SlideShare a Scribd company logo
1 of 12
Download to read offline
SEMESTER-VI
PHYSICS-DSE: CLASSICAL DYNAMICS
Small Amplitude Oscillations
The theory of small oscillations was developed by Dโ€™ Alembert, Joseph-Louis Lagrange and other
scientists. The study of the effect of all possible small perturbations to a dynamical system in mechanical
equilibrium is known as small oscillations. The theory of small oscillations is widely used in different
branches of physics viz. in acoustics, molecular spectra, coupled electric circuits etc.
1. Equilibrium and its types-
Equilibrium is the condition of a system in which all the forces- internal as well as external,
cancel out for some configuration of the system and unless the system is perturbed by an external
agency, it stays indefinitely in that state.
Equilibrium may be of following types-
a) Static Equilibrium-
Static equilibrium is a state of zero kinetic energy that continues indefinitely. In such
equilibrium the immediate surroundings of the system does not change with time. Example-
an object (e.g. book) lying still on a surface (e.g. table).
b) Dynamic Equilibrium-
Dynamic equilibrium is defined as the state when no net force acting on the system which
continues with zero kinetic energy. In such equilibrium the immediate surroundings of the
system change with time such that it exerts a balancing force on the system. Example- the
charge neutrality of atoms.
c) Stable Equilibrium-
In stable equilibrium, if a small displacement is given, the system tends to return to the
original equilibrium state. Example- the bob of a simple pendulum in equilibrium state.
d) Unstable Equilibrium-
In instable equilibrium, if a small displacement is given, the system does not return to the
original equilibrium state. Example- a large sized stone lying on the upper edge of a cliff.
e) Metastable Equilibrium-
In metastable equilibrium, the system canโ€™t return to the original equilibrium configuration, if
displaced sufficiently; for smaller displacement, however, it can return. Example- a balloon
that explodes above a certain gas pressure.
2. Equilibrium state and stability of a system-
Small Amplitude Oscillations: Minima of potential energy and points of stable equilibrium, expansion
of the potential energy around minimum, small amplitude oscillations about the minimum, normal
modes of oscillations example of N identical masses connected in a linear fashion to (N -1) - identical
springs.
In a conservative system the potential V is a function of position (qi) only and the system is said
to be equilibrium when the generalized forces Qi acting on the system vanish.
Therefore, ๐‘„๐‘– = โˆ’ (
๐œ•๐‘‰
๐œ•๐‘ž๐‘–
)
0
= 0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (i)
i.e. the potential energy has an extremum (
maximum or minimum) at the equilibrium configuration of the system,
๐‘ž01, ๐‘ž02, ๐‘ž03, ๐‘ž04, โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž0๐‘› . When V is a minimum at equilibrium, any small deviation
from this position means an increase in V and consequently decrease in kinetic energy T i.e.,
velocity v, in a conservative system and the body ultimately comes to rest, indicating the small
bounded motion about the Vmin. Such equilibrium is known as the stable equilibrium. On the
other hand, a small departure from Vmax results in decrease in V and increase in kinetic energy
and velocity indefinitely, which corresponds to unstable motion. Thus the position of Vmax is the
position of unstable equilibrium. Therefore oscillations always occur about a position of stable
equilibrium i.e. about Vmin.
Let V(max) be the potential energy function for a particle and also let
the force F acting on the particle vanishes at x0 i.e.
๐น = โˆ’ (
๐‘‘๐‘‰
๐‘‘๐‘ฅ
)
๐‘ฅ0
= 0โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (ii)
In that case x0 is the point of equilibrium. To test the stability of the equilibrium we must examine
๐‘‘2๐‘‰
๐‘‘๐‘ฅ2 at x0. If the second derivative is positive, the equilibrium is stable. Thus in stable
equilibrium,
(
๐‘‘2
๐‘‰
๐‘‘๐‘ฅ2
)๐‘ฅ0
> 0
If the second derivative is negative, the equilibrium is unstable. Thus in unstable equilibrium,
(
๐‘‘2
๐‘‰
๐‘‘๐‘ฅ2
)๐‘ฅ0
< 0
And if the second derivative also vanishes, we must examine the higher derivatives at x0. If all the
derivatives vanish at x0, so that V(x) is constant in a region about x0, then the particle is
effectively free. In such a situation no force results from a displacement (from x0 ) and the system
to be in state of neutral stability. Thus in neutral equilibrium,
(
๐‘‘2
๐‘‰
๐‘‘๐‘ฅ2
)๐‘ฅ0
= 0
3. The Stability of a Simple Pendulum (One Dimensional Oscillator)-
Let m be the mass of the bob of a pendulum and l be its length. The zero of the potential energy
scale is taken at the bottom of the swing.
If ำจ be its angular deflection, then the potential energy is given by,
๐‘‰(๐œƒ) = ๐‘š๐‘”๐‘™(1 โˆ’ ๐ถ๐‘œ๐‘ ๐œƒ)โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (i)
where g is the acceleration due to gravity.
The equilibrium position of the pendulum is given by,
๐‘‘๐‘‰
๐‘‘๐œƒ
= ๐‘š๐‘”๐‘™ ๐‘†๐‘–๐‘›๐œƒ = 0
๐‘–. ๐‘’. ำจ = ๐‘’๐‘–๐‘กโ„Ž๐‘’๐‘Ÿ 0 ๐‘œ๐‘Ÿ ๐œ‹
Now, we have
๐‘‘2
๐‘‰
๐‘‘๐œƒ2
= ๐‘š๐‘”๐‘™ ๐ถ๐‘œ๐‘ ๐œƒ
Now, (
๐‘‘2๐‘‰
๐‘‘๐œƒ2)๐œƒ=0 > 0, and it corresponds to the position of stable equilibrium.
(
๐‘‘2๐‘‰
๐‘‘๐œƒ2)๐œƒ=๐œ‹ < 0, and it corresponds to the position of unstable equilibrium.
Therefore ำจ=0 is the position of stable equilibrium at which the bob can hang
for an indefinite period, which is not at all possible at the position of unstable equilibrium at ๐œƒ =
๐œ‹. The pendulum can therefore oscillate only about the position of stable equilibrium (ำจ=0).
4. General Problem of Small Oscillation-
a) Formulation of the Problem-
In tackling the general problem of small oscillations we perform an appropriate simplification of
Lagrangian method. We know that the oscillations whether large or small take place about a
position of equilibrium. Thus a pendulum oscillates about a verticval which is its stable
equilibrium position. When the pendulum is deflected from the stable position a restoring force
acts on the pendulum in a direction opposite to the direction of deflection. In the equilibrium
position this force is zero.
We now suppose that the force is acting on a system which is wholly
conservative and hence it is derivable from potential. In the equilibrium condition of the system
the generalized force Qi will be equal to zero.
The potential energy is a function of position only i.e., the generalized co-ordinates
q1,q2,q3,q4,โ€ฆโ€ฆโ€ฆโ€ฆ.,qn. Hence,
(
๐œ•๐‘‰
๐œ•๐‘ž๐‘–
)
0
= 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (๐‘–)
Let us denote the deviation of the generalized co-ordinates from equilibrium by ฮทi.
Therefore, ๐‘ž๐‘– = ๐‘ž0๐‘– + ๐œ‚๐‘– ๐‘œ๐‘Ÿ, ๐œ‚๐‘– = ๐‘ž๐‘– โˆ’ ๐‘ž0๐‘–โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.......(ii)
q0i denotes the equilibrium position of the co-ordinate system.
Expanding the potential V (q1,q2,q3,q4,โ€ฆโ€ฆโ€ฆโ€ฆ.,qn ) in Taylorโ€™s series about q0i we may write,
๐‘‰ (๐‘ž1, ๐‘ž2, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž๐‘›)
= ๐‘‰(๐‘ž01, ๐‘ž02, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž0๐‘›) + โˆ‘ (
๐œ•๐‘‰
๐œ•๐‘ž๐‘–
)
0
๐‘›
๐‘–
๐œ‚๐‘– +
1
2
โˆ‘ โˆ‘ (
๐œ•2
๐‘‰
๐œ•๐‘ž๐‘–๐œ•๐‘ž๐‘—
)
0
๐œ‚๐‘–
๐‘›,๐‘›
๐‘–,๐‘—
๐œ‚๐‘— + โ‹ฏ
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(iii)
The first term on the right hand side of the equation is constant and hence may be taken to be
equal to zero and the second term vanishes due to equation (i). So the first approximation we may
write,
๐‘‰ (๐‘ž1, ๐‘ž2, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž๐‘›) =
1
2
โˆ‘ โˆ‘ (
๐œ•2
๐‘‰
๐œ•๐‘ž๐‘–๐œ•๐‘ž๐‘—
)
0
๐œ‚๐‘–
๐‘›,๐‘›
๐‘–,๐‘—
๐œ‚๐‘— โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (๐‘–๐‘ฃ)
Writing Vij for (
๐œ•2๐‘‰
๐œ•๐‘ž๐‘–๐œ•๐‘ž๐‘—
)
0
we get,
๐‘‰ (๐‘ž1, ๐‘ž2, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž๐‘›) =
1
2
โˆ‘ โˆ‘ ๐‘‰๐‘–๐‘—
๐‘–,๐‘—
๐œ‚๐‘–๐œ‚๐‘— โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐‘ฃ)
We shall now examine the expression for kinetic energy of the system of particles which is given
by,
๐‘‡ = โˆ‘ โˆ‘
1
2
๐‘š๐‘–๐‘—๐‘žฬ‡๐‘–๐‘žฬ‡๐‘—
๐‘–,๐‘—
Here, ๐‘š๐‘–๐‘— = ๐‘š๐‘—๐‘–, ๐‘–. ๐‘’. ๐‘š๐‘–๐‘— form a symmetric matrix. From Taylorโ€™s series we may write,
๐‘š๐‘–๐‘—(๐‘ž1, ๐‘ž2, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž๐‘›) = ๐‘š๐‘—๐‘–(๐‘ž01, ๐‘ž02, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž0๐‘›) + โˆ‘(
๐œ•๐‘š๐‘–๐‘—
๐œ•๐‘ž๐‘˜
)0
๐‘˜
๐œ‚๐‘˜ + โ‹ฏ
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(vi)
Hence the kinetic energy becomes
๐‘‡ =
1
2
{๐‘š๐‘–๐‘—(๐‘ž01, ๐‘ž02, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž0๐‘›) + โˆ‘ (
๐œ•๐‘š๐‘–๐‘—
๐œ•๐‘ž๐‘˜
)
0
๐‘˜
๐œ‚๐‘˜ + โ‹ฏ }๐œ‚ฬ‡๐‘–๐œ‚ฬ‡๐‘—
This equation is quadratic in ๐œ‚ฬ‡๐‘–โ€™s and the lowest non-vanishing approximation to T is obtained by
