SlideShare a Scribd company logo
1 of 42
I. Physical
Properties
Ch. 11 - Gases
A. Kinetic Molecular Theory
Particles in an ideal gas…
• have no volume.
• have elastic collisions.
• are in constant, random, straight-
line motion.
• don’t attract or repel each other.
• have an avg. KE directly related
to Kelvin temperature.
B. Real Gases
Particles in a REAL gas…
• have their own volume
• attract each other
Gas behavior is most ideal…
• at low pressures
• at high temperatures
• in nonpolar atoms/molecules
C. Characteristics of Gases
Gases expand to fill any container.
• random motion, no attraction
Gases are fluids (like liquids).
• no attraction
Gases have very low densities.
• no volume = lots of empty space
C. Characteristics of Gases
Gases can be compressed.
• no volume = lots of empty space
Gases undergo diffusion & effusion.
• random motion
D. Temperature
ºF
ºC
K
-459 32 212
-273 0 100
0 273 373
 
32
F
C 9
5



 K = ºC + 273
Always use absolute temperature
(Kelvin) when working with gases.
E. Pressure
area
force
pressure 
Which shoes create the most pressure?
E. Pressure
Barometer
• measures atmospheric pressure
Mercury Barometer
Aneroid Barometer
E. Pressure
2
m
N
kPa 
KEY UNITS AT SEA LEVEL
101.325 kPa (kilopascal)
1 atm
760 mm Hg
760 torr
14.7 psi
F. STP
Standard Temperature & Pressure
0°C 273 K
1 atm 101.325 kPa
-OR-
STP
II. The Gas
Laws
BOYLES
CHARLES
GAY-
LUSSAC
Gas Laws
A. Boyle’s Law
P
V
PV = k
Volume
(mL)
Pressure
(torr)
P·V
(mL·torr)
10.0 760.0 7.60 x 103
20.0 379.6 7.59 x 103
30.0 253.2 7.60 x 103
40.0 191.0 7.64 x 103
A. Boyle’s Law
The pressure and volume
of a gas are inversely
related
• at constant mass & temp
P
V
PV = k
k
T
V

V
T
B. Charles’ Law
Volume
(mL)
Temperature
(K)
V/T
(mL/K)
40.0 273.2 0.146
44.0 298.2 0.148
47.7 323.2 0.148
51.3 348.2 0.147
k
T
V

V
T
B. Charles’ Law
The volume and absolute
temperature (K) of a gas
are directly related
• at constant mass &
pressure
k
T
P

P
T
C. Gay-Lussac’s Law
Temperature
(K)
Pressure
(torr)
P/T
(torr/K)
248 691.6 2.79
273 760.0 2.78
298 828.4 2.78
373 1,041.2 2.79
k
T
P

P
T
C. Gay-Lussac’s Law
The pressure and absolute
temperature (K) of a gas
are directly related
• at constant mass &
volume
= k
PV
P
T
V
T
PV
T
D. Combined Gas Law
P1V1
T1
=
P2V2
T2
P1V1T2 = P2V2T1
GIVEN:
V1 = 473 cm3
T1 = 36°C = 309K
V2 = ?
T2 = 94°C = 367K
WORK:
P1V1T2 = P2V2T1
E. Gas Law Problems
A gas occupies 473 cm3 at 36°C.
Find its volume at 94°C.
CHARLES’ LAW
T V
(473 cm3)(367 K)=V2(309 K)
V2 = 562 cm3
GIVEN:
V1 = 100. mL
P1 = 150. kPa
V2 = ?
P2 = 200. kPa
WORK:
P1V1T2 = P2V2T1
E. Gas Law Problems
A gas occupies 100. mL at 150.
kPa. Find its volume at 200. kPa.
BOYLE’S LAW
P V
(150.kPa)(100.mL)=(200.kPa)V2
V2 = 75.0 mL
GIVEN:
V1 = 7.84 cm3
P1 = 71.8 kPa
T1 = 25°C = 298 K
V2 = ?
P2 = 101.325 kPa
T2 = 273 K
WORK:
P1V1T2 = P2V2T1
(71.8 kPa)(7.84 cm3)(273 K)
=(101.325 kPa) V2 (298 K)
V2 = 5.09 cm3
E. Gas Law Problems
A gas occupies 7.84 cm3 at 71.8 kPa &
25°C. Find its volume at STP.
P T V
COMBINED GAS LAW
GIVEN:
P1 = 765 torr
T1 = 23°C = 296K
P2 = 560. torr
T2 = ?
WORK:
P1V1T2 = P2V2T1
E. Gas Law Problems
A gas’ pressure is 765 torr at 23°C.
At what temperature will the
pressure be 560. torr?
GAY-LUSSAC’S LAW
P T
(765 torr)T2 = (560. torr)(296K)
T2 = 217 K = -56.3°C
k
n
V

