria
ย 
Line integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremLine integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremHassan Ahmed
ย 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradientKunj Patel
ย 

What's hot (20)

Poynting theorem & Poynting vector
Poynting theorem & Poynting vectorPoynting theorem & Poynting vector
Poynting theorem & Poynting vector
ย 
Cylindrical co ordinate system
Cylindrical co ordinate systemCylindrical co ordinate system
Cylindrical co ordinate system
ย 
Electrostatics 2
Electrostatics 2Electrostatics 2
Electrostatics 2
ย 
Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.
ย 
Fourier series
Fourier seriesFourier series
Fourier series
ย 
LORENTZ TRANSFORMATION Pooja chouhan
LORENTZ TRANSFORMATION Pooja chouhanLORENTZ TRANSFORMATION Pooja chouhan
LORENTZ TRANSFORMATION Pooja chouhan
ย 
Equilibrium of rigid bodies
Equilibrium of rigid bodiesEquilibrium of rigid bodies
Equilibrium of rigid bodies
ย 
Stokeโ€™s theorem
Stokeโ€™s theoremStokeโ€™s theorem
Stokeโ€™s theorem
ย 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
ย 
Group theory
Group theoryGroup theory
Group theory
ย 
Electromagnetic Field Theory Lecture Notes
Electromagnetic Field Theory Lecture NotesElectromagnetic Field Theory Lecture Notes
Electromagnetic Field Theory Lecture Notes
ย 
Scalar product of vectors
Scalar product of vectorsScalar product of vectors
Scalar product of vectors
ย 
Practical use of vector differentiation
Practical use of vector differentiationPractical use of vector differentiation
Practical use of vector differentiation
ย 
Unit 5 rigid body dynamics
Unit 5 rigid body dynamicsUnit 5 rigid body dynamics
Unit 5 rigid body dynamics
ย 
De Alembertโ€™s Principle and Generalized Force, a technical discourse on Class...
De Alembertโ€™s Principle and Generalized Force, a technical discourse on Class...De Alembertโ€™s Principle and Generalized Force, a technical discourse on Class...
De Alembertโ€™s Principle and Generalized Force, a technical discourse on Class...
ย 
Divrgence theorem with example
Divrgence theorem with exampleDivrgence theorem with example
Divrgence theorem with example
ย 
Line integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremLine integral,Strokes and Green Theorem
Line integral,Strokes and Green Theorem
ย 
Rigid body
Rigid bodyRigid body
Rigid body
ย 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
ย 
Galilean Transformation Equations
Galilean Transformation EquationsGalilean Transformation Equations
Galilean Transformation Equations
ย 

Similar to Euler's Dynamical Equations and Rigid Body Motion

CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)Pooja M
ย 
Chapter 5 - Oscillation.pptx
Chapter 5 - Oscillation.pptxChapter 5 - Oscillation.pptx
Chapter 5 - Oscillation.pptxPooja M
ย 
Reference_Material_Oscillations.pptx
Reference_Material_Oscillations.pptxReference_Material_Oscillations.pptx
Reference_Material_Oscillations.pptxNimishJain54
ย 
Engineering Physics
Engineering Physics Engineering Physics
Engineering Physics Karthik Rajendran
ย 
Simple harmonic oscillator
Simple harmonic oscillator Simple harmonic oscillator
Simple harmonic oscillator East west University
ย 
engg mechanics ppt 1 -rigid bodies equilibrium.pptx
engg mechanics ppt 1 -rigid bodies equilibrium.pptxengg mechanics ppt 1 -rigid bodies equilibrium.pptx
engg mechanics ppt 1 -rigid bodies equilibrium.pptxLalithaP20
ย 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxHassaan Saleem
ย 
Magnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxMagnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxHassaan Saleem
ย 
small oscillations.pdf
small oscillations.pdfsmall oscillations.pdf
small oscillations.pdfdilwarhussain39
ย 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillationsharshsharma5537
ย 
How to Prepare Rotational Motion (Physics) for JEE Main
How to Prepare Rotational Motion (Physics) for JEE MainHow to Prepare Rotational Motion (Physics) for JEE Main
How to Prepare Rotational Motion (Physics) for JEE MainEdnexa
ย 
Lecture35.pdf
Lecture35.pdfLecture35.pdf
Lecture35.pdfLucero Delugo
ย 
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
PHYSICS (CLASSS XII)  - Chapter 5 : OscillationsPHYSICS (CLASSS XII)  - Chapter 5 : Oscillations
PHYSICS (CLASSS XII) - Chapter 5 : OscillationsPooja M
ย 
Dynamics slideshare
Dynamics slideshareDynamics slideshare
Dynamics slideshareMalarMohana
ย 
Saqib aeroelasticity cw
Saqib aeroelasticity cwSaqib aeroelasticity cw
Saqib aeroelasticity cwSagar Chawla
ย 
Tutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdfTutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdfssuserfb9ae6
ย 
enggmechanicsbya-170923041240-converted.pptx
enggmechanicsbya-170923041240-converted.pptxenggmechanicsbya-170923041240-converted.pptx
enggmechanicsbya-170923041240-converted.pptxswathirani7
ย 