dropping all the terms on the right hand side of the above equation except the first term.
Therefore,
๐‘‡ =
1
2
โˆ‘ โˆ‘ ๐‘š๐‘–๐‘—(๐‘ž01, ๐‘ž02, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž0๐‘›)๐œ‚ฬ‡๐‘–๐œ‚ฬ‡๐‘— =
1
2
โˆ‘ โˆ‘ ๐‘‡๐‘–๐‘— ๐œ‚ฬ‡๐‘–๐œ‚ฬ‡๐‘—
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(vii)
Here the constant value of mij at equilibrium is denoted by Tij.
Hence the Lagrangian function is,
๐ฟ = ๐‘‡ โˆ’ ๐‘‰ =
1
2
โˆ‘ โˆ‘(๐‘‡๐‘–๐‘—
๐‘–,๐‘—
๐œ‚ฬ‡๐‘–๐œ‚ฬ‡๐‘— โˆ’ ๐‘‰๐‘–๐‘—๐œ‚๐‘–๐œ‚๐‘—)
Thus the n-equations of motion derived from the function L is
๐‘‘
๐‘‘๐‘ก
(
๐œ•๐ฟ
๐œ•๐œ‚ฬ‡๐‘–
) โˆ’ (
๐œ•๐ฟ
๐œ•๐œ‚๐‘–
) = 0 (๐‘– = 1,2,3, โ€ฆ . . , ๐‘›)
๐‘œ๐‘Ÿ, โˆ‘ ๐‘‡๐‘–๐‘— ๐œ‚ฬˆ๐‘— + โˆ‘ ๐‘‰๐‘–๐‘—๐œ‚๐‘— = 0โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(viii)
In the above equation both Tij and Vij have symmetric properties.
We can write this equation in the following matrix form,
๐‘‡๐œ‚ฬˆ + ๐‘‰๐œ‚ = 0โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...............โ€ฆโ€ฆ..(ix)
where ๐‘‡ = (
๐‘‡11 ๐‘‡12 โ€ฆ ๐‘‡1๐‘›
๐‘‡21 ๐‘‡22 โ€ฆ ๐‘‡2๐‘›
โ€ฆ โ€ฆ โ€ฆ โ€ฆ
๐‘‡๐‘›1 ๐‘‡๐‘›2 โ€ฆ ๐‘‡๐‘›๐‘›
) ; ๐‘‰ = (
๐‘‰11 ๐‘‰12 โ€ฆ ๐‘‰1๐‘›
๐‘‰21 ๐‘‰22 โ€ฆ ๐‘‰2๐‘›
โ€ฆ โ€ฆ โ€ฆ โ€ฆ
๐‘‰๐‘›1 ๐‘‰๐‘›2 โ€ฆ ๐‘‰
๐‘›๐‘›
) ; ๐œ‚ = (
๐œ‚1
๐œ‚2
โ‹ฎ
๐œ‚๐‘›
)
Here T denotes the inertial coefficient matrix and V the stiffness coefficient matrix. V plays the
role of restoring force which tends to bring the system to the position of equilibrium which may
be called restoring tensor.
b) Eigen Value Problem and Normalization-
For similarity to the equation of simple harmonic oscillator, we try an oscillator solution of
equation (viii) in the form,
๐œ‚๐‘— = ๐‘Ž๐‘—๐‘’๐‘–๐œ”๐‘ก
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(x)
The idea behind the above trial solution is that ฯ‰ is independent of j, i.e. all the co-ordinates are
assumed to execute SHM with same period but different amplitude (and either in-phase or out-of-
phase only, depending on the sign of aj ). aj are in general complex and only the real parts of them
correspond to the actual motion. Putting equation (x) in equation (viii) we get,
โˆ‘(๐‘‰๐‘–๐‘— โˆ’ ๐œ”2
๐‘‡๐‘–๐‘—)๐‘Ž๐‘— = 0
๐‘—
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(xi)
(๐‘– = 1,2,3, โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ , ๐‘›)
which is a set of n linear homogeneous equations for
the ajโ€™s and consequently for a non-trivial solution (i.e., not all aj =0) the determinant of the
coefficients must vanish i.e. โŽน๐‘‰๐‘–๐‘— โˆ’ ๐œ”2
๐‘‡๐‘–๐‘—โŽน = 0
๐‘œ๐‘Ÿ, |
๐‘‰11 โˆ’ ๐œ”2
๐‘‡11 โ€ฆ โ€ฆ ๐‘‰1๐‘› โˆ’ ๐œ”2
๐‘‡1๐‘›
โ‹ฎ โ‹ฎ
โ‹ฎ โ‹ฎ
๐‘‰๐‘›1 โˆ’ ๐œ”2
๐‘‡๐‘›1 โ€ฆ โ€ฆ ๐‘‰
๐‘›๐‘› โˆ’ ๐œ”2
๐‘‡๐‘›๐‘›
| = 0
....................................... (xii)
This is called the secular determinant. This determinant condition is an algebraic equation of nth
degree for ๐œ”2
and hence provides n- values of ๐œ”2
for which equation (x) represents the correct
solutions to the equations of motion. For each of these values of ๐œ”2
the equation (xi) may be
solved for the amplitudes or more precisely for (n-1) of the amplitudes in terms of the remaining
one. This is due to the fact that the coefficient aj are determined only up to a common multiplier.
This is apparent from equation (xi). Thus the ratios of ajโ€™s are definite (for a particular frequency)
but not their absolute values. This arbitrariness in the values of aj will be utilized in the
normalization procedure.
Since there exist n values of ๐œ”๐‘˜, we also get n- set of values of
amplitudes. Each of these set (i.e., n- values of ajโ€™s corresponding to a particular frequency(๐œ”๐‘˜)
can be considered to define the components of a n- dimensional vector ๐‘Ž
โƒ—๐‘˜. This ๐‘Ž
โƒ—๐‘˜ is called the
eigen vector of the system associated with the eigen frequency๐œ”๐‘˜. The symbol ajk may now be
used to represent the j-th component of the k-th eigen vector. Using the principle of
superposition, the general solution may now be written as,
๐œ‚๐‘—(๐‘ก) = โˆ‘ ๐‘Ž๐‘—๐‘˜๐‘’๐‘–๐œ”๐‘˜๐‘ก
๐‘˜
....................................... (xiii)
where motion of each ฮทj is compounded of motions with each of the n values of frequencies ๐œ”๐‘˜.
The actual motion is the real part of the complex equation (xiii) which can be expressed as,
๐œ‚๐‘—(๐‘ก) = โˆ‘ ๐‘Ž๐‘—๐‘˜ ๐ถ๐‘œ๐‘ (
๐‘˜
๐œ”๐‘˜๐‘ก + ๐œ™๐‘˜)
The motion is oscillatory about the stable equilibrium position only for ๐œ”๐‘˜
2
> 0. If two or more
values of ๐œ”๐‘˜ happen to be the same, then the phenomenon is known as degeneracy.
c) Orthogonality of Eigenvectors-
Equation (xi) represents a special type of eigen value equation as,
๐‘ฝ๐’‚ = ๐€๐‘ป๐’‚ ..........................................(xiv) with ๐œ”2
= ๐œ†
where the matrix V,T and a are
๐‘ฝ = (
๐‘‰11 ๐‘‰12 โ€ฆ ๐‘‰1๐‘›
๐‘‰21 ๐‘‰22 โ€ฆ ๐‘‰2๐‘›
โ€ฆ โ€ฆ โ€ฆ โ€ฆ
๐‘‰๐‘›1 ๐‘‰๐‘›2 โ€ฆ ๐‘‰
๐‘›๐‘›
), ๐‘ป = (
๐‘‡11 ๐‘‡12 โ€ฆ ๐‘‡1๐‘›
๐‘‡21 ๐‘‡22 โ€ฆ ๐‘‡2๐‘›
โ€ฆ โ€ฆ โ€ฆ โ€ฆ
๐‘‡๐‘›1 ๐‘‡๐‘›2 โ€ฆ ๐‘‡๐‘›๐‘›
), ๐’‚ = (
๐‘Ž1
๐‘Ž2
โ‹ฎ
๐‘Ž๐‘›
)
In ordinary eigenvalue problem, ๐‘ฝ๐’‚ = ๐œ†๐’‚ i.e. the effect of V on eigenvector a is just to generate a
vector which is ๐œ† times a, ๐œ† being a scalar. Here, however, V acting on a, generates a multiple (๐œ†)
of the result of T acting on a.
A typical equation for the eigenvalue ๐œ†๐‘˜ can be written from equation (xiv) as,
โˆ‘ ๐‘‰๐‘–๐‘—๐‘Ž๐‘—๐‘˜ = ๐œ†๐‘˜ โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜
๐‘—
๐‘—
......................................(xv)
The complex conjugate of similar equation for ฮปl gives,
โˆ‘ ๐‘‰๐‘–๐‘—๐‘Ž๐‘–๐‘™
โˆ—
= ๐œ†๐‘™
โˆ—
โˆ‘ ๐‘‡๐‘–๐‘—
๐‘—
๐‘—
๐‘Ž๐‘–๐‘™
โˆ—
.........................................(xvi)
(since Vij and Tij are real and also symmetric)
Multiplying equation (xv) by ๐‘Ž๐‘–๐‘™
โˆ—
and summing over i and multiplying equation (xvi) by ajk and
summing over j, and next subtracting the latter from the former, we get
(๐œ†๐‘˜ โˆ’ ๐œ†๐‘™
โˆ—
) โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜
๐‘–๐‘—
๐‘Ž๐‘–๐‘™
โˆ—
= 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐‘ฅ๐‘ฃ๐‘–๐‘–)
๐‘œ๐‘Ÿ, (๐œ†๐‘˜ โˆ’ ๐œ†๐‘˜
โˆ—
) โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜
๐‘–๐‘—
๐‘Ž๐‘–๐‘˜
โˆ—
= 0
............................................(xviii) for l=k
Now, ๐‘Ž๐‘—๐‘˜ = ๐›ผ๐‘—๐‘˜ + ๐‘–๐›ฝ๐‘—๐‘˜ as ajk is complex.
and
โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜๐‘Ž๐‘–๐‘˜
โˆ—
= โˆ‘ ๐‘‡๐‘–๐‘—๐›ผ๐‘—๐‘˜
๐‘–๐‘—
๐›ผ๐‘–๐‘˜ + โˆ‘ ๐‘‡๐‘–๐‘—๐›ฝ๐‘—๐‘˜
๐‘–๐‘—
๐›ฝ๐‘–๐‘˜ + ๐‘– โˆ‘ ๐‘‡๐‘–๐‘—(๐›ฝ๐‘—๐‘˜๐›ผ๐‘–๐‘˜ โˆ’ ๐›ผ๐‘—๐‘˜๐›ฝ๐‘–๐‘˜) โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (๐‘ฅ๐‘–๐‘ฅ)
Tij being symmetric, the interchange of dummy indices i and j changes sign
of the third summation on the right. Therefore, the imaginary term vanishes in equation (xix) and
the two real sums are twice the kinetic energy when the velocities ๐œ‚ฬ‡๐‘– have values ๐›ผ๐‘–๐‘˜ and ๐›ฝ๐‘–๐‘˜
respectively. The kinetic energy can never be zero for real velocities. Thus, the eigenvalues ๐œ†๐‘˜
must be real.
Eigenvalues and eigenvectors being real, the equation (xvii) may be written as
(๐œ†๐‘˜ โˆ’ ๐œ†๐‘™) โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜
๐‘–๐‘—
๐‘Ž๐‘–๐‘™ = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (๐‘ฅ๐‘ฅ)
When the roots of the characteristic equation (xii) are all distinct, ๐œ†๐‘˜ โ‰  ๐œ†๐‘™, we shall get,
โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜ ๐‘Ž๐‘–๐‘™ = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐‘ฅ๐‘ฅ๐‘–)(๐‘“๐‘œ๐‘Ÿ ๐‘™ โ‰  ๐‘˜)
This shows that the eigenvectors are orthogonal.
The eigenvalue equation (xi) canโ€™t completely fix the values of ajk, as has already been stated. The
uncertainty can however be removed be removed by setting, purely arbitrarily,
โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜
๐‘–๐‘—
๐‘Ž๐‘–๐‘˜ = 1 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐‘ฅ๐‘ฅ๐‘–๐‘–)(๐‘“๐‘œ๐‘Ÿ ๐‘™ = ๐‘˜)
Each of n such equations uniquely fix the arbitrary component in each eigenvector
(corresponding to a given eigenfrequency). Combining the equations (xxi) and (xxii), we get
โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜
๐‘–๐‘—
๐‘Ž๐‘–๐‘˜ = ๐›ฟ๐‘™๐‘˜
๐‘–. ๐‘’. ๐’‚
ฬƒ๐‘ป๐’‚ = ๐‘ฐ................................(xxiii)
where ๐’‚
ฬƒ being the transpose of a.
Introducing a diagonal matrix ฮป with elements ๐œ†๐‘™๐‘˜ = ๐œ†๐‘˜๐›ฟ๐‘™๐‘˜, the eigenvalue equation (xv) becomes
โˆ‘ ๐‘‰๐‘–๐‘—๐‘Ž๐‘—๐‘˜ = ๐œ†๐‘˜ โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜
๐‘—
๐‘—
= โˆ‘ ๐‘‡๐‘–๐‘—
๐‘—๐‘–
๐‘Ž๐‘—๐‘™๐œ†๐‘™๐‘˜
๐‘–. ๐‘’. ๐‘ฝ๐’‚ = ๐‘ป๐’‚๐œ† โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (๐‘ฅ๐‘ฅ๐‘–๐‘ฃ)
Therefore, ๐’‚
ฬƒ๐‘ฝ๐’‚ = ๐’‚
ฬƒ๐‘ป๐’‚๐œ† = ๐œ†..........................(xxv)
This shows that the matrix a diagonalises both T and V simultaneously.
d) Normal co-ordinates-
The normalization of ajk leaves no ambiguity in the solution for ๐œ‚๐‘—. To remove the loss of
generality due to the introduction of arbitrary normalization, a scalar factor ฮฒk may be used when