V
n
A. Avogadro’s Principle
Gas
Volume
(mL)
Mass
(g)
Moles, n
V/n
(L/mol)
O2 100.0 0.122 3.81  10-3
26.2
N2 100.0 0.110 3.93  10-3
25.5
CO2 100.0 0.176 4.00  10-3
25.0
k
n
V

V
n
A. Avogadro’s Principle
 Equal volumes of gases contain
equal numbers of moles
• at constant temp & pressure
• true for any gas
PV
T
V
n
PV
nT
B. Ideal Gas Law
= k
UNIVERSAL GAS
CONSTANT
R=0.0821 Latm/molK
R=8.315 dm3kPa/molK
= R
B. Ideal Gas Law
UNIVERSAL GAS
CONSTANT
R=0.0821 Latm/molK
R=8.315 dm3kPa/molK
PV=nRT
GIVEN:
P = ? atm
n = 0.412 mol
T = 16°C = 289 K
V = 3.25 L
R = 0.0821Latm/molK
WORK:
PV = nRT
P(3.25)=(0.412)(0.0821)(289)
L mol Latm/molK K
P = 3.01 atm
B. Ideal Gas Law
Calculate the pressure in atmospheres
of 0.412 mol of He at 16°C & occupying
3.25 L. IDEAL GAS LAW
GIVEN:
V = ?
n = 85 g
T = 25°C = 298 K
P = 104.5 kPa
R = 8.315 dm3kPa/molK
B. Ideal Gas Law
Find the volume of 85 g of O2 at 25°C
and 104.5 kPa.
= 2.7 mol
WORK:
85 g 1 mol = 2.7 mol
32.00 g
PV = nRT
(104.5)V=(2.7) (8.315) (298)
kPa mol dm3kPa/molK K
V = 64 dm3
IDEAL GAS LAW
A. Gas Stoichiometry
Moles  Liters of a Gas
• STP - use 22.4 L/mol
• Non-STP - use ideal gas law
Non-STP Problems
• Given liters of gas?
 start with ideal gas law
• Looking for liters of gas?
 start with stoichiometry conv.
1 mol
CaCO3
100.09g
CaCO3
B. Gas Stoichiometry Problem
 What volume of CO2 forms from 5.25 g
of CaCO3 at 103 kPa & 25ºC?
5.25 g
CaCO3
= 0.052 mol CO2
CaCO3  CaO + CO2
1 mol
CO2
1 mol
CaCO3
5.25 g ? L
non-STP
Looking for liters: Start with stoich
and calculate moles of CO2.
Plug this into the Ideal
Gas Law to find liters.
WORK:
PV = nRT
(103 kPa)V
=(.052mol)(8.315dm3kPa/molK)(298K)
V = 1.26 dm3 CO2
B. Gas Stoichiometry Problem
What volume of CO2 forms from
5.25 g of CaCO3 at 103 kPa & 25ºC?
GIVEN:
P = 103 kPa
V = ?
n = .052 mol
T = 25°C = 298 K
R = 8.315 dm3kPa/molK
WORK:
PV = nRT
(97.3 kPa) (15.0 L)
= n (8.315dm3kPa/molK) (294K)
n = 0.597 mol O2
B. Gas Stoichiometry Problem
 How many grams of Al2O3 are formed from
15.0 L of O2 at 97.3 kPa & 21°C?
GIVEN:
P = 97.3 kPa
V = 15.0 L
n = ?
T = 21°C = 294 K
R = 8.315 dm3kPa/molK
4 Al + 3 O2  2 Al2O3
15.0 L
non-STP ? g
Given liters: Start with
Ideal Gas Law and
calculate moles of O2.
NEXT 
2 mol
Al2O3
3 mol O2
B. Gas Stoichiometry Problem
How many grams of Al2O3 are formed
from 15.0 L of O2 at 97.3 kPa & 21°C?
0.597
mol O2
= 40.6 g Al2O3
4 Al + 3 O2  2 Al2O3
101.96 g
Al2O3
1 mol
Al2O3
15.0L
non-STP
? g
Use stoich to convert moles
of O2 to grams Al2O3.
A. Dalton’s Law
 The total pressure of a mixture
of gases equals the sum of the
partial pressures of the
individual gases.
Ptotal = P1 + P2 + ...
Patm = PH2 +
PH2O
GIVEN:
PH2 = ?
Ptotal = 94.4 kPa
PH2O = 2.72 kPa
WORK:
Ptotal = PH2 + PH2O
94.4 kPa = PH2 + 2.72 kPa
PH2 = 91.7 kPa
A. Dalton’s Law
 Hydrogen gas is collected over water at
22.5°C. Find the pressure of the dry gas
if the atmospheric pressure is 94.4 kPa.
Look up water-vapor pressure
on p.859 for 22.5°C.
Sig Figs: Round to least number
of decimal places.
The total pressure in the collection bottle is equal to atmospheric
pressure and is a mixture of H2 and water vapor.
GIVEN:
Pgas = ?
Ptotal = 742.0 torr
PH2O = 42.2 torr
WORK:
Ptotal = Pgas + PH2O
742.0 torr = PH2 + 42.2 torr
Pgas = 699.8 torr
 A gas is collected over water at a temp of 35.0°C
when the barometric pressure is 742.0 torr.
What is the partial pressure of the dry gas?
DALTON’S LAW
Look up water-vapor pressure
on p.859 for 35.0°C.
Sig Figs: Round to least number
of decimal places.
A. Dalton’s Law
The total pressure in the collection bottle is equal to barometric
pressure and is a mixture of the “gas” and water vapor.
B. Graham’s Law
Diffusion
• Spreading of gas molecules
throughout a container until
evenly distributed.
Effusion
• Passing of gas molecules
through a tiny opening in a
container
B. Graham’s Law
KE = ½mv2
Speed of diffusion/effusion
• Kinetic energy is determined by
the temperature of the gas.
• At the same temp & KE, heavier
molecules move more slowly.
• Larger m  smaller v because…
B. Graham’s Law
Graham’s Law
• Rate of diffusion of a gas is
inversely related to the square root
of its molar mass.
A
B
B
A
m
m
v
v