Similar to Euler's Dynamical Equations and Rigid Body Motion (20)

CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
ย 
Chapter 5 - Oscillation.pptx
Chapter 5 - Oscillation.pptxChapter 5 - Oscillation.pptx
Chapter 5 - Oscillation.pptx
ย 
Reference_Material_Oscillations.pptx
Reference_Material_Oscillations.pptxReference_Material_Oscillations.pptx
Reference_Material_Oscillations.pptx
ย 
Engineering Physics
Engineering Physics Engineering Physics
Engineering Physics
ย 
Simple harmonic oscillator
Simple harmonic oscillator Simple harmonic oscillator
Simple harmonic oscillator
ย 
engg mechanics ppt 1 -rigid bodies equilibrium.pptx
engg mechanics ppt 1 -rigid bodies equilibrium.pptxengg mechanics ppt 1 -rigid bodies equilibrium.pptx
engg mechanics ppt 1 -rigid bodies equilibrium.pptx
ย 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptx
ย 
Magnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxMagnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptx
ย 
small oscillations.pdf
small oscillations.pdfsmall oscillations.pdf
small oscillations.pdf
ย 
Simple Harmonic Motion
Simple Harmonic MotionSimple Harmonic Motion
Simple Harmonic Motion
ย 
I0744347
I0744347I0744347
I0744347
ย 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillations
ย 
How to Prepare Rotational Motion (Physics) for JEE Main
How to Prepare Rotational Motion (Physics) for JEE MainHow to Prepare Rotational Motion (Physics) for JEE Main
How to Prepare Rotational Motion (Physics) for JEE Main
ย 
Lecture35.pdf
Lecture35.pdfLecture35.pdf
Lecture35.pdf
ย 
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
PHYSICS (CLASSS XII)  - Chapter 5 : OscillationsPHYSICS (CLASSS XII)  - Chapter 5 : Oscillations
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
ย 
Dynamics slideshare
Dynamics slideshareDynamics slideshare
Dynamics slideshare
ย 
Dynamics problems
Dynamics problemsDynamics problems
Dynamics problems
ย 
Saqib aeroelasticity cw
Saqib aeroelasticity cwSaqib aeroelasticity cw
Saqib aeroelasticity cw
ย 
Tutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdfTutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdf
ย 
enggmechanicsbya-170923041240-converted.pptx
enggmechanicsbya-170923041240-converted.pptxenggmechanicsbya-170923041240-converted.pptx
enggmechanicsbya-170923041240-converted.pptx
ย 

More from AmenahGondal1

Ethnographic Research
Ethnographic ResearchEthnographic Research
Ethnographic ResearchAmenahGondal1
ย 
Error analysis in numerical integration
Error analysis in numerical integrationError analysis in numerical integration
Error analysis in numerical integrationAmenahGondal1
ย 
Sdgs and Mdgs
Sdgs and MdgsSdgs and Mdgs
Sdgs and MdgsAmenahGondal1
ย 
ISOMORPHIC (SIMILAR) ORDERD SETS
ISOMORPHIC (SIMILAR) ORDERD SETSISOMORPHIC (SIMILAR) ORDERD SETS
ISOMORPHIC (SIMILAR) ORDERD SETSAmenahGondal1
ย 
Connectedness
ConnectednessConnectedness
ConnectednessAmenahGondal1
ย 
Gender Disparity
Gender DisparityGender Disparity
Gender DisparityAmenahGondal1
ย 
Population Education
Population EducationPopulation Education
Population EducationAmenahGondal1
ย 
ORDERED SETS
ORDERED SETSORDERED SETS
ORDERED SETSAmenahGondal1
ย 
Universal literacy
Universal literacyUniversal literacy
Universal literacyAmenahGondal1
ย 
Contour integration and Mittag Leffler theorem
Contour integration and Mittag Leffler theoremContour integration and Mittag Leffler theorem
Contour integration and Mittag Leffler theoremAmenahGondal1
ย 
Descriptive Research
Descriptive  ResearchDescriptive  Research
Descriptive ResearchAmenahGondal1
ย 
Curvature and its types
Curvature and its typesCurvature and its types
Curvature and its typesAmenahGondal1
ย 
MATHEMATICS TEACHING AIDS
MATHEMATICS TEACHING AIDSMATHEMATICS TEACHING AIDS
MATHEMATICS TEACHING AIDSAmenahGondal1
ย 
IMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTURE
IMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTUREIMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTURE
IMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTUREAmenahGondal1
ย 
DEMONSTRATION METHOD
DEMONSTRATION METHODDEMONSTRATION METHOD
DEMONSTRATION METHODAmenahGondal1
ย 
UNDETERMINED COEFFICIENT
UNDETERMINED COEFFICIENTUNDETERMINED COEFFICIENT
UNDETERMINED COEFFICIENTAmenahGondal1
ย 
Composition of Forces
Composition of ForcesComposition of Forces
Composition of ForcesAmenahGondal1
ย 