the equation (xiii) becomes
๐œ‚๐‘—(๐‘ก) = โˆ‘ ๐‘Ž๐‘—๐‘˜๐›ฝ๐‘˜๐‘’๐‘–๐œ”๐‘˜๐‘ก
= โˆ‘ ๐‘Ž๐‘—๐‘˜๐‘„๐‘˜ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐‘ฅ๐‘ฅ๐‘ฃ๐‘–)
๐‘˜
๐‘˜
where ๐‘„๐‘˜ = ๐›ฝ๐‘˜๐‘’๐‘–๐œ”๐‘˜๐‘ก
............................(xxvii)
Therefore, ๐œผ
ฬƒ = ๐’‚
ฬƒ๐‘ธ
ฬƒ..........................(xxviii)
Equation (xxvii) shows that Qk oscillates with one frequency only, called normal frequency,
namely ๐œ”๐‘˜. These Qkโ€™s are called the normal co-ordinates of the system. The normal co-ordinates
are thus defined as the generalized co-ordinates where each one of them executes oscillations
with a single frequency. If expressed in terms of normal co-ordinates, potential energy and kinetic
energy take rather simple forms as given below,
๐‘ƒ. ๐ธ. = ๐‘‰ =
1
2
โˆ‘ ๐œ‚๐‘–๐‘‰๐‘–๐‘—๐œ‚๐‘— =
1
2
๐‘–๐‘—
๐œผ
ฬƒ๐‘ฝ๐œผ =
1
2
๐‘„
ฬƒ๐’‚
ฬƒ๐‘ฝ๐’‚๐‘„ =
1
2
๐‘„
ฬƒ๐œ†๐‘„
=
1
2
โˆ‘ ๐‘„๐‘™๐œ†๐‘™๐‘˜๐‘„๐‘˜
๐‘™๐‘˜
=
1
2
โˆ‘ ๐‘„๐‘™๐œ†๐‘˜๐›ฟ๐‘™๐‘˜๐‘„๐‘˜ =
๐‘™๐‘˜
1
2
โˆ‘ ๐œ”๐‘˜
2
๐‘„๐‘˜
2
๐‘˜
โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (๐‘ฅ๐‘ฅ๐‘–๐‘ฅ)
(using equations (xxviii) and (xxv))
๐พ. ๐ธ = ๐‘‡ =
1
2
โˆ‘ ๐œ‚ฬ‡๐‘–๐‘‡๐‘–๐‘—
๐‘–๐‘—
๐œ‚ฬ‡๐‘— =
1
2
๐œ‚ฬ‡
ฬƒ๐‘‡๐œ‚ฬ‡ =
1
2
๐‘„ฬ‡
ฬƒ๐’‚
ฬƒ๐‘ป๐’‚๐‘„ฬ‡ =
1
2
๐‘„ฬ‡
ฬƒ๐‘„ฬ‡ =
1
2
โˆ‘ ๐‘„ฬ‡๐‘˜
2
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (๐‘ฅ๐‘ฅ๐‘ฅ)
๐‘˜
So, the new Lagrangian is,
๐ฟ = ๐‘‡ โˆ’ ๐‘‰ =
1
2
โˆ‘(๐‘„ฬ‡๐‘˜
2
โˆ’
๐‘˜
๐œ”๐‘˜
2
๐‘„๐‘˜
2
) โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (๐‘ฅ๐‘ฅ๐‘ฅ๐‘–)
Therefore, the Lagrangeโ€™s equation of motion are given by,
๐‘‘
๐‘‘๐‘ก
(
๐œ•๐ฟ
๐œ•๐‘„ฬ‡๐‘˜
) โˆ’
๐œ•๐ฟ
๐œ•๐‘„
= 0
๐‘œ๐‘Ÿ, ๐‘„ฬˆ๐‘˜ + ๐œ”๐‘˜
2
๐‘„๐‘˜ = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐‘ฅ๐‘ฅ๐‘ฅ๐‘–๐‘–) (k=1,2,3......)
This is the set of n-independent equations of SHM with single normal frequency ๐œ”๐‘˜.
The solution of the equation (xxxii) is given by,
๐‘„๐‘˜ = ๐‘Ž๐‘˜๐ถ๐‘œ๐‘ (๐œ”๐‘˜๐‘ก) + ๐‘๐‘˜๐‘†๐‘–๐‘›(๐œ”๐‘˜๐‘ก), ๐‘คโ„Ž๐‘’๐‘› ๐œ”๐‘˜
2
> 0
๐‘„๐‘˜ = ๐‘Ž๐‘˜๐‘ก + ๐‘๐‘˜๐‘ก, ๐‘คโ„Ž๐‘’๐‘› ๐œ”๐‘˜
2
= 0
๐‘„๐‘˜ = ๐‘Ž๐‘˜๐‘’๐œ”๐‘˜๐‘ก
+ ๐‘๐‘˜๐‘’โˆ’๐œ”๐‘˜๐‘ก
, ๐‘คโ„Ž๐‘’๐‘› ๐œ”๐‘˜
2
< 0
For ๐œ”๐‘˜
2
> 0, the co-ordinates always remain finite. Such solutions refer to stable
equilibrium. For ๐œ”๐‘˜
2
= 0 and ๐œ”๐‘˜
2
< 0, the co-ordinates become infinite as time advances and
such solutions refer to unstable equilibrium.
e) Normal co-ordinates Qk in terms of co-ordinates ฮทj
The complex quantity ฮฒk may be written as,
๐›ฝ๐‘˜ = ๐œ‡๐‘˜ + ๐‘–๐œˆ๐‘˜.................................................(xxxiii)
Therefore, equation (x) becomes,
๐œ‚๐‘—(๐‘ก) = โˆ‘ ๐‘Ž๐‘—๐‘˜(
๐‘˜
๐œ‡๐‘˜ + ๐‘–๐œˆ๐‘˜)๐‘’๐‘–๐œ”๐‘˜๐‘ก
............................(xxxiv)
On differentiating with respect to time we get,
๐œ‚
ฬ‡ ๐‘—(๐‘ก) = โˆ‘ ๐‘–๐œ”๐‘˜๐‘Ž๐‘—๐‘˜(
๐‘˜
๐œ‡๐‘˜ + ๐‘–๐œˆ๐‘˜)๐‘’๐‘–๐œ”๐‘˜๐‘ก
................................................(xxxv)
The real part of equation (xxxiv) gives at t=0,
๐œ‚๐‘—(0) = โˆ‘ ๐‘Ž๐‘—๐‘˜
๐‘˜
๐œ‡๐‘˜
............................................(xxxvi)
Multiplying throughout by Tjiair and summing over ij, and using equation (xxxvi), we get,
โˆ‘ ๐œ‚๐‘—(0)๐‘‡๐‘—๐‘–๐‘Ž๐‘–๐‘Ÿ = โˆ‘ ๐œ‡๐‘˜
๐‘˜
โˆ‘ ๐‘Ž๐‘—๐‘˜
๐‘–๐‘—
๐‘–๐‘—
๐‘‡๐‘—๐‘–๐‘Ž๐‘–๐‘Ÿ = โˆ‘ ๐œ‡๐‘˜๐›ฟ๐‘˜๐‘Ÿ = ๐œ‡๐‘Ÿ
๐‘˜
..........................(xxxvii)
Similarly, the real part of equation (xxxv) at t=0 gives,
๐œ‚ฬ‡๐‘—(0) = โˆ’ โˆ‘ ๐œ”๐‘˜
๐‘˜
๐œˆ๐‘˜๐‘Ž๐‘—๐‘˜
...................................(xxxviii)
Multiplying both sides by Tjiair and summing over ij, and using equation(xxxvi), we get,
โˆ‘ ๐œ‚ฬ‡๐‘—(0)๐‘‡๐‘—๐‘–๐‘Ž๐‘–๐‘Ÿ = โˆ’ โˆ‘ ๐œ”๐‘˜๐œˆ๐‘˜
๐‘˜
โˆ‘ ๐‘Ž๐‘—๐‘˜
๐‘–๐‘—
๐‘–๐‘—
๐‘‡๐‘—๐‘–๐‘Ž๐‘–๐‘Ÿ = โˆ’ โˆ‘ ๐œ”๐‘˜๐œˆ๐‘˜๐›ฟ๐‘˜๐‘Ÿ = โˆ’๐œ”๐‘Ÿ
๐‘˜
๐œˆ๐‘Ÿ
.......................(xxxix)
Thus, the normal co-ordinates Qr may be expressed as the real part of the expression in,
๐‘„๐‘Ÿ(๐‘ก) = ๐›ฝ๐‘Ÿ๐‘’๐‘–๐œ”๐‘Ÿ๐‘ก
= (๐œ‡๐‘Ÿ + ๐‘–๐œˆ๐‘Ÿ)๐‘’๐‘–๐œ”๐‘Ÿ๐‘ก
= โˆ‘ ๐‘‡๐‘—๐‘–๐‘Ž๐‘–๐‘Ÿ[
๐‘–๐‘—
๐œ‚๐‘—(0) โˆ’
๐‘–
๐œ”๐‘Ÿ
๐œ‚ฬ‡๐‘—(0)]๐‘’๐‘–๐œ”๐‘Ÿ๐‘ก
Therefore, for any arbitrary ๐œ‚๐‘—(0) and ๐œ‚ฬ‡๐‘—(0), a set of normal co-ordinates Qr may be found, each
of which varies harmonically with single frequency ๐œ”๐‘Ÿ.
f) Energy in normal co-ordinates
Here,
๐‘‰ =
1
2
โˆ‘ ๐œ”๐‘˜
2
๐‘„๐‘˜
2
๐‘˜ and ๐‘‡ =
1
2
โˆ‘ ๐‘„ฬ‡๐‘˜
2
๐‘˜
So, total mechanical energy E, in normal co-ordinates, is given by,
๐ธ = ๐‘‡ + ๐‘‰ =
1
2
โˆ‘(๐‘„ฬ‡๐‘˜
2
+ ๐œ”๐‘˜
2
๐‘„๐‘˜
2
)
๐‘˜
This is true for small oscillations with any number n of degrees of freedom.
Examples-
1. The potential energy V(x) of a particle is given by,
๐‘‰(๐‘ฅ) = 3๐‘ฅ4
โˆ’ 8๐‘ฅ3
โˆ’ 6๐‘ฅ2
+ 24๐‘ฅ
Determine the points of stable and unstable equilibrium.
Solution-
For the points of equilibrium(๐‘‘๐‘‰/๐‘‘๐‘ฅ) = 0. Since, we have
๐‘‰(๐‘ฅ) = 3๐‘ฅ4
โˆ’ 8๐‘ฅ3
โˆ’ 6๐‘ฅ2
+ 24๐‘ฅ
So,
๐‘‘๐‘‰
๐‘‘๐‘ฅ
= 12๐‘ฅ3
โˆ’ 24๐‘ฅ2
โˆ’ 12๐‘ฅ + 24
At the points of equilibrium, therefore, 12๐‘ฅ3
โˆ’ 24๐‘ฅ2
โˆ’ 12๐‘ฅ + 24 = 0
๐‘œ๐‘Ÿ, ๐‘ฅ3
โˆ’ 2๐‘ฅ2
โˆ’ ๐‘ฅ + 2 = 0
๐‘œ๐‘Ÿ, (๐‘ฅ + 1)(๐‘ฅ โˆ’ 1)(๐‘ฅ โˆ’ 2) = 0
Therefore, the points of equilibrium are
x= -1,1 and 2.
To test the stability of equilibrium at those points, we find
๐‘‘2๐‘‰
๐‘‘๐‘ฅ2 at the points and if it is positive, the
equilibrium is stable; if negative, it is unstable.
Now,
๐‘‘2๐‘‰
๐‘‘๐‘ฅ2 = 36๐‘ฅ2
โˆ’ 48๐‘ฅ โˆ’ 12
So, (
๐‘‘2๐‘‰
๐‘‘๐‘ฅ2)
๐‘ฅ=โˆ’1
= 72 (๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘ฃ๐‘’)
(
๐‘‘2
๐‘‰
๐‘‘๐‘ฅ2)
๐‘ฅ=1
= โˆ’24 (๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’)
(
๐‘‘2
๐‘‰
๐‘‘๐‘ฅ2)
๐‘ฅ=2
= 36 (๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘ฃ๐‘’)
Therefore, equilibrium are stable at x = -1 and x = 2; unstable at x = 1.
2. Consider two identical simple harmonic oscillators coupled together. Their K.E. and P.E. are
given by ๐‘‡ =
1
2
๐‘š(๐‘žฬ‡1
2
+ ๐‘žฬ‡2
2
) and ๐‘‰ =
1
2
๐‘˜(๐‘ž1
2
+ ๐‘ž2
2) โˆ’ โ„Ž๐‘ž1๐‘ž2
(i) Find the Hamiltonian of the system.
(ii) Fine the frequencies for normal modes and the ratio of the amplitudes of each of the
coordinates q1 and q2 in those modes.
(iii) Introduce the normal coordinates and thereby set up the corresponding Lagrangeโ€™s
equation.
Solution-
(i) Here, V is independent of the velocity, so it represents a conservative system.
Thus the Hamiltonian is given by,
๐ป = ๐‘‡ + ๐‘‰ =
1
2
๐‘š(๐‘žฬ‡1
2
+ ๐‘žฬ‡2
2) +
1
2
๐‘˜(๐‘ž1
2
+ ๐‘ž2
2) โˆ’ โ„Ž๐‘ž1๐‘ž2
(ii) Here, Lagrangian is
๐ฟ = ๐‘‡ โˆ’ ๐‘‰ =
1
2
๐‘š(๐‘žฬ‡1
2
+ ๐‘žฬ‡2
2) โˆ’
1
2
๐‘˜(๐‘ž1
2
+ ๐‘ž2
2) + โ„Ž๐‘ž1๐‘ž2....................(i)
Now, we get,
๐œ•๐ฟ
๐œ•๐‘žฬ‡1
= ๐‘š๐‘žฬ‡1
โˆ’
๐œ•๐ฟ
๐œ•๐‘ž1
= ๐‘˜๐‘ž1 โˆ’ โ„Ž๐‘ž2
๐œ•๐ฟ
๐œ•๐‘žฬ‡2
= ๐‘š๐‘žฬ‡2
โˆ’
๐œ•๐ฟ
๐œ•๐‘ž2
= ๐‘˜๐‘ž2 โˆ’ โ„Ž๐‘ž1
Putting these values in equation (i) we get,
๐‘š๐‘žฬˆ1 + ๐‘˜๐‘ž1 โˆ’ โ„Ž๐‘ž2 = 0...................(ii)
๐‘š๐‘žฬˆ2 + ๐‘˜๐‘ž1 โˆ’ โ„Ž๐‘ž2 = 0...................(iii)
Let ๐‘ž1 = ๐ด1๐‘’๐‘–๐œ”๐‘ก
. Putting this value in equation (ii) we get,
๐ด1(๐‘˜ โˆ’ ๐œ”2
๐‘š) โˆ’ ๐ด2โ„Ž = 0
Again, let ๐‘ž2 = ๐ด2๐‘’๐‘–๐œ”๐‘ก
. Putting this value in equation (iii) we get,
โˆ’๐ด1โ„Ž + ๐ด2(๐‘˜ โˆ’ ๐œ”2
๐‘š) = 0
For non-zero solution, we must have the determinant,
|๐‘˜ โˆ’ ๐œ”2
๐‘š โˆ’โ„Ž
โˆ’โ„Ž ๐‘˜ โˆ’ ๐œ”2
๐‘š
| = 0
๐‘œ๐‘Ÿ, (๐‘˜ โˆ’ ๐œ”2
๐‘š)2
โˆ’ โ„Ž2
= 0
๐‘œ๐‘Ÿ, ๐‘˜ โˆ’ ๐œ”2
๐‘š = ยฑโ„Ž
Therefore, ๐œ”2
= (๐‘˜ โˆ“ โ„Ž)
So, ๐œ”1 = โˆš
(๐‘˜โˆ’โ„Ž)
๐‘š
, ๐œ”2 = โˆš
(๐‘˜+โ„Ž)
๐‘š
Now,
๐ด2
๐ด1
=
(๐‘˜โˆ’๐œ”1
2
๐‘š)
โ„Ž
๐‘œ๐‘Ÿ,
(๐‘˜โˆ’๐œ”2
2
๐‘š)
โ„Ž
(iii) Let the normal coordinates are ๐‘„๐‘– = ๐ด๐‘–๐‘’๐‘–๐œ”๐‘–๐‘ก
Differentiating with respect to t we get,
๐‘„ฬˆ๐‘– + ๐œ”๐‘–
2
๐‘„๐‘– = 0, ๐‘– = 1,2.
Thus Lagrangeโ€™s equation is,
๐ฟ๐‘– =
1
2
๐‘„ฬ‡๐‘–
2
โˆ’
1
2
๐œ”๐‘–๐‘„๐‘–
2
Exercise-
1. The potential energy of a particle is given by
๐‘‰(๐‘ฅ) = ๐‘ฅ4
โˆ’ 4๐‘ฅ3
โˆ’ 8๐‘ฅ2
+ 48๐‘ฅ
Find the points of stable and unstable equilibrium. (KNU-2019)
2. Discuss the general theory of small oscillation of a system to obtain the equation of motion near
its equilibrium position. How the eigen frequencies of the system can be obtained for such a
system. (KNU-2019)
3. What is normal mode and normal frequency? (KNU-2019)
4. Discuss the stability of a simple pendulum and show that it can oscillate only about the position
of its stable equilibrium.
5. Establish the relation
๐‘‡๐œ‚ฬˆ + ๐‘‰๐œ‚ = 0,for small oscillations of a system, the symbols
having their usual meanings.
6. A particle moves in potential energy given by
๐‘‰(๐‘ฅ) = ๐‘๐‘ฅ2
+
๐‘Ž
๐‘ฅ2, a,b>0. Show that its frequency of oscillation is โˆš
8๐‘
๐‘š
.
7. What is meant by equilibrium, stable and unstable equilibrium? Show that oscillations can occur
only about a stable equilibrium.
8. Write down the differences between stable and unstable equilibrium.
References-
1) S.N.Maithi & D.P.Raychaudhuri, Classical Mechanics and General Properties of Matter, New Age International Publishers,
2015
2) A.B.Gupta, Fundamentals of Classical Mechanics, 2nd
Edition, Books And Allied (P) Ltd. (2019)
3) A. Beiser, Perspective of Modern Physics, 3rd
Edition, New York, McGraw Hill (1969).
AJAY KUMAR SHARMA
Assistant Professor (Physics)
B.C.College, Asansol
Email-id- ajay888sharma@yahoo.co.in