Ratio of gas
A’s speed to
gas B’s speed
Determine the relative rate of diffusion
for krypton and bromine.
1.381

Kr diffuses 1.381 times faster than Br2.
Kr
Br
Br
Kr
m
m
v
v 2
2

A
B
B
A
m
m
v
v

g/mol
83.80
g/mol
159.80

B. Graham’s Law
The first gas is “Gas A” and the second gas is “Gas B”.
Relative rate mean find the ratio “vA/vB”.
 A molecule of oxygen gas has an average
speed of 12.3 m/s at a given temp and pressure.
What is the average speed of hydrogen
molecules at the same conditions?
A
B
B
A
m
m
v
v

2
2
2
2
H
O
O
H
m
m
v
v

g/mol
2.02
g/mol
32.00
m/s
12.3
vH

2
B. Graham’s Law
3.980
m/s
12.3
vH

2
m/s
49.0
vH 
2
Put the gas with
the unknown
speed as
“Gas A”.
 An unknown gas diffuses 4.0 times faster than
O2. Find its molar mass.
A
m
g/mol
32.00
16 
A
B
B
A
m
m
v
v

A
O
O
A
m
m
v
v 2
2

A
m
g/mol
32.00
4.0 
16
g/mol
32.00
mA 
2









A
m
g/mol
32.00
4.0
g/mol
2.0

B. Graham’s Law
The first gas is “Gas A” and the second gas is “Gas B”.
The ratio “vA/vB” is 4.0.
Square both
sides to get rid
of the square
root sign.