More from AmenahGondal1 (20)

Ethnographic Research
Ethnographic ResearchEthnographic Research
Ethnographic Research
ย 
ARABIC
ARABIC ARABIC
ARABIC
ย 
Error analysis in numerical integration
Error analysis in numerical integrationError analysis in numerical integration
Error analysis in numerical integration
ย 
Sdgs and Mdgs
Sdgs and MdgsSdgs and Mdgs
Sdgs and Mdgs
ย 
Diversity
DiversityDiversity
Diversity
ย 
ISOMORPHIC (SIMILAR) ORDERD SETS
ISOMORPHIC (SIMILAR) ORDERD SETSISOMORPHIC (SIMILAR) ORDERD SETS
ISOMORPHIC (SIMILAR) ORDERD SETS
ย 
Connectedness
ConnectednessConnectedness
Connectedness
ย 
Gender Disparity
Gender DisparityGender Disparity
Gender Disparity
ย 
Population Education
Population EducationPopulation Education
Population Education
ย 
ORDERED SETS
ORDERED SETSORDERED SETS
ORDERED SETS
ย 
Universal literacy
Universal literacyUniversal literacy
Universal literacy
ย 
Contour integration and Mittag Leffler theorem
Contour integration and Mittag Leffler theoremContour integration and Mittag Leffler theorem
Contour integration and Mittag Leffler theorem
ย 
Descriptive Research
Descriptive  ResearchDescriptive  Research
Descriptive Research
ย 
T test
T testT test
T test
ย 
Curvature and its types
Curvature and its typesCurvature and its types
Curvature and its types
ย 
MATHEMATICS TEACHING AIDS
MATHEMATICS TEACHING AIDSMATHEMATICS TEACHING AIDS
MATHEMATICS TEACHING AIDS
ย 
IMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTURE
IMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTUREIMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTURE
IMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTURE
ย 
DEMONSTRATION METHOD
DEMONSTRATION METHODDEMONSTRATION METHOD
DEMONSTRATION METHOD
ย 
UNDETERMINED COEFFICIENT
UNDETERMINED COEFFICIENTUNDETERMINED COEFFICIENT
UNDETERMINED COEFFICIENT
ย 
Composition of Forces
Composition of ForcesComposition of Forces
Composition of Forces
ย 

Recently uploaded

Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
ย 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
ย 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
ย 
Call Girls in Munirka Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Munirka Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.Call Girls in Munirka Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Munirka Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.aasikanpl
ย 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
ย 
Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10ROLANARIBATO3
ย 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
ย 
โ€โ€VIRUS - 123455555555555555555555555555555555555555
โ€โ€VIRUS -  123455555555555555555555555555555555555555โ€โ€VIRUS -  123455555555555555555555555555555555555555
โ€โ€VIRUS - 123455555555555555555555555555555555555555kikilily0909
ย 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -INandakishor Bhaurao Deshmukh
ย 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxVarshiniMK
ย 
Temporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of MasticationTemporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of Masticationvidulajaib
ย 
Call Girls in Aiims Metro Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Aiims Metro Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.Call Girls in Aiims Metro Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Aiims Metro Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.aasikanpl
ย 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
ย 
Call Girls in Hauz Khas Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Hauz Khas Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.Call Girls in Hauz Khas Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Hauz Khas Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.aasikanpl
ย 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
ย 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
ย 
Call Girls In Nihal Vihar Delhi โค๏ธ8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi โค๏ธ8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi โค๏ธ8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi โค๏ธ8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
ย 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsHajira Mahmood
ย 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
ย 
Call Us โ‰ฝ 9953322196 โ‰ผ Call Girls In Mukherjee Nagar(Delhi) |
Call Us โ‰ฝ 9953322196 โ‰ผ Call Girls In Mukherjee Nagar(Delhi) |Call Us โ‰ฝ 9953322196 โ‰ผ Call Girls In Mukherjee Nagar(Delhi) |
Call Us โ‰ฝ 9953322196 โ‰ผ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
ย 