More Related Content

What's hot

Part III - Quantum Mechanics
Part III - Quantum MechanicsPart III - Quantum Mechanics
Part III - Quantum MechanicsMaurice R. TREMBLAY
ย 
Simple harmonic oscillator - Classical Mechanics
Simple harmonic oscillator - Classical MechanicsSimple harmonic oscillator - Classical Mechanics
Simple harmonic oscillator - Classical MechanicsDebashis Baidya
ย 
Biot savart law &amp; amperes law
Biot savart law &amp; amperes lawBiot savart law &amp; amperes law
Biot savart law &amp; amperes lawAbbas Najam
ย 
Waves in One Dimension
Waves in One DimensionWaves in One Dimension
Waves in One DimensionBruce Coulter
ย 
Interference
InterferenceInterference
InterferenceBruce Coulter
ย 
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notesQuantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notespolariton
ย 
Moment of inertia
Moment of inertiaMoment of inertia
Moment of inertiaUsman Sajid
ย 
Ch 7 physical optics final
Ch 7 physical optics finalCh 7 physical optics final
Ch 7 physical optics finalanimesh samundh
ย 
Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.dhrubanka
ย 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximationZahid Mehmood
ย 
EPR paradox
EPR paradoxEPR paradox
EPR paradoxsurat murthy
ย 
Vectors - A Basic Study
Vectors - A Basic StudyVectors - A Basic Study
Vectors - A Basic StudyPankaj Bhootra
ย 
Planck constant using photoelectric effect
Planck constant using photoelectric effectPlanck constant using photoelectric effect
Planck constant using photoelectric effectSumayyahAta
ย 
2. tensor algebra jan 2013
2. tensor algebra jan 20132. tensor algebra jan 2013
2. tensor algebra jan 2013Olowosulu Emmanuel
ย 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
ย 
The wave equation
The wave equationThe wave equation
The wave equationDhaval Jalalpara
ย 
Biot and savarat law
Biot and savarat law Biot and savarat law
Biot and savarat law vicky vicky
ย 

What's hot (20)