More Related Content

Similar to Gas_Laws_powerpoint_notes.ppt for grade 10

Physical Characteristics Of Gases
Physical Characteristics Of GasesPhysical Characteristics Of Gases
Physical Characteristics Of Gasesshawnschlueter
 
Chapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).pptChapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).pptmikeebio1
 
properties of gases and the GAS LAWS.ppt
properties of gases and the GAS LAWS.pptproperties of gases and the GAS LAWS.ppt
properties of gases and the GAS LAWS.pptmikko david
 
GAS LAWS Boyle's Charles law ideal gas law
GAS LAWS Boyle's Charles law ideal gas lawGAS LAWS Boyle's Charles law ideal gas law
GAS LAWS Boyle's Charles law ideal gas lawrenald7
 
Ch5 z5e gases
Ch5 z5e gasesCh5 z5e gases
Ch5 z5e gasesblachman
 
pptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptxpptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptxJomarDeray1
 
pptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptxpptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptxJomarDeray1
 
Chem 101 week 12 ch 5
Chem 101 week 12 ch 5Chem 101 week 12 ch 5
Chem 101 week 12 ch 5tdean1
 
Intro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptx
Intro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptxIntro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptx
Intro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptxFrancesLeiOrtiz
 
New chm 151_unit_10_power_points
New chm 151_unit_10_power_pointsNew chm 151_unit_10_power_points
New chm 151_unit_10_power_pointscaneman1
 

Similar to Gas_Laws_powerpoint_notes.ppt for grade 10 (20)

gaslaws-180210022037.pptx
gaslaws-180210022037.pptxgaslaws-180210022037.pptx
gaslaws-180210022037.pptx
 
the gaseous state of matter
the gaseous state of matterthe gaseous state of matter
the gaseous state of matter
 
Physical Characteristics Of Gases
Physical Characteristics Of GasesPhysical Characteristics Of Gases
Physical Characteristics Of Gases
 
Chapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).pptChapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).ppt
 
properties of gases and the GAS LAWS.ppt
properties of gases and the GAS LAWS.pptproperties of gases and the GAS LAWS.ppt
properties of gases and the GAS LAWS.ppt
 
GAS LAWS Boyle's Charles law ideal gas law
GAS LAWS Boyle's Charles law ideal gas lawGAS LAWS Boyle's Charles law ideal gas law
GAS LAWS Boyle's Charles law ideal gas law
 
Boyle's Law
Boyle's LawBoyle's Law
Boyle's Law
 
Gas
GasGas
Gas
 
Ch5 z5e gases
Ch5 z5e gasesCh5 z5e gases
Ch5 z5e gases
 
pptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptxpptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptx
 
pptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptxpptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptx
 
Ap Chem: Unit 5: Gases
Ap Chem: Unit 5: GasesAp Chem: Unit 5: Gases
Ap Chem: Unit 5: Gases
 
Chapter 5 notes
Chapter 5 notesChapter 5 notes
Chapter 5 notes
 
Ch5 Gases
Ch5 GasesCh5 Gases
Ch5 Gases
 
23 gases
23 gases23 gases
23 gases
 
Chem 101 week 12 ch 5
Chem 101 week 12 ch 5Chem 101 week 12 ch 5
Chem 101 week 12 ch 5
 
Intro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptx
Intro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptxIntro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptx
Intro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptx
 
Chem Unit7
Chem Unit7Chem Unit7
Chem Unit7
 
Adv chem chapt 5
Adv chem chapt 5Adv chem chapt 5
Adv chem chapt 5
 
New chm 151_unit_10_power_points
New chm 151_unit_10_power_pointsNew chm 151_unit_10_power_points
New chm 151_unit_10_power_points
 