Recently uploaded (20)

Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
ย 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
ย 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
ย 
Call Girls in Munirka Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Munirka Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.Call Girls in Munirka Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Munirka Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
ย 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
ย 
Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10
ย 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
ย 
โ€โ€VIRUS - 123455555555555555555555555555555555555555
โ€โ€VIRUS -  123455555555555555555555555555555555555555โ€โ€VIRUS -  123455555555555555555555555555555555555555
โ€โ€VIRUS - 123455555555555555555555555555555555555555
ย 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
ย 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptx
ย 
Temporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of MasticationTemporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of Mastication
ย 
Call Girls in Aiims Metro Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Aiims Metro Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.Call Girls in Aiims Metro Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Aiims Metro Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
ย 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
ย 
Call Girls in Hauz Khas Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Hauz Khas Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.Call Girls in Hauz Khas Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Hauz Khas Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
ย 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
ย 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
ย 
Call Girls In Nihal Vihar Delhi โค๏ธ8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi โค๏ธ8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi โค๏ธ8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi โค๏ธ8860477959 Looking Escorts In 24/7 Delhi NCR
ย 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutions
ย 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
ย 
Call Us โ‰ฝ 9953322196 โ‰ผ Call Girls In Mukherjee Nagar(Delhi) |
Call Us โ‰ฝ 9953322196 โ‰ผ Call Girls In Mukherjee Nagar(Delhi) |Call Us โ‰ฝ 9953322196 โ‰ผ Call Girls In Mukherjee Nagar(Delhi) |
Call Us โ‰ฝ 9953322196 โ‰ผ Call Girls In Mukherjee Nagar(Delhi) |
ย 