Part III - Quantum Mechanics
Part III - Quantum MechanicsPart III - Quantum Mechanics
Part III - Quantum Mechanics
ย 
Simple harmonic oscillator - Classical Mechanics
Simple harmonic oscillator - Classical MechanicsSimple harmonic oscillator - Classical Mechanics
Simple harmonic oscillator - Classical Mechanics
ย 
Biot savart law &amp; amperes law
Biot savart law &amp; amperes lawBiot savart law &amp; amperes law
Biot savart law &amp; amperes law
ย 
Simple harmonic motion
Simple harmonic motionSimple harmonic motion
Simple harmonic motion
ย 
Waves in One Dimension
Waves in One DimensionWaves in One Dimension
Waves in One Dimension
ย 
Interference
InterferenceInterference
Interference
ย 
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notesQuantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
ย 
Lagrangian dynamics (CLASSICAL MECHANICS )
Lagrangian dynamics (CLASSICAL MECHANICS )Lagrangian dynamics (CLASSICAL MECHANICS )
Lagrangian dynamics (CLASSICAL MECHANICS )
ย 
Moment of inertia
Moment of inertiaMoment of inertia
Moment of inertia
ย 
Ch 7 physical optics final
Ch 7 physical optics finalCh 7 physical optics final
Ch 7 physical optics final
ย 
Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.
ย 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximation
ย 
EPR paradox
EPR paradoxEPR paradox
EPR paradox
ย 
LORENTZ TRANSFORMATION Pooja chouhan
LORENTZ TRANSFORMATION Pooja chouhanLORENTZ TRANSFORMATION Pooja chouhan
LORENTZ TRANSFORMATION Pooja chouhan
ย 
Vectors - A Basic Study
Vectors - A Basic StudyVectors - A Basic Study
Vectors - A Basic Study
ย 
Planck constant using photoelectric effect
Planck constant using photoelectric effectPlanck constant using photoelectric effect
Planck constant using photoelectric effect
ย 
2. tensor algebra jan 2013
2. tensor algebra jan 20132. tensor algebra jan 2013
2. tensor algebra jan 2013
ย 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
ย 
The wave equation
The wave equationThe wave equation
The wave equation
ย 
Biot and savarat law
Biot and savarat law Biot and savarat law
Biot and savarat law
ย 

Similar to small oscillations.pdf

Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillationsharshsharma5537
ย 
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)Pooja M
ย 
Chapter 5 - Oscillation.pptx
Chapter 5 - Oscillation.pptxChapter 5 - Oscillation.pptx
Chapter 5 - Oscillation.pptxPooja M
ย 
String theory basics
String theory basicsString theory basics
String theory basicsHassaan Saleem
ย 
Survey of the elementary principles
Survey of the elementary principles  Survey of the elementary principles
Survey of the elementary principles AmeenSoomro1
ย 
Physics Equilibrium
Physics EquilibriumPhysics Equilibrium
Physics Equilibriumwehaa
ย 
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
PHYSICS (CLASSS XII)  - Chapter 5 : OscillationsPHYSICS (CLASSS XII)  - Chapter 5 : Oscillations
PHYSICS (CLASSS XII) - Chapter 5 : OscillationsPooja M
ย 
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptx
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptxThe Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptx
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptxtsdalmutairi
ย 
Tutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdfTutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdfssuserfb9ae6
ย 
Reference_Material_Oscillations.pptx
Reference_Material_Oscillations.pptxReference_Material_Oscillations.pptx
Reference_Material_Oscillations.pptxNimishJain54
ย 
Magnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxMagnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxHassaan Saleem
ย 
MOTION OF A RIGID BODY IN SPACE
MOTION OF A RIGID BODY IN SPACEMOTION OF A RIGID BODY IN SPACE
MOTION OF A RIGID BODY IN SPACEAmenahGondal1
ย 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxHassaan Saleem
ย 
Damped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptxDamped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptxBrijeshMishra525980
ย 
Oscillation ppt
Oscillation ppt Oscillation ppt
Oscillation ppt AmeenSoomro1
ย 
Module-1-2.pptx
Module-1-2.pptxModule-1-2.pptx
Module-1-2.pptxRAMAKRISHNASEN1
ย 
simple harmonic motion
simple harmonic motionsimple harmonic motion
simple harmonic motionsaba majeed
ย 
Superposition of Harmonic Oscillator-1.docx
Superposition of Harmonic Oscillator-1.docxSuperposition of Harmonic Oscillator-1.docx
Superposition of Harmonic Oscillator-1.docxProfVilasShamraoPati
ย 
Equilibrium and Equation of Equilibrium:2D
Equilibrium and Equation of Equilibrium:2DEquilibrium and Equation of Equilibrium:2D
Equilibrium and Equation of Equilibrium:2Drasel2211
ย 

Similar to small oscillations.pdf (20)

Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillations
ย 
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
ย 
Chapter 5 - Oscillation.pptx
Chapter 5 - Oscillation.pptxChapter 5 - Oscillation.pptx
Chapter 5 - Oscillation.pptx
ย 
String theory basics
String theory basicsString theory basics
String theory basics
ย 
Survey of the elementary principles
Survey of the elementary principles  Survey of the elementary principles
Survey of the elementary principles
ย 
Physics Equilibrium
Physics EquilibriumPhysics Equilibrium
Physics Equilibrium
ย 
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
PHYSICS (CLASSS XII)  - Chapter 5 : OscillationsPHYSICS (CLASSS XII)  - Chapter 5 : Oscillations
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
ย 
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptx
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptxThe Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptx
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptx
ย 
Tutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdfTutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdf
ย 
Reference_Material_Oscillations.pptx
Reference_Material_Oscillations.pptxReference_Material_Oscillations.pptx
Reference_Material_Oscillations.pptx
ย 
Magnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxMagnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptx
ย 
MOTION OF A RIGID BODY IN SPACE
MOTION OF A RIGID BODY IN SPACEMOTION OF A RIGID BODY IN SPACE
MOTION OF A RIGID BODY IN SPACE
ย 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptx
ย 
Damped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptxDamped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptx
ย 
Oscillation ppt
Oscillation ppt Oscillation ppt
Oscillation ppt
ย 
Module-1-2.pptx
Module-1-2.pptxModule-1-2.pptx
Module-1-2.pptx
ย 
simple harmonic motion
simple harmonic motionsimple harmonic motion
simple harmonic motion
ย 
Superposition of Harmonic Oscillator-1.docx
Superposition of Harmonic Oscillator-1.docxSuperposition of Harmonic Oscillator-1.docx
Superposition of Harmonic Oscillator-1.docx
ย 
M.Sc. Phy SII UIV Quantum Mechanics
M.Sc. Phy SII UIV Quantum MechanicsM.Sc. Phy SII UIV Quantum Mechanics
M.Sc. Phy SII UIV Quantum Mechanics
ย 
Equilibrium and Equation of Equilibrium:2D
Equilibrium and Equation of Equilibrium:2DEquilibrium and Equation of Equilibrium:2D
Equilibrium and Equation of Equilibrium:2D
ย 

Recently uploaded

Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
ย 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
ย 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
ย 
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
ย 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
ย 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
ย 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
ย 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
ย 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
ย 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
ย 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
ย 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
ย 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
ย 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
ย 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
ย 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
ย 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
ย 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
ย 

Recently uploaded (20)

Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
ย 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
ย 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
ย 
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
ย 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
ย 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
ย 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
ย 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
ย 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
ย 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
ย 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
ย 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
ย 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
ย 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
ย 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
ย 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
ย 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...
ย 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
ย 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
ย 