More from ROLANARIBATO3

impulseandmomentumphysics-160117122804.ppt
impulseandmomentumphysics-160117122804.pptimpulseandmomentumphysics-160117122804.ppt
impulseandmomentumphysics-160117122804.pptROLANARIBATO3
 
179-Anatomy-Nervous-System.ppt slides for grade 10
179-Anatomy-Nervous-System.ppt slides for grade 10179-Anatomy-Nervous-System.ppt slides for grade 10
179-Anatomy-Nervous-System.ppt slides for grade 10ROLANARIBATO3
 
Gas_Laws_powerpoint_notes.ppt. slides for grade 7
Gas_Laws_powerpoint_notes.ppt. slides for grade 7Gas_Laws_powerpoint_notes.ppt. slides for grade 7
Gas_Laws_powerpoint_notes.ppt. slides for grade 7ROLANARIBATO3
 
VOLCANOES, VOLCANIC ERUPTION AND ENERGY.pdf
VOLCANOES, VOLCANIC ERUPTION AND ENERGY.pdfVOLCANOES, VOLCANIC ERUPTION AND ENERGY.pdf
VOLCANOES, VOLCANIC ERUPTION AND ENERGY.pdfROLANARIBATO3
 
ppt-locatingplacesusingcoordinates-230305145844-28181436.ppt
ppt-locatingplacesusingcoordinates-230305145844-28181436.pptppt-locatingplacesusingcoordinates-230305145844-28181436.ppt
ppt-locatingplacesusingcoordinates-230305145844-28181436.pptROLANARIBATO3
 
BIODIVERSITY QUIZ ELIMINATION ROUND.pptx
BIODIVERSITY QUIZ ELIMINATION ROUND.pptxBIODIVERSITY QUIZ ELIMINATION ROUND.pptx
BIODIVERSITY QUIZ ELIMINATION ROUND.pptxROLANARIBATO3
 
Concentration of Solutions.ppt
Concentration of Solutions.pptConcentration of Solutions.ppt
Concentration of Solutions.pptROLANARIBATO3
 

More from ROLANARIBATO3 (7)

impulseandmomentumphysics-160117122804.ppt
impulseandmomentumphysics-160117122804.pptimpulseandmomentumphysics-160117122804.ppt
impulseandmomentumphysics-160117122804.ppt
 
179-Anatomy-Nervous-System.ppt slides for grade 10
179-Anatomy-Nervous-System.ppt slides for grade 10179-Anatomy-Nervous-System.ppt slides for grade 10
179-Anatomy-Nervous-System.ppt slides for grade 10
 
Gas_Laws_powerpoint_notes.ppt. slides for grade 7
Gas_Laws_powerpoint_notes.ppt. slides for grade 7Gas_Laws_powerpoint_notes.ppt. slides for grade 7
Gas_Laws_powerpoint_notes.ppt. slides for grade 7
 
VOLCANOES, VOLCANIC ERUPTION AND ENERGY.pdf
VOLCANOES, VOLCANIC ERUPTION AND ENERGY.pdfVOLCANOES, VOLCANIC ERUPTION AND ENERGY.pdf
VOLCANOES, VOLCANIC ERUPTION AND ENERGY.pdf
 
ppt-locatingplacesusingcoordinates-230305145844-28181436.ppt
ppt-locatingplacesusingcoordinates-230305145844-28181436.pptppt-locatingplacesusingcoordinates-230305145844-28181436.ppt
ppt-locatingplacesusingcoordinates-230305145844-28181436.ppt
 
BIODIVERSITY QUIZ ELIMINATION ROUND.pptx
BIODIVERSITY QUIZ ELIMINATION ROUND.pptxBIODIVERSITY QUIZ ELIMINATION ROUND.pptx
BIODIVERSITY QUIZ ELIMINATION ROUND.pptx
 
Concentration of Solutions.ppt
Concentration of Solutions.pptConcentration of Solutions.ppt
Concentration of Solutions.ppt
 

Recently uploaded

Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACherry
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Serviceshivanisharma5244
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxANSARKHAN96
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.Cherry
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxCherry
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCherry
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Cherry
 
Genetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsGenetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsbassianu17
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learninglevieagacer
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professormuralinath2
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxDiariAli
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfCherry
 
Genome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptxGenome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptxCherry
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body Areesha Ahmad
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxseri bangash
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...Scintica Instrumentation
 

Recently uploaded (20)

Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptx
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
 
Genetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsGenetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditions
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdf
 
Genome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptxGenome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptx
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 

Gas_Laws_powerpoint_notes.ppt for grade 10

  • 2. A. Kinetic Molecular Theory Particles in an ideal gas… • have no volume. • have elastic collisions. • are in constant, random, straight- line motion. • don’t attract or repel each other. • have an avg. KE directly related to Kelvin temperature.
  • 3. B. Real Gases Particles in a REAL gas… • have their own volume • attract each other Gas behavior is most ideal… • at low pressures • at high temperatures • in nonpolar atoms/molecules
  • 4. C. Characteristics of Gases Gases expand to fill any container. • random motion, no attraction Gases are fluids (like liquids). • no attraction Gases have very low densities. • no volume = lots of empty space
  • 5. C. Characteristics of Gases Gases can be compressed. • no volume = lots of empty space Gases undergo diffusion & effusion. • random motion
  • 6. D. Temperature ºF ºC K -459 32 212 -273 0 100 0 273 373   32 F C 9 5     K = ºC + 273 Always use absolute temperature (Kelvin) when working with gases.
  • 7. E. Pressure area force pressure  Which shoes create the most pressure?
  • 8. E. Pressure Barometer • measures atmospheric pressure Mercury Barometer Aneroid Barometer
  • 9. E. Pressure 2 m N kPa  KEY UNITS AT SEA LEVEL 101.325 kPa (kilopascal) 1 atm 760 mm Hg 760 torr 14.7 psi
  • 10. F. STP Standard Temperature & Pressure 0°C 273 K 1 atm 101.325 kPa -OR- STP
  • 12. A. Boyle’s Law P V PV = k Volume (mL) Pressure (torr) P·V (mL·torr) 10.0 760.0 7.60 x 103 20.0 379.6 7.59 x 103 30.0 253.2 7.60 x 103 40.0 191.0 7.64 x 103
  • 13. A. Boyle’s Law The pressure and volume of a gas are inversely related • at constant mass & temp P V PV = k
  • 14. k T V  V T B. Charles’ Law Volume (mL) Temperature (K) V/T (mL/K) 40.0 273.2 0.146 44.0 298.2 0.148 47.7 323.2 0.148 51.3 348.2 0.147
  • 15. k T V  V T B. Charles’ Law The volume and absolute temperature (K) of a gas are directly related • at constant mass & pressure
  • 16. k T P  P T C. Gay-Lussac’s Law Temperature (K) Pressure (torr) P/T (torr/K) 248 691.6 2.79 273 760.0 2.78 298 828.4 2.78 373 1,041.2 2.79