Euler's Dynamical Equations and Rigid Body Motion

  • 1.
  • 3. OBJECTIVES Today we will discuss: โ€ข EULERโ€™S DYNAMICAL EQUATION โ€ข DEDUCTIONS FROM EULERโ€™S EQUATION โ€ข GENERAL MOTION OF A RIGID BODY
  • 4. MOTION OF A RIGID BODY IN SPACE
  • 5. RIGID BODY: โ€œA rigid body is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass.โ€ Rigid body Non-Rigid body
  • 6. CHARACTERISTICS OF RIGIDBODY MOTION All lines on a rigid body have the same angular velocity and the same angular acceleration. Rigid motion can be decomposed into the translation of an arbitrary point, followed by a rotation about the point.
  • 8. LEONHARD EULER โ€ข Leonhard Euler15 April 1707 โ€“ 18 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who made important and influential discoveries in many branches of mathematics. โ€ข Amongst his many discoveries and developments, Euler is credited for introducing the Greek letter pi.
  • 9. Let the rigid body be rotating with angular velocity ๐œ” about a point O fixed both in space and in the body. Let OX, OY, OZ be principal axes at O. If L, ๐ผ๐‘–๐‘— , ๐œ” be angular momentum, M.I. matrix and angular velocity at O, then ๐‘ณ = ๐‘ฐ [๐Ž] ๐‘ณ = ๐‘ฐ๐’Š๐’‹ [๐Ž] ๐‘ณ๐’™ ๐‘ณ๐’š ๐‘ณ๐’› = ๐‘ฐ๐’™๐’™ ๐‘ฐ๐’™๐’š ๐‘ฐ๐’™๐’› ๐‘ฐ๐’™๐’š ๐‘ฐ๐’š๐’š ๐‘ฐ๐’š๐’› ๐‘ฐ๐’™๐’› ๐‘ฐ๐’š๐’› ๐‘ฐ๐’›๐’› ๐Ž๐’™ ๐Ž๐’š ๐Ž๐’› โˆต the axes OX, OY, OZ are principal axes,
  • 10. ๐‘ฐ๐’™๐’š= ๐‘ฐ๐’™๐’› = ๐‘ฐ๐’š๐’› = ๐ŸŽ โˆตso the product of inertia about these axis will be zero โˆด we can write ๐‘ณ๐’™ ๐‘ณ๐’š ๐‘ณ๐’› = ๐‘ฐ๐’™๐’™ ๐ŸŽ ๐ŸŽ ๐ŸŽ ๐‘ฐ๐’š๐’š ๐ŸŽ ๐ŸŽ ๐ŸŽ ๐‘ฐ๐’›๐’› ๐Ž๐’™ ๐Ž๐’š ๐Ž๐’› = ๐Ž๐’™๐‘ฐ๐’™๐’™ ๐Ž๐’š๐‘ฐ๐’š๐’š ๐Ž๐’›๐‘ฐ๐’›๐’› Or ๐‘ณ = ๐Ž๐’™๐‘ฐ๐’™๐’Š + ๐Ž๐’š๐‘ฐ๐’š๐’‹ + ๐Ž๐’›๐‘ฐ๐’›๐’Œ = ๐Ž๐Ÿ๐‘ฐ๐Ÿ๐’Š + ๐Ž๐Ÿ๐‘ฐ๐Ÿ๐’‹ + ๐Ž๐Ÿ‘๐‘ฐ๐Ÿ‘๐’Œ where ๐‘ฐ๐Ÿ, ๐‘ฐ๐Ÿ, ๐‘ฐ๐Ÿ‘ are principal moments
  • 11. Now the rate of change of any vector function F in fixed and rotating coordinate systems is related by ๐’…๐‘ญ ๐’…๐’• ๐’‡ = ๐’…๐‘ญ ๐’…๐’• ๐’“ + ๐Ž ร— ๐‘ญ ๐’…๐‘ณ ๐’…๐’• ๐’‡ = ๐’…๐‘ณ ๐’…๐’• ๐’“ + ๐Ž ร— ๐‘ณ = ๐’… ๐’…๐’• ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘๐’Œ + ๐Ž ร— ๐‘ณ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘๐’Œ + ๐Ž ร— ๐‘ณ Where the symbols on the R.H.S refer to the rotating coordinate system. But ๐‘‘๐ฟ ๐‘‘๐‘ก = ๐บ, the total external torque (in the fixed or inertial coordinate system). โˆต in rotating, only derivative ๐œ” , in fixed derivative L. โˆต Replace F by L
  • 12. Therefore on the substitution, G= ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘๐’Œ + ๐Ž ร— ๐‘ณ ๐‘ฎ๐’™๐’Š + ๐‘ฎ๐’š๐’‹ + ๐‘ฎ๐’›๐’Œ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘๐’Œ + ๐’Š ๐’‹ ๐’Œ ๐Ž๐’™ ๐Ÿ ๐Ž๐’š ๐Ÿ ๐Ž๐’› ๐Ÿ‘ ๐‘ณ๐Ÿ ๐‘ณ๐Ÿ ๐‘ณ๐Ÿ‘ ๐‘ฎ๐’™๐’Š + ๐‘ฎ๐’š๐’‹ + ๐‘ฎ๐’›๐’Œ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘๐’Œ + ๐’Š ๐Ž๐Ÿ๐‘ณ๐Ÿ‘ โˆ’ ๐Ž๐Ÿ‘๐‘ณ๐Ÿ + ๐’‹ ๐Ž๐Ÿ‘๐‘ณ๐Ÿ โˆ’ ---------1