small oscillations.pdf

  • 1. SEMESTER-VI PHYSICS-DSE: CLASSICAL DYNAMICS Small Amplitude Oscillations The theory of small oscillations was developed by Dโ€™ Alembert, Joseph-Louis Lagrange and other scientists. The study of the effect of all possible small perturbations to a dynamical system in mechanical equilibrium is known as small oscillations. The theory of small oscillations is widely used in different branches of physics viz. in acoustics, molecular spectra, coupled electric circuits etc. 1. Equilibrium and its types- Equilibrium is the condition of a system in which all the forces- internal as well as external, cancel out for some configuration of the system and unless the system is perturbed by an external agency, it stays indefinitely in that state. Equilibrium may be of following types- a) Static Equilibrium- Static equilibrium is a state of zero kinetic energy that continues indefinitely. In such equilibrium the immediate surroundings of the system does not change with time. Example- an object (e.g. book) lying still on a surface (e.g. table). b) Dynamic Equilibrium- Dynamic equilibrium is defined as the state when no net force acting on the system which continues with zero kinetic energy. In such equilibrium the immediate surroundings of the system change with time such that it exerts a balancing force on the system. Example- the charge neutrality of atoms. c) Stable Equilibrium- In stable equilibrium, if a small displacement is given, the system tends to return to the original equilibrium state. Example- the bob of a simple pendulum in equilibrium state. d) Unstable Equilibrium- In instable equilibrium, if a small displacement is given, the system does not return to the original equilibrium state. Example- a large sized stone lying on the upper edge of a cliff. e) Metastable Equilibrium- In metastable equilibrium, the system canโ€™t return to the original equilibrium configuration, if displaced sufficiently; for smaller displacement, however, it can return. Example- a balloon that explodes above a certain gas pressure. 2. Equilibrium state and stability of a system- Small Amplitude Oscillations: Minima of potential energy and points of stable equilibrium, expansion of the potential energy around minimum, small amplitude oscillations about the minimum, normal modes of oscillations example of N identical masses connected in a linear fashion to (N -1) - identical springs.
  • 2. In a conservative system the potential V is a function of position (qi) only and the system is said to be equilibrium when the generalized forces Qi acting on the system vanish. Therefore, ๐‘„๐‘– = โˆ’ ( ๐œ•๐‘‰ ๐œ•๐‘ž๐‘– ) 0 = 0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (i) i.e. the potential energy has an extremum ( maximum or minimum) at the equilibrium configuration of the system, ๐‘ž01, ๐‘ž02, ๐‘ž03, ๐‘ž04, โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž0๐‘› . When V is a minimum at equilibrium, any small deviation from this position means an increase in V and consequently decrease in kinetic energy T i.e., velocity v, in a conservative system and the body ultimately comes to rest, indicating the small bounded motion about the Vmin. Such equilibrium is known as the stable equilibrium. On the other hand, a small departure from Vmax results in decrease in V and increase in kinetic energy and velocity indefinitely, which corresponds to unstable motion. Thus the position of Vmax is the position of unstable equilibrium. Therefore oscillations always occur about a position of stable equilibrium i.e. about Vmin. Let V(max) be the potential energy function for a particle and also let the force F acting on the particle vanishes at x0 i.e. ๐น = โˆ’ ( ๐‘‘๐‘‰ ๐‘‘๐‘ฅ ) ๐‘ฅ0 = 0โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (ii) In that case x0 is the point of equilibrium. To test the stability of the equilibrium we must examine ๐‘‘2๐‘‰ ๐‘‘๐‘ฅ2 at x0. If the second derivative is positive, the equilibrium is stable. Thus in stable equilibrium, ( ๐‘‘2 ๐‘‰ ๐‘‘๐‘ฅ2 )๐‘ฅ0 > 0 If the second derivative is negative, the equilibrium is unstable. Thus in unstable equilibrium, ( ๐‘‘2 ๐‘‰ ๐‘‘๐‘ฅ2 )๐‘ฅ0 < 0 And if the second derivative also vanishes, we must examine the higher derivatives at x0. If all the derivatives vanish at x0, so that V(x) is constant in a region about x0, then the particle is effectively free. In such a situation no force results from a displacement (from x0 ) and the system to be in state of neutral stability. Thus in neutral equilibrium, ( ๐‘‘2 ๐‘‰ ๐‘‘๐‘ฅ2 )๐‘ฅ0 = 0
  • 3. 3. The Stability of a Simple Pendulum (One Dimensional Oscillator)- Let m be the mass of the bob of a pendulum and l be its length. The zero of the potential energy scale is taken at the bottom of the swing. If ำจ be its angular deflection, then the potential energy is given by, ๐‘‰(๐œƒ) = ๐‘š๐‘”๐‘™(1 โˆ’ ๐ถ๐‘œ๐‘ ๐œƒ)โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (i) where g is the acceleration due to gravity. The equilibrium position of the pendulum is given by, ๐‘‘๐‘‰ ๐‘‘๐œƒ = ๐‘š๐‘”๐‘™ ๐‘†๐‘–๐‘›๐œƒ = 0 ๐‘–. ๐‘’. ำจ = ๐‘’๐‘–๐‘กโ„Ž๐‘’๐‘Ÿ 0 ๐‘œ๐‘Ÿ ๐œ‹ Now, we have ๐‘‘2 ๐‘‰ ๐‘‘๐œƒ2 = ๐‘š๐‘”๐‘™ ๐ถ๐‘œ๐‘ ๐œƒ Now, ( ๐‘‘2๐‘‰ ๐‘‘๐œƒ2)๐œƒ=0 > 0, and it corresponds to the position of stable equilibrium. ( ๐‘‘2๐‘‰ ๐‘‘๐œƒ2)๐œƒ=๐œ‹ < 0, and it corresponds to the position of unstable equilibrium. Therefore ำจ=0 is the position of stable equilibrium at which the bob can hang for an indefinite period, which is not at all possible at the position of unstable equilibrium at ๐œƒ = ๐œ‹. The pendulum can therefore oscillate only about the position of stable equilibrium (ำจ=0). 4. General Problem of Small Oscillation- a) Formulation of the Problem- In tackling the general problem of small oscillations we perform an appropriate simplification of Lagrangian method. We know that the oscillations whether large or small take place about a position of equilibrium. Thus a pendulum oscillates about a verticval which is its stable equilibrium position. When the pendulum is deflected from the stable position a restoring force acts on the pendulum in a direction opposite to the direction of deflection. In the equilibrium position this force is zero.
  • 4. We now suppose that the force is acting on a system which is wholly conservative and hence it is derivable from potential. In the equilibrium condition of the system the generalized force Qi will be equal to zero. The potential energy is a function of position only i.e., the generalized co-ordinates q1,q2,q3,q4,โ€ฆโ€ฆโ€ฆโ€ฆ.,qn. Hence, ( ๐œ•๐‘‰ ๐œ•๐‘ž๐‘– ) 0 = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (๐‘–) Let us denote the deviation of the generalized co-ordinates from equilibrium by ฮทi. Therefore, ๐‘ž๐‘– = ๐‘ž0๐‘– + ๐œ‚๐‘– ๐‘œ๐‘Ÿ, ๐œ‚๐‘– = ๐‘ž๐‘– โˆ’ ๐‘ž0๐‘–โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.......(ii) q0i denotes the equilibrium position of the co-ordinate system. Expanding the potential V (q1,q2,q3,q4,โ€ฆโ€ฆโ€ฆโ€ฆ.,qn ) in Taylorโ€™s series about q0i we may write, ๐‘‰ (๐‘ž1, ๐‘ž2, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž๐‘›) = ๐‘‰(๐‘ž01, ๐‘ž02, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž0๐‘›) + โˆ‘ ( ๐œ•๐‘‰ ๐œ•๐‘ž๐‘– ) 0 ๐‘› ๐‘– ๐œ‚๐‘– + 1 2 โˆ‘ โˆ‘ ( ๐œ•2 ๐‘‰ ๐œ•๐‘ž๐‘–๐œ•๐‘ž๐‘— ) 0 ๐œ‚๐‘– ๐‘›,๐‘› ๐‘–,๐‘— ๐œ‚๐‘— + โ‹ฏ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(iii) The first term on the right hand side of the equation is constant and hence may be taken to be equal to zero and the second term vanishes due to equation (i). So the first approximation we may write, ๐‘‰ (๐‘ž1, ๐‘ž2, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž๐‘›) = 1 2 โˆ‘ โˆ‘ ( ๐œ•2 ๐‘‰ ๐œ•๐‘ž๐‘–๐œ•๐‘ž๐‘— ) 0 ๐œ‚๐‘– ๐‘›,๐‘› ๐‘–,๐‘— ๐œ‚๐‘— โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (๐‘–๐‘ฃ) Writing Vij for ( ๐œ•2๐‘‰ ๐œ•๐‘ž๐‘–๐œ•๐‘ž๐‘— ) 0 we get, ๐‘‰ (๐‘ž1, ๐‘ž2, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž๐‘›) = 1 2 โˆ‘ โˆ‘ ๐‘‰๐‘–๐‘— ๐‘–,๐‘— ๐œ‚๐‘–๐œ‚๐‘— โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐‘ฃ) We shall now examine the expression for kinetic energy of the system of particles which is given by, ๐‘‡ = โˆ‘ โˆ‘ 1 2 ๐‘š๐‘–๐‘—๐‘žฬ‡๐‘–๐‘žฬ‡๐‘— ๐‘–,๐‘— Here, ๐‘š๐‘–๐‘— = ๐‘š๐‘—๐‘–, ๐‘–. ๐‘’. ๐‘š๐‘–๐‘— form a symmetric matrix. From Taylorโ€™s series we may write, ๐‘š๐‘–๐‘—(๐‘ž1, ๐‘ž2, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž๐‘›) = ๐‘š๐‘—๐‘–(๐‘ž01, ๐‘ž02, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž0๐‘›) + โˆ‘( ๐œ•๐‘š๐‘–๐‘— ๐œ•๐‘ž๐‘˜ )0 ๐‘˜ ๐œ‚๐‘˜ + โ‹ฏ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(vi) Hence the kinetic energy becomes ๐‘‡ = 1 2 {๐‘š๐‘–๐‘—(๐‘ž01, ๐‘ž02, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž0๐‘›) + โˆ‘ ( ๐œ•๐‘š๐‘–๐‘— ๐œ•๐‘ž๐‘˜ ) 0 ๐‘˜ ๐œ‚๐‘˜ + โ‹ฏ }๐œ‚ฬ‡๐‘–๐œ‚ฬ‡๐‘— This equation is quadratic in ๐œ‚ฬ‡๐‘–โ€™s and the lowest non-vanishing approximation to T is obtained by dropping all the terms on the right hand side of the above equation except the first term. Therefore,