  • 17. k T P  P T C. Gay-Lussac’s Law The pressure and absolute temperature (K) of a gas are directly related • at constant mass & volume
  • 18. = k PV P T V T PV T D. Combined Gas Law P1V1 T1 = P2V2 T2 P1V1T2 = P2V2T1
  • 19. GIVEN: V1 = 473 cm3 T1 = 36°C = 309K V2 = ? T2 = 94°C = 367K WORK: P1V1T2 = P2V2T1 E. Gas Law Problems A gas occupies 473 cm3 at 36°C. Find its volume at 94°C. CHARLES’ LAW T V (473 cm3)(367 K)=V2(309 K) V2 = 562 cm3
  • 20. GIVEN: V1 = 100. mL P1 = 150. kPa V2 = ? P2 = 200. kPa WORK: P1V1T2 = P2V2T1 E. Gas Law Problems A gas occupies 100. mL at 150. kPa. Find its volume at 200. kPa. BOYLE’S LAW P V (150.kPa)(100.mL)=(200.kPa)V2 V2 = 75.0 mL
  • 21. GIVEN: V1 = 7.84 cm3 P1 = 71.8 kPa T1 = 25°C = 298 K V2 = ? P2 = 101.325 kPa T2 = 273 K WORK: P1V1T2 = P2V2T1 (71.8 kPa)(7.84 cm3)(273 K) =(101.325 kPa) V2 (298 K) V2 = 5.09 cm3 E. Gas Law Problems A gas occupies 7.84 cm3 at 71.8 kPa & 25°C. Find its volume at STP. P T V COMBINED GAS LAW
  • 22. GIVEN: P1 = 765 torr T1 = 23°C = 296K P2 = 560. torr T2 = ? WORK: P1V1T2 = P2V2T1 E. Gas Law Problems A gas’ pressure is 765 torr at 23°C. At what temperature will the pressure be 560. torr? GAY-LUSSAC’S LAW P T (765 torr)T2 = (560. torr)(296K) T2 = 217 K = -56.3°C
  • 23. k n V  V n A. Avogadro’s Principle Gas Volume (mL) Mass (g) Moles, n V/n (L/mol) O2 100.0 0.122 3.81  10-3 26.2 N2 100.0 0.110 3.93  10-3 25.5 CO2 100.0 0.176 4.00  10-3 25.0
  • 24. k n V  V n A. Avogadro’s Principle  Equal volumes of gases contain equal numbers of moles • at constant temp & pressure • true for any gas
  • 25. PV T V n PV nT B. Ideal Gas Law = k UNIVERSAL GAS CONSTANT R=0.0821 Latm/molK R=8.315 dm3kPa/molK = R
  • 26. B. Ideal Gas Law UNIVERSAL GAS CONSTANT R=0.0821 Latm/molK R=8.315 dm3kPa/molK PV=nRT
  • 27. GIVEN: P = ? atm n = 0.412 mol T = 16°C = 289 K V = 3.25 L R = 0.0821Latm/molK WORK: PV = nRT P(3.25)=(0.412)(0.0821)(289) L mol Latm/molK K P = 3.01 atm B. Ideal Gas Law Calculate the pressure in atmospheres of 0.412 mol of He at 16°C & occupying 3.25 L. IDEAL GAS LAW
  • 28. GIVEN: V = ? n = 85 g T = 25°C = 298 K P = 104.5 kPa R = 8.315 dm3kPa/molK B. Ideal Gas Law Find the volume of 85 g of O2 at 25°C and 104.5 kPa. = 2.7 mol WORK: 85 g 1 mol = 2.7 mol 32.00 g PV = nRT (104.5)V=(2.7) (8.315) (298) kPa mol dm3kPa/molK K V = 64 dm3 IDEAL GAS LAW
  • 29. A. Gas Stoichiometry Moles  Liters of a Gas • STP - use 22.4 L/mol • Non-STP - use ideal gas law Non-STP Problems • Given liters of gas?  start with ideal gas law • Looking for liters of gas?  start with stoichiometry conv.
  • 30. 1 mol CaCO3 100.09g CaCO3 B. Gas Stoichiometry Problem  What volume of CO2 forms from 5.25 g of CaCO3 at 103 kPa & 25ºC? 5.25 g CaCO3 = 0.052 mol CO2 CaCO3  CaO + CO2 1 mol CO2 1 mol CaCO3 5.25 g ? L non-STP Looking for liters: Start with stoich and calculate moles of CO2. Plug this into the Ideal Gas Law to find liters.
  • 31. WORK: PV = nRT (103 kPa)V =(.052mol)(8.315dm3kPa/molK)(298K) V = 1.26 dm3 CO2 B. Gas Stoichiometry Problem What volume of CO2 forms from 5.25 g of CaCO3 at 103 kPa & 25ºC? GIVEN: P = 103 kPa V = ? n = .052 mol T = 25°C = 298 K R = 8.315 dm3kPa/molK