  • 13. Now using the results ๐ฟ1 = ๐œ”1๐ผ1, ๐ฟ2 = ๐œ”2๐ผ2, ๐ฟ3 = ๐œ”3๐ผ3 which are true w.r.t. principal axes, we have ๐‘ฎ๐’™ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ โˆ’ ๐‘ฐ๐Ÿ โˆ’ ๐‘ฐ๐Ÿ‘)๐Ž๐Ÿ๐Ž๐Ÿ‘ ๐‘ฎ๐’š = ๐‘ฐ๐Ÿ๐Ž๐Ÿ โˆ’ ๐‘ฐ๐Ÿ‘ โˆ’ ๐‘ฐ๐Ÿ)๐Ž๐Ÿ๐Ž๐Ÿ‘ ๐‘ฎ๐’› = ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ โˆ’ ๐‘ฐ๐Ÿโˆ’๐‘ฐ๐Ÿ)๐Ž๐Ÿ๐Ž๐Ÿ These equations are called Eulerโ€™s Dynamical Equations. They describe the motion of a rigid body fixed at a point.
  • 15. We will discuss some results which follow directly from the Euler dynamical equations. In the absence of external forces, G=0, and the Euler equations (1) reduce to ๐’…๐‘ณ ๐’…๐’• = ๐ŸŽ โ‡’ ๐‘ณ = ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• ๐‘ฐ๐Ÿ๐Ž๐Ÿ โˆ’ ๐‘ฐ๐Ÿ โˆ’ ๐‘ฐ๐Ÿ‘ ๐Ž๐Ÿ๐Ž๐Ÿ‘ = ๐ŸŽ ----- 1 ๐‘ฐ๐Ÿ๐Ž๐Ÿ โˆ’ ๐‘ฐ๐Ÿ‘ โˆ’ ๐‘ฐ๐Ÿ ๐Ž๐Ÿ๐Ž๐Ÿ‘ = ๐ŸŽ ----- 2 ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ โˆ’ ๐‘ฐ๐Ÿโˆ’๐‘ฐ๐Ÿ)๐Ž๐Ÿ๐Ž๐Ÿ = ๐ŸŽ ----- 3 Multiply 1,2,3 by ๐œ”1, ๐œ”2, ๐œ”3 respectively and adding, we have ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐Ž๐Ÿ + ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐Ž๐Ÿ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘๐Ž๐Ÿ‘ = ๐ŸŽ
  • 16. ๐Ÿ ๐Ÿ ๐’… ๐’…๐’• ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐Ÿ + ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐Ÿ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ ๐Ÿ = ๐ŸŽ Or ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐Ÿ + ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐Ÿ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ ๐Ÿ = ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• Now for the kinetic of a rigid body we have the relation ๐‘ป = ๐Ÿ ๐Ÿ ๐Ž. ๐‘ณ which when referred to the principal axes reduces to ๐‘ป = ๐Ÿ ๐Ÿ ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐Ÿ + ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐Ÿ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ ๐Ÿ . In view of this formula we find that in this case T=constant, i.e., the kinetic energy in the absence of external forces is a constant of motion. This is so because no work is being done by the external forces, and therefore the potential energy is a constant.
  • 17. Another integral of the force-free equations can be obtained by multiplying 1, 2, 3 by ๐ผ1๐œ”1, ๐ผ2๐œ”2, ๐ผ3๐œ”3 respectively and adding. We get ๐‘ฐ๐Ÿ ๐Ÿ ๐Ž๐Ÿ๐Ž๐Ÿ + ๐‘ฐ๐Ÿ ๐Ÿ ๐Ž๐Ÿ๐Ž๐Ÿ + ๐‘ฐ๐Ÿ‘ ๐Ÿ ๐Ž๐Ÿ‘๐Ž๐Ÿ‘ = ๐ŸŽ Or ๐’… ๐’…๐’• ๐‘ฐ๐Ÿ ๐Ÿ ๐Ž๐Ÿ ๐Ÿ + ๐‘ฐ๐Ÿ ๐Ÿ ๐Ž๐Ÿ ๐Ÿ + ๐‘ฐ๐Ÿ‘ ๐Ÿ ๐Ž๐Ÿ‘ ๐Ÿ ) = ๐ŸŽ Or ๐‘ฐ๐Ÿ ๐Ÿ ๐Ž๐Ÿ ๐Ÿ + ๐‘ฐ๐Ÿ ๐Ÿ ๐Ž๐Ÿ ๐Ÿ + ๐‘ฐ๐Ÿ‘ ๐Ÿ ๐Ž๐Ÿ‘ ๐Ÿ = ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• ------4 Now the angular momentum L w.r.t. the triad of principal axes is given by ๐‘ณ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘๐’Œ And therefore ๐‘ณ๐Ÿ = ๐‘ณ ๐Ÿ = ๐‘ฐ๐Ÿ ๐Ÿ ๐Ž๐Ÿ ๐Ÿ + ๐‘ฐ๐Ÿ ๐Ÿ ๐Ž๐Ÿ ๐Ÿ + ๐‘ฐ๐Ÿ‘ ๐Ÿ ๐Ž๐Ÿ‘ ๐Ÿ Hence eq.4 expresses the fact that the magnitude of L is a constant of motion. This can be related to the absence of the external torque about the point O.