  • 5. ๐‘‡ = 1 2 โˆ‘ โˆ‘ ๐‘š๐‘–๐‘—(๐‘ž01, ๐‘ž02, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ž0๐‘›)๐œ‚ฬ‡๐‘–๐œ‚ฬ‡๐‘— = 1 2 โˆ‘ โˆ‘ ๐‘‡๐‘–๐‘— ๐œ‚ฬ‡๐‘–๐œ‚ฬ‡๐‘— โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(vii) Here the constant value of mij at equilibrium is denoted by Tij. Hence the Lagrangian function is, ๐ฟ = ๐‘‡ โˆ’ ๐‘‰ = 1 2 โˆ‘ โˆ‘(๐‘‡๐‘–๐‘— ๐‘–,๐‘— ๐œ‚ฬ‡๐‘–๐œ‚ฬ‡๐‘— โˆ’ ๐‘‰๐‘–๐‘—๐œ‚๐‘–๐œ‚๐‘—) Thus the n-equations of motion derived from the function L is ๐‘‘ ๐‘‘๐‘ก ( ๐œ•๐ฟ ๐œ•๐œ‚ฬ‡๐‘– ) โˆ’ ( ๐œ•๐ฟ ๐œ•๐œ‚๐‘– ) = 0 (๐‘– = 1,2,3, โ€ฆ . . , ๐‘›) ๐‘œ๐‘Ÿ, โˆ‘ ๐‘‡๐‘–๐‘— ๐œ‚ฬˆ๐‘— + โˆ‘ ๐‘‰๐‘–๐‘—๐œ‚๐‘— = 0โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(viii) In the above equation both Tij and Vij have symmetric properties. We can write this equation in the following matrix form, ๐‘‡๐œ‚ฬˆ + ๐‘‰๐œ‚ = 0โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...............โ€ฆโ€ฆ..(ix) where ๐‘‡ = ( ๐‘‡11 ๐‘‡12 โ€ฆ ๐‘‡1๐‘› ๐‘‡21 ๐‘‡22 โ€ฆ ๐‘‡2๐‘› โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘‡๐‘›1 ๐‘‡๐‘›2 โ€ฆ ๐‘‡๐‘›๐‘› ) ; ๐‘‰ = ( ๐‘‰11 ๐‘‰12 โ€ฆ ๐‘‰1๐‘› ๐‘‰21 ๐‘‰22 โ€ฆ ๐‘‰2๐‘› โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘‰๐‘›1 ๐‘‰๐‘›2 โ€ฆ ๐‘‰ ๐‘›๐‘› ) ; ๐œ‚ = ( ๐œ‚1 ๐œ‚2 โ‹ฎ ๐œ‚๐‘› ) Here T denotes the inertial coefficient matrix and V the stiffness coefficient matrix. V plays the role of restoring force which tends to bring the system to the position of equilibrium which may be called restoring tensor. b) Eigen Value Problem and Normalization- For similarity to the equation of simple harmonic oscillator, we try an oscillator solution of equation (viii) in the form, ๐œ‚๐‘— = ๐‘Ž๐‘—๐‘’๐‘–๐œ”๐‘ก โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(x) The idea behind the above trial solution is that ฯ‰ is independent of j, i.e. all the co-ordinates are assumed to execute SHM with same period but different amplitude (and either in-phase or out-of- phase only, depending on the sign of aj ). aj are in general complex and only the real parts of them correspond to the actual motion. Putting equation (x) in equation (viii) we get, โˆ‘(๐‘‰๐‘–๐‘— โˆ’ ๐œ”2 ๐‘‡๐‘–๐‘—)๐‘Ž๐‘— = 0 ๐‘— โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(xi) (๐‘– = 1,2,3, โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ , ๐‘›) which is a set of n linear homogeneous equations for the ajโ€™s and consequently for a non-trivial solution (i.e., not all aj =0) the determinant of the coefficients must vanish i.e. โŽน๐‘‰๐‘–๐‘— โˆ’ ๐œ”2 ๐‘‡๐‘–๐‘—โŽน = 0 ๐‘œ๐‘Ÿ, | ๐‘‰11 โˆ’ ๐œ”2 ๐‘‡11 โ€ฆ โ€ฆ ๐‘‰1๐‘› โˆ’ ๐œ”2 ๐‘‡1๐‘› โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘‰๐‘›1 โˆ’ ๐œ”2 ๐‘‡๐‘›1 โ€ฆ โ€ฆ ๐‘‰ ๐‘›๐‘› โˆ’ ๐œ”2 ๐‘‡๐‘›๐‘› | = 0 ....................................... (xii) This is called the secular determinant. This determinant condition is an algebraic equation of nth degree for ๐œ”2 and hence provides n- values of ๐œ”2 for which equation (x) represents the correct
  • 6. solutions to the equations of motion. For each of these values of ๐œ”2 the equation (xi) may be solved for the amplitudes or more precisely for (n-1) of the amplitudes in terms of the remaining one. This is due to the fact that the coefficient aj are determined only up to a common multiplier. This is apparent from equation (xi). Thus the ratios of ajโ€™s are definite (for a particular frequency) but not their absolute values. This arbitrariness in the values of aj will be utilized in the normalization procedure. Since there exist n values of ๐œ”๐‘˜, we also get n- set of values of amplitudes. Each of these set (i.e., n- values of ajโ€™s corresponding to a particular frequency(๐œ”๐‘˜) can be considered to define the components of a n- dimensional vector ๐‘Ž โƒ—๐‘˜. This ๐‘Ž โƒ—๐‘˜ is called the eigen vector of the system associated with the eigen frequency๐œ”๐‘˜. The symbol ajk may now be used to represent the j-th component of the k-th eigen vector. Using the principle of superposition, the general solution may now be written as, ๐œ‚๐‘—(๐‘ก) = โˆ‘ ๐‘Ž๐‘—๐‘˜๐‘’๐‘–๐œ”๐‘˜๐‘ก ๐‘˜ ....................................... (xiii) where motion of each ฮทj is compounded of motions with each of the n values of frequencies ๐œ”๐‘˜. The actual motion is the real part of the complex equation (xiii) which can be expressed as, ๐œ‚๐‘—(๐‘ก) = โˆ‘ ๐‘Ž๐‘—๐‘˜ ๐ถ๐‘œ๐‘ ( ๐‘˜ ๐œ”๐‘˜๐‘ก + ๐œ™๐‘˜) The motion is oscillatory about the stable equilibrium position only for ๐œ”๐‘˜ 2 > 0. If two or more values of ๐œ”๐‘˜ happen to be the same, then the phenomenon is known as degeneracy. c) Orthogonality of Eigenvectors- Equation (xi) represents a special type of eigen value equation as, ๐‘ฝ๐’‚ = ๐€๐‘ป๐’‚ ..........................................(xiv) with ๐œ”2 = ๐œ† where the matrix V,T and a are ๐‘ฝ = ( ๐‘‰11 ๐‘‰12 โ€ฆ ๐‘‰1๐‘› ๐‘‰21 ๐‘‰22 โ€ฆ ๐‘‰2๐‘› โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘‰๐‘›1 ๐‘‰๐‘›2 โ€ฆ ๐‘‰ ๐‘›๐‘› ), ๐‘ป = ( ๐‘‡11 ๐‘‡12 โ€ฆ ๐‘‡1๐‘› ๐‘‡21 ๐‘‡22 โ€ฆ ๐‘‡2๐‘› โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘‡๐‘›1 ๐‘‡๐‘›2 โ€ฆ ๐‘‡๐‘›๐‘› ), ๐’‚ = ( ๐‘Ž1 ๐‘Ž2 โ‹ฎ ๐‘Ž๐‘› ) In ordinary eigenvalue problem, ๐‘ฝ๐’‚ = ๐œ†๐’‚ i.e. the effect of V on eigenvector a is just to generate a vector which is ๐œ† times a, ๐œ† being a scalar. Here, however, V acting on a, generates a multiple (๐œ†) of the result of T acting on a. A typical equation for the eigenvalue ๐œ†๐‘˜ can be written from equation (xiv) as, โˆ‘ ๐‘‰๐‘–๐‘—๐‘Ž๐‘—๐‘˜ = ๐œ†๐‘˜ โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜ ๐‘— ๐‘— ......................................(xv) The complex conjugate of similar equation for ฮปl gives, โˆ‘ ๐‘‰๐‘–๐‘—๐‘Ž๐‘–๐‘™ โˆ— = ๐œ†๐‘™ โˆ— โˆ‘ ๐‘‡๐‘–๐‘— ๐‘— ๐‘— ๐‘Ž๐‘–๐‘™ โˆ— .........................................(xvi) (since Vij and Tij are real and also symmetric) Multiplying equation (xv) by ๐‘Ž๐‘–๐‘™ โˆ— and summing over i and multiplying equation (xvi) by ajk and summing over j, and next subtracting the latter from the former, we get
  • 7. (๐œ†๐‘˜ โˆ’ ๐œ†๐‘™ โˆ— ) โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜ ๐‘–๐‘— ๐‘Ž๐‘–๐‘™ โˆ— = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐‘ฅ๐‘ฃ๐‘–๐‘–) ๐‘œ๐‘Ÿ, (๐œ†๐‘˜ โˆ’ ๐œ†๐‘˜ โˆ— ) โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜ ๐‘–๐‘— ๐‘Ž๐‘–๐‘˜ โˆ— = 0 ............................................(xviii) for l=k Now, ๐‘Ž๐‘—๐‘˜ = ๐›ผ๐‘—๐‘˜ + ๐‘–๐›ฝ๐‘—๐‘˜ as ajk is complex. and โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜๐‘Ž๐‘–๐‘˜ โˆ— = โˆ‘ ๐‘‡๐‘–๐‘—๐›ผ๐‘—๐‘˜ ๐‘–๐‘— ๐›ผ๐‘–๐‘˜ + โˆ‘ ๐‘‡๐‘–๐‘—๐›ฝ๐‘—๐‘˜ ๐‘–๐‘— ๐›ฝ๐‘–๐‘˜ + ๐‘– โˆ‘ ๐‘‡๐‘–๐‘—(๐›ฝ๐‘—๐‘˜๐›ผ๐‘–๐‘˜ โˆ’ ๐›ผ๐‘—๐‘˜๐›ฝ๐‘–๐‘˜) โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (๐‘ฅ๐‘–๐‘ฅ) Tij being symmetric, the interchange of dummy indices i and j changes sign of the third summation on the right. Therefore, the imaginary term vanishes in equation (xix) and the two real sums are twice the kinetic energy when the velocities ๐œ‚ฬ‡๐‘– have values ๐›ผ๐‘–๐‘˜ and ๐›ฝ๐‘–๐‘˜ respectively. The kinetic energy can never be zero for real velocities. Thus, the eigenvalues ๐œ†๐‘˜ must be real. Eigenvalues and eigenvectors being real, the equation (xvii) may be written as (๐œ†๐‘˜ โˆ’ ๐œ†๐‘™) โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜ ๐‘–๐‘— ๐‘Ž๐‘–๐‘™ = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (๐‘ฅ๐‘ฅ) When the roots of the characteristic equation (xii) are all distinct, ๐œ†๐‘˜ โ‰  ๐œ†๐‘™, we shall get, โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜ ๐‘Ž๐‘–๐‘™ = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐‘ฅ๐‘ฅ๐‘–)(๐‘“๐‘œ๐‘Ÿ ๐‘™ โ‰  ๐‘˜) This shows that the eigenvectors are orthogonal. The eigenvalue equation (xi) canโ€™t completely fix the values of ajk, as has already been stated. The uncertainty can however be removed be removed by setting, purely arbitrarily, โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜ ๐‘–๐‘— ๐‘Ž๐‘–๐‘˜ = 1 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐‘ฅ๐‘ฅ๐‘–๐‘–)(๐‘“๐‘œ๐‘Ÿ ๐‘™ = ๐‘˜) Each of n such equations uniquely fix the arbitrary component in each eigenvector (corresponding to a given eigenfrequency). Combining the equations (xxi) and (xxii), we get โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜ ๐‘–๐‘— ๐‘Ž๐‘–๐‘˜ = ๐›ฟ๐‘™๐‘˜ ๐‘–. ๐‘’. ๐’‚ ฬƒ๐‘ป๐’‚ = ๐‘ฐ................................