  • 32. WORK: PV = nRT (97.3 kPa) (15.0 L) = n (8.315dm3kPa/molK) (294K) n = 0.597 mol O2 B. Gas Stoichiometry Problem  How many grams of Al2O3 are formed from 15.0 L of O2 at 97.3 kPa & 21°C? GIVEN: P = 97.3 kPa V = 15.0 L n = ? T = 21°C = 294 K R = 8.315 dm3kPa/molK 4 Al + 3 O2  2 Al2O3 15.0 L non-STP ? g Given liters: Start with Ideal Gas Law and calculate moles of O2. NEXT 
  • 33. 2 mol Al2O3 3 mol O2 B. Gas Stoichiometry Problem How many grams of Al2O3 are formed from 15.0 L of O2 at 97.3 kPa & 21°C? 0.597 mol O2 = 40.6 g Al2O3 4 Al + 3 O2  2 Al2O3 101.96 g Al2O3 1 mol Al2O3 15.0L non-STP ? g Use stoich to convert moles of O2 to grams Al2O3.
  • 34. A. Dalton’s Law  The total pressure of a mixture of gases equals the sum of the partial pressures of the individual gases. Ptotal = P1 + P2 + ... Patm = PH2 + PH2O
  • 35. GIVEN: PH2 = ? Ptotal = 94.4 kPa PH2O = 2.72 kPa WORK: Ptotal = PH2 + PH2O 94.4 kPa = PH2 + 2.72 kPa PH2 = 91.7 kPa A. Dalton’s Law  Hydrogen gas is collected over water at 22.5°C. Find the pressure of the dry gas if the atmospheric pressure is 94.4 kPa. Look up water-vapor pressure on p.859 for 22.5°C. Sig Figs: Round to least number of decimal places. The total pressure in the collection bottle is equal to atmospheric pressure and is a mixture of H2 and water vapor.
  • 36. GIVEN: Pgas = ? Ptotal = 742.0 torr PH2O = 42.2 torr WORK: Ptotal = Pgas + PH2O 742.0 torr = PH2 + 42.2 torr Pgas = 699.8 torr  A gas is collected over water at a temp of 35.0°C when the barometric pressure is 742.0 torr. What is the partial pressure of the dry gas? DALTON’S LAW Look up water-vapor pressure on p.859 for 35.0°C. Sig Figs: Round to least number of decimal places. A. Dalton’s Law The total pressure in the collection bottle is equal to barometric pressure and is a mixture of the “gas” and water vapor.
  • 37. B. Graham’s Law Diffusion • Spreading of gas molecules throughout a container until evenly distributed. Effusion • Passing of gas molecules through a tiny opening in a container
  • 38. B. Graham’s Law KE = ½mv2 Speed of diffusion/effusion • Kinetic energy is determined by the temperature of the gas. • At the same temp & KE, heavier molecules move more slowly. • Larger m  smaller v because…
  • 39. B. Graham’s Law Graham’s Law • Rate of diffusion of a gas is inversely related to the square root of its molar mass. A B B A m m v v  Ratio of gas A’s speed to gas B’s speed
  • 40. Determine the relative rate of diffusion for krypton and bromine. 1.381  Kr diffuses 1.381 times faster than Br2. Kr Br Br Kr m m v v 2 2  A B B A m m v v  g/mol 83.80 g/mol 159.80  B. Graham’s Law The first gas is “Gas A” and the second gas is “Gas B”. Relative rate mean find the ratio “vA/vB”.
  • 41.  A molecule of oxygen gas has an average speed of 12.3 m/s at a given temp and pressure. What is the average speed of hydrogen molecules at the same conditions? A B B A m m v v  2 2 2 2 H O O H m m v v  g/mol 2.02 g/mol 32.00 m/s 12.3 vH  2 B. Graham’s Law 3.980 m/s 12.3 vH  2 m/s 49.0 vH  2 Put the gas with the unknown speed as “Gas A”.
  • 42.  An unknown gas diffuses 4.0 times faster than O2. Find its molar mass. A m g/mol 32.00 16  A B B A m m v v  A O O A m m v v 2 2  A m g/mol 32.00 4.0  16 g/mol 32.00 mA  2          A m g/mol 32.00 4.0 g/mol 2.0  B. Graham’s Law The first gas is “Gas A” and the second gas is “Gas B”. The ratio “vA/vB” is 4.0. Square both sides to get rid of the square root sign.