  • 19. General Motion = Translational Motion + Rotational Motion TRANSLATIONAL MOTION โ€œThe motion by which a body shifts from one point in space to another.โ€ Or โ€œA body moves along a line without any rotation. The line may be straight or curved.โ€ Example: A bullet fired from a gun, Ferris wheel etc. ROTATIONAL MOTION โ€œ A kind of motion in which the body follows a curved path.โ€ โ€œThe spinning motion of a body about its axisโ€ Example, the wheel of the car , Earth etc.
  • 20. In the general motion of a body (i.e., no point of the body is fixed in space). Let ๐‘ญ๐’„ ๐’†๐’™๐’• be the total external force on the rigid body and ๐‘ฎ๐’„ ๐’†๐’™๐’• the total external torque about is mass centre (i.e., centroid). Then the equations of motion are ๐‘ด๐’‚๐’„ = ๐‘ญ๐’„ ๐’†๐’™๐’• ๐‘ณ๐’„ = ๐‘ฎ๐’„ Where ๐‘Ž๐‘ is the acceleration of the centre mass and ๐ฟ๐‘ is the total angular momentum about it. Now we resolve the vectors ๐‘Ž๐‘, F, ๐บ๐‘ and L along the unit vector ๐‘–, ๐‘—, ๐‘˜ taken along the principal axes at the mass centre. The triad of vectors ๐‘–, ๐‘—, ๐‘˜ may be referred to as a principal triad. It will be assumed to be permanently a principal triad. Let ๐›บ be the angular velocity. If the triad is fixed in the body then ฮฉ = ฯ‰, the angular velocity of the body. Now using the relation ๐’…๐‘ญ ๐’…๐’• ๐’‡ = ๐’…๐‘ญ ๐’…๐’• ๐’“ + ๐Ž ร— ๐‘ญ ------------ (1) ------------ (2) ๐‘ป๐’๐’“๐’’๐’–๐’† = ๐‘ฎ = ๐‘ณ ๐‘ญ = ๐’Ž๐’‚
  • 21. Which relates the rate of change of a vector in a fixed (i.e., inertial) frame and a rotating frame, we have (on dropping the suffix r) ๐’‚๐’‡ = ๐’…๐’— ๐’…๐’• ๐’‡ = ๐’…๐’— ๐’…๐’• + ๐œด ร— ๐‚ ๐’‚๐’‡ = ๐’…๐’— ๐’…๐’• + ๐œด ร— ๐‚ Where ๐‘ฃ = ๐‘ฃ1๐‘– + ๐‘ฃ2๐‘— + ๐‘ฃ3๐‘˜ is the velocity of the mass centre (in the rotating coordinate system). ๐‚๐’‡ = ๐‚๐’“ = ๐‚ ------------ (3) F = v
  • 22. Substituting for ๐‘Ž๐‘“ = ๐‘Ž๐‘ form (3) into (1), we obtain ๐‘ด๐’‚๐’„ = ๐‘ญ๐’„ ๐’†๐’™๐’• ๐‘ด ๐’…๐’— ๐’…๐’• + ๐œด ร— ๐‚ = ๐‘ญ ๐‘ด ๐‚๐Ÿ๐’Š + ๐‚๐Ÿ๐’‹ + ๐‚๐Ÿ‘๐’Œ + ๐’Š ๐œด๐Ÿ ๐‚๐Ÿ ๐’‹ ๐œด๐Ÿ ๐‚๐Ÿ ๐’Œ ๐œด๐Ÿ‘ ๐‚๐Ÿ‘ = ๐‘ญ๐Ÿ๐’Š + ๐‘ญ๐Ÿ๐’‹ + ๐‘ญ๐Ÿ‘๐’Œ ๐‘ด ๐‚๐Ÿ๐’Š + ๐‚๐Ÿ๐’‹ + ๐‚๐Ÿ‘๐’Œ + ๐’Š ๐œด๐Ÿ ๐‚๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‚๐Ÿ โˆ’ ๐’‹ ๐œด๐Ÿ ๐‚๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‚๐Ÿ + ๐’Œ ๐œด๐Ÿ ๐‚๐Ÿ โˆ’ ๐œด๐Ÿ ๐‚๐Ÿ = ๐‘ญ๐Ÿ๐’Š + ๐‘ญ๐Ÿ๐’‹ + ๐‘ญ๐Ÿ‘๐’Œ ๐‘ด ๐‚๐Ÿ๐’Š + ๐’Š ๐œด๐Ÿ ๐‚๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‚๐Ÿ + ๐‚๐Ÿ๐’‹ โˆ’ ๐’‹ ๐œด๐Ÿ ๐‚๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‚๐Ÿ