(xxiii) where ๐’‚ ฬƒ being the transpose of a. Introducing a diagonal matrix ฮป with elements ๐œ†๐‘™๐‘˜ = ๐œ†๐‘˜๐›ฟ๐‘™๐‘˜, the eigenvalue equation (xv) becomes โˆ‘ ๐‘‰๐‘–๐‘—๐‘Ž๐‘—๐‘˜ = ๐œ†๐‘˜ โˆ‘ ๐‘‡๐‘–๐‘—๐‘Ž๐‘—๐‘˜ ๐‘— ๐‘— = โˆ‘ ๐‘‡๐‘–๐‘— ๐‘—๐‘– ๐‘Ž๐‘—๐‘™๐œ†๐‘™๐‘˜ ๐‘–. ๐‘’. ๐‘ฝ๐’‚ = ๐‘ป๐’‚๐œ† โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (๐‘ฅ๐‘ฅ๐‘–๐‘ฃ) Therefore, ๐’‚ ฬƒ๐‘ฝ๐’‚ = ๐’‚ ฬƒ๐‘ป๐’‚๐œ† = ๐œ†..........................(xxv) This shows that the matrix a diagonalises both T and V simultaneously. d) Normal co-ordinates- The normalization of ajk leaves no ambiguity in the solution for ๐œ‚๐‘—. To remove the loss of generality due to the introduction of arbitrary normalization, a scalar factor ฮฒk may be used when the equation (xiii) becomes
  • 8. ๐œ‚๐‘—(๐‘ก) = โˆ‘ ๐‘Ž๐‘—๐‘˜๐›ฝ๐‘˜๐‘’๐‘–๐œ”๐‘˜๐‘ก = โˆ‘ ๐‘Ž๐‘—๐‘˜๐‘„๐‘˜ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐‘ฅ๐‘ฅ๐‘ฃ๐‘–) ๐‘˜ ๐‘˜ where ๐‘„๐‘˜ = ๐›ฝ๐‘˜๐‘’๐‘–๐œ”๐‘˜๐‘ก ............................(xxvii) Therefore, ๐œผ ฬƒ = ๐’‚ ฬƒ๐‘ธ ฬƒ..........................(xxviii) Equation (xxvii) shows that Qk oscillates with one frequency only, called normal frequency, namely ๐œ”๐‘˜. These Qkโ€™s are called the normal co-ordinates of the system. The normal co-ordinates are thus defined as the generalized co-ordinates where each one of them executes oscillations with a single frequency. If expressed in terms of normal co-ordinates, potential energy and kinetic energy take rather simple forms as given below, ๐‘ƒ. ๐ธ. = ๐‘‰ = 1 2 โˆ‘ ๐œ‚๐‘–๐‘‰๐‘–๐‘—๐œ‚๐‘— = 1 2 ๐‘–๐‘— ๐œผ ฬƒ๐‘ฝ๐œผ = 1 2 ๐‘„ ฬƒ๐’‚ ฬƒ๐‘ฝ๐’‚๐‘„ = 1 2 ๐‘„ ฬƒ๐œ†๐‘„ = 1 2 โˆ‘ ๐‘„๐‘™๐œ†๐‘™๐‘˜๐‘„๐‘˜ ๐‘™๐‘˜ = 1 2 โˆ‘ ๐‘„๐‘™๐œ†๐‘˜๐›ฟ๐‘™๐‘˜๐‘„๐‘˜ = ๐‘™๐‘˜ 1 2 โˆ‘ ๐œ”๐‘˜ 2 ๐‘„๐‘˜ 2 ๐‘˜ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (๐‘ฅ๐‘ฅ๐‘–๐‘ฅ) (using equations (xxviii) and (xxv)) ๐พ. ๐ธ = ๐‘‡ = 1 2 โˆ‘ ๐œ‚ฬ‡๐‘–๐‘‡๐‘–๐‘— ๐‘–๐‘— ๐œ‚ฬ‡๐‘— = 1 2 ๐œ‚ฬ‡ ฬƒ๐‘‡๐œ‚ฬ‡ = 1 2 ๐‘„ฬ‡ ฬƒ๐’‚ ฬƒ๐‘ป๐’‚๐‘„ฬ‡ = 1 2 ๐‘„ฬ‡ ฬƒ๐‘„ฬ‡ = 1 2 โˆ‘ ๐‘„ฬ‡๐‘˜ 2 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (๐‘ฅ๐‘ฅ๐‘ฅ) ๐‘˜ So, the new Lagrangian is, ๐ฟ = ๐‘‡ โˆ’ ๐‘‰ = 1 2 โˆ‘(๐‘„ฬ‡๐‘˜ 2 โˆ’ ๐‘˜ ๐œ”๐‘˜ 2 ๐‘„๐‘˜ 2 ) โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (๐‘ฅ๐‘ฅ๐‘ฅ๐‘–) Therefore, the Lagrangeโ€™s equation of motion are given by, ๐‘‘ ๐‘‘๐‘ก ( ๐œ•๐ฟ ๐œ•๐‘„ฬ‡๐‘˜ ) โˆ’ ๐œ•๐ฟ ๐œ•๐‘„ = 0 ๐‘œ๐‘Ÿ, ๐‘„ฬˆ๐‘˜ + ๐œ”๐‘˜ 2 ๐‘„๐‘˜ = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐‘ฅ๐‘ฅ๐‘ฅ๐‘–๐‘–) (k=1,2,3......) This is the set of n-independent equations of SHM with single normal frequency ๐œ”๐‘˜. The solution of the equation (xxxii) is given by, ๐‘„๐‘˜ = ๐‘Ž๐‘˜๐ถ๐‘œ๐‘ (๐œ”๐‘˜๐‘ก) + ๐‘๐‘˜๐‘†๐‘–๐‘›(๐œ”๐‘˜๐‘ก), ๐‘คโ„Ž๐‘’๐‘› ๐œ”๐‘˜ 2 > 0 ๐‘„๐‘˜ = ๐‘Ž๐‘˜๐‘ก + ๐‘๐‘˜๐‘ก, ๐‘คโ„Ž๐‘’๐‘› ๐œ”๐‘˜ 2 = 0 ๐‘„๐‘˜ = ๐‘Ž๐‘˜๐‘’๐œ”๐‘˜๐‘ก + ๐‘๐‘˜๐‘’โˆ’๐œ”๐‘˜๐‘ก , ๐‘คโ„Ž๐‘’๐‘› ๐œ”๐‘˜ 2 < 0 For ๐œ”๐‘˜ 2 > 0, the co-ordinates always remain finite. Such solutions refer to stable equilibrium. For ๐œ”๐‘˜ 2 = 0 and ๐œ”๐‘˜ 2 < 0, the co-ordinates become infinite as time advances and such solutions refer to unstable equilibrium. e) Normal co-ordinates Qk in terms of co-ordinates ฮทj The complex quantity ฮฒk may be written as,
  • 9. ๐›ฝ๐‘˜ = ๐œ‡๐‘˜ + ๐‘–๐œˆ๐‘˜.................................................(xxxiii) Therefore, equation (x) becomes, ๐œ‚๐‘—(๐‘ก) = โˆ‘ ๐‘Ž๐‘—๐‘˜( ๐‘˜ ๐œ‡๐‘˜ + ๐‘–๐œˆ๐‘˜)๐‘’๐‘–๐œ”๐‘˜๐‘ก ............................(xxxiv) On differentiating with respect to time we get, ๐œ‚ ฬ‡ ๐‘—(๐‘ก) = โˆ‘ ๐‘–๐œ”๐‘˜๐‘Ž๐‘—๐‘˜( ๐‘˜ ๐œ‡๐‘˜ + ๐‘–๐œˆ๐‘˜)๐‘’๐‘–๐œ”๐‘˜๐‘ก ................................................(xxxv) The real part of equation (xxxiv) gives at t=0, ๐œ‚๐‘—(0) = โˆ‘ ๐‘Ž๐‘—๐‘˜ ๐‘˜ ๐œ‡๐‘˜ ............................................(xxxvi) Multiplying throughout by Tjiair and summing over ij, and using equation (xxxvi), we get, โˆ‘ ๐œ‚๐‘—(0)๐‘‡๐‘—๐‘–๐‘Ž๐‘–๐‘Ÿ = โˆ‘ ๐œ‡๐‘˜ ๐‘˜ โˆ‘ ๐‘Ž๐‘—๐‘˜ ๐‘–๐‘— ๐‘–๐‘— ๐‘‡๐‘—๐‘–๐‘Ž๐‘–๐‘Ÿ = โˆ‘ ๐œ‡๐‘˜๐›ฟ๐‘˜๐‘Ÿ = ๐œ‡๐‘Ÿ ๐‘˜ ..........................(xxxvii) Similarly, the real part of equation (xxxv) at t=0 gives, ๐œ‚ฬ‡๐‘—(0) = โˆ’ โˆ‘ ๐œ”๐‘˜ ๐‘˜ ๐œˆ๐‘˜๐‘Ž๐‘—๐‘˜ ...................................(xxxviii) Multiplying both sides by Tjiair and summing over ij, and using equation(xxxvi), we get, โˆ‘ ๐œ‚ฬ‡๐‘—(0)๐‘‡๐‘—๐‘–๐‘Ž๐‘–๐‘Ÿ = โˆ’ โˆ‘ ๐œ”๐‘˜๐œˆ๐‘˜ ๐‘˜ โˆ‘ ๐‘Ž๐‘—๐‘˜ ๐‘–๐‘— ๐‘–๐‘— ๐‘‡๐‘—๐‘–๐‘Ž๐‘–๐‘Ÿ = โˆ’ โˆ‘ ๐œ”๐‘˜๐œˆ๐‘˜๐›ฟ๐‘˜๐‘Ÿ = โˆ’๐œ”๐‘Ÿ ๐‘˜ ๐œˆ๐‘Ÿ .......................(xxxix) Thus, the normal co-ordinates Qr may be expressed as the real part of the expression in, ๐‘„๐‘Ÿ(๐‘ก) = ๐›ฝ๐‘Ÿ๐‘’๐‘–๐œ”๐‘Ÿ๐‘ก = (๐œ‡๐‘Ÿ + ๐‘–๐œˆ๐‘Ÿ)๐‘’๐‘–๐œ”๐‘Ÿ๐‘ก = โˆ‘ ๐‘‡๐‘—๐‘–๐‘Ž๐‘–๐‘Ÿ[ ๐‘–๐‘— ๐œ‚๐‘—(0) โˆ’ ๐‘– ๐œ”๐‘Ÿ ๐œ‚ฬ‡๐‘—(0)]๐‘’๐‘–๐œ”๐‘Ÿ๐‘ก Therefore, for any arbitrary ๐œ‚๐‘—(0) and ๐œ‚ฬ‡๐‘—(0), a set of normal co-ordinates Qr may be found, each of which varies harmonically with single frequency ๐œ”๐‘Ÿ. f) Energy in normal co-ordinates Here, ๐‘‰ = 1 2 โˆ‘ ๐œ”๐‘˜ 2 ๐‘„๐‘˜ 2 ๐‘˜ and ๐‘‡ = 1 2 โˆ‘ ๐‘„ฬ‡๐‘˜ 2 ๐‘˜ So, total mechanical energy E, in normal co-ordinates, is given by, ๐ธ = ๐‘‡ + ๐‘‰ = 1 2 โˆ‘(๐‘„ฬ‡๐‘˜ 2 + ๐œ”๐‘˜ 2 ๐‘„๐‘˜ 2 ) ๐‘˜ This is true for small oscillations with any number n of degrees of freedom. Examples-
  • 10. 1. The potential energy V(x) of a particle is given by, ๐‘‰(๐‘ฅ) = 3๐‘ฅ4 โˆ’ 8๐‘ฅ3 โˆ’ 6๐‘ฅ2 + 24๐‘ฅ Determine the points of stable and unstable equilibrium. Solution- For the points of equilibrium(๐‘‘๐‘‰/๐‘‘๐‘ฅ) = 0. Since, we have ๐‘‰(๐‘ฅ) = 3๐‘ฅ4 โˆ’ 8๐‘ฅ3 โˆ’ 6๐‘ฅ2 + 24๐‘ฅ So, ๐‘‘๐‘‰ ๐‘‘๐‘ฅ = 12๐‘ฅ3 โˆ’ 24๐‘ฅ2 โˆ’ 12๐‘ฅ + 24 At the points of equilibrium, therefore, 12๐‘ฅ3 โˆ’ 24๐‘ฅ2 โˆ’ 12๐‘ฅ + 24 = 0 ๐‘œ๐‘Ÿ, ๐‘ฅ3 โˆ’ 2๐‘ฅ2 โˆ’ ๐‘ฅ + 2 = 0 ๐‘œ๐‘Ÿ, (๐‘ฅ + 1)(๐‘ฅ โˆ’ 1)(๐‘ฅ โˆ’ 2) = 0 Therefore, the points of equilibrium are x= -1,1 and 2. To test the stability of equilibrium at those points, we find ๐‘‘2๐‘‰ ๐‘‘๐‘ฅ2 at the points and if it is positive, the equilibrium is stable; if negative, it is unstable. Now, ๐‘‘2๐‘‰ ๐‘‘๐‘ฅ2 = 36๐‘ฅ2 โˆ’ 48๐‘ฅ โˆ’ 12 So, ( ๐‘‘2๐‘‰ ๐‘‘๐‘ฅ2) ๐‘ฅ=โˆ’1 = 72 (๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘ฃ๐‘’) ( ๐‘‘2 ๐‘‰ ๐‘‘๐‘ฅ2) ๐‘ฅ=1 = โˆ’24 (๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’) ( ๐‘‘2 ๐‘‰ ๐‘‘๐‘ฅ2) ๐‘ฅ=2 = 36 (๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘ฃ๐‘’) Therefore, equilibrium are stable at x = -1 and x = 2; unstable at x = 1. 2. Consider two identical simple harmonic oscillators coupled together. Their K.E. and P.E. are given by ๐‘‡ = 1 2 ๐‘š(๐‘žฬ‡1 2 + ๐‘žฬ‡2 2 ) and ๐‘‰ = 1 2 ๐‘˜(๐‘ž1 2 + ๐‘ž2 2) โˆ’ โ„Ž๐‘ž1๐‘ž2 (i) Find the Hamiltonian of the system. (ii) Fine the frequencies for normal modes and the ratio of the amplitudes of each of the coordinates q1 and q2 in those modes. (iii) Introduce the normal coordinates and thereby set up the corresponding Lagrangeโ€™s equation. Solution- (i) Here, V is independent of the velocity, so it represents a conservative system. Thus the Hamiltonian is given by, ๐ป = ๐‘‡ + ๐‘‰ = 1 2 ๐‘š(๐‘žฬ‡1 2 + ๐‘žฬ‡2 2) + 1 2 ๐‘˜(๐‘ž1 2 + ๐‘ž2 2) โˆ’ โ„Ž๐‘ž1๐‘ž2 (ii) Here, Lagrangian is ๐ฟ = ๐‘‡ โˆ’ ๐‘‰ = 1 2 ๐‘š(๐‘žฬ‡1 2 + ๐‘žฬ‡2 2) โˆ’ 1 2 ๐‘˜(๐‘ž1 2 + ๐‘ž2 2) + โ„Ž๐‘ž1๐‘ž2....................(i) Now, we get, ๐œ•๐ฟ ๐œ•๐‘žฬ‡1 = ๐‘š๐‘žฬ‡1 โˆ’ ๐œ•๐ฟ ๐œ•๐‘ž1 = ๐‘˜๐‘ž1 โˆ’ โ„Ž๐‘ž2
  • 11. ๐œ•๐ฟ ๐œ•๐‘žฬ‡2 = ๐‘š๐‘žฬ‡2 โˆ’ ๐œ•๐ฟ ๐œ•๐‘ž2 = ๐‘˜๐‘ž2 โˆ’ โ„Ž๐‘ž1 Putting these values in equation (i) we get, ๐‘š๐‘žฬˆ1 + ๐‘˜๐‘ž1 โˆ’ โ„Ž๐‘ž2 = 0...................(ii) ๐‘š๐‘žฬˆ2 + ๐‘˜๐‘ž1 โˆ’ โ„Ž๐‘ž2 = 0...................(iii) Let ๐‘ž1 = ๐ด1๐‘’๐‘–๐œ”๐‘ก . Putting this value in equation (ii) we get, ๐ด1(๐‘˜ โˆ’ ๐œ”2 ๐‘š) โˆ’