  • 23. Which is equivalent to ๐‘ด ๐‚๐Ÿ + ๐œด๐Ÿ ๐‚๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‚๐Ÿ = ๐‘ญ๐Ÿ ๐‘ด ๐‚๐Ÿ + ๐œด๐Ÿ‘ ๐‚๐Ÿ โˆ’ ๐œด๐Ÿ ๐‚๐Ÿ‘ = ๐‘ญ๐Ÿ ๐‘ด ๐‚๐Ÿ‘ + ๐œด๐Ÿ ๐‚๐Ÿ โˆ’ ๐œด๐Ÿ ๐‚๐Ÿ = ๐‘ญ๐Ÿ‘ From 2, on using ๐‘‘๐ฟ ๐‘‘๐‘ก ๐‘“ = ๐‘‘๐ฟ ๐‘‘๐‘ก + ฮฉ ร— ๐ฟ ๐‘‘๐ฟ ๐‘‘๐‘ก ๐‘“ = ๐ผ1๐œ”1 ๐‘– + ๐ผ2๐œ”2 ๐‘— + ๐ผ3๐œ”3 ๐‘˜ + ๐‘– ฮฉ1 ๐ฟ1 ๐‘— ฮฉ2 ๐ฟ2 ๐‘˜ ฮฉ3 ๐ฟ3 And the relation ๐‘ณ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ ๐’Œ, we obtain the equation โˆด ๐‘ณ๐’„ = ๐‘ฎ๐’„ ------------ (4)
  • 24. ๐’…๐‘ณ ๐’…๐’• ๐’‡ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ ๐’Œ + ๐œด๐Ÿ ๐‘ณ๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‘ณ๐Ÿ ๐’Š โˆ’ ๐œด๐Ÿ ๐‘ณ๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‘ณ๐Ÿ ๐’‹ + ๐œด๐Ÿ ๐‘ณ๐Ÿ โˆ’ ๐œด๐Ÿ ๐‘ณ๐Ÿ ๐’Œ = ๐‘ฎ ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐’Š + ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐’‹ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ ๐’Œ + ๐œด๐Ÿ ๐‘ณ๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‘ณ๐Ÿ ๐’Š โˆ’ ๐œด๐Ÿ ๐‘ณ๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‘ณ๐Ÿ ๐’‹ + ๐œด๐Ÿ ๐‘ณ๐Ÿ โˆ’ ๐œด๐Ÿ ๐‘ณ๐Ÿ ๐’Œ = ๐‘ฎ๐Ÿ๐’Š + ๐‘ฎ๐Ÿ๐’‹ + ๐‘ฎ๐Ÿ‘๐’Œ From this vector equation we obtain the following three scalar equations ๐‘ฐ๐Ÿ๐Ž๐Ÿ + ๐œด๐Ÿ ๐‘ณ๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‘ณ๐Ÿ = ๐‘ฎ๐Ÿ ๐‘ฐ๐Ÿ๐Ž๐Ÿ + ๐œด๐Ÿ‘ ๐‘ณ๐Ÿ โˆ’ ๐œด๐Ÿ ๐‘ณ๐Ÿ‘ = ๐‘ฎ๐Ÿ ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ + ๐œด๐Ÿ ๐‘ณ๐Ÿ โˆ’ ๐œด๐Ÿ ๐‘ณ๐Ÿ = ๐‘ฎ๐Ÿ‘ Where we have used the results ๐‘ณ๐Ÿ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ, ๐‘ณ๐Ÿ = ๐‘ฐ๐Ÿ๐Ž๐Ÿ, ๐‘ณ๐Ÿ‘ = ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘
  • 25. We have ๐‘ฐ๐Ÿ๐Ž๐Ÿ + ๐œด๐Ÿ ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ โˆ’ ๐œด๐Ÿ‘ ๐‘ฐ๐Ÿ๐Ž๐Ÿ = ๐‘ฎ๐Ÿ ๐‘ฐ๐Ÿ๐Ž๐Ÿ + ๐œด๐Ÿ‘ ๐‘ฐ๐Ÿ๐Ž๐Ÿ โˆ’ ๐œด๐Ÿ ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ = ๐‘ฎ๐Ÿ ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ + ๐œด๐Ÿ ๐‘ฐ๐Ÿ๐Ž๐Ÿ โˆ’ ๐œด๐Ÿ ๐‘ฐ๐Ÿ๐Ž๐Ÿ = ๐‘ฎ๐Ÿ‘ Which are the same as for a rigid body with a fixed point. In these equations ๐ผ1, ๐ผ2, ๐ผ3 denote principal moments of inertia at the centroid of the body. The set of equations 4 and 5 constitute six equations for the components of velocity of the mass centre and the components of angular velocity of the body. ------------ (5)
  • 26. For any these six equations, we can substitute the law of conservation of energy, viz. ๐‘ป + ๐‘ฝ = ๐‘ฌ provided the external forces are conservative. The last equation is equivalent to ๐Ÿ ๐Ÿ ๐‘ด ๐’—๐Ÿ ๐Ÿ + ๐’—๐Ÿ ๐Ÿ + ๐’—๐Ÿ‘ ๐Ÿ + ๐Ÿ ๐Ÿ ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐Ÿ + ๐‘ฐ๐Ÿ๐Ž๐Ÿ ๐Ÿ + ๐‘ฐ๐Ÿ‘๐Ž๐Ÿ‘ ๐Ÿ + ๐‘ฝ = ๐‘ฌ K.E + P.E = Total Energy ๐‘ช๐’๐’๐’”๐’†๐’“๐’—๐’‚๐’•๐’Š๐’—๐’† โ‡’ ๐‘ญ = ๐ŸŽ ๐‘ป = ๐‘ป๐’•๐’“ + ๐‘ป๐’“๐’๐’• ๐‘ป = ๐Ÿ ๐Ÿ ๐‘ด๐’—๐Ÿ + ๐Ÿ ๐Ÿ ๐Ž. ๐‘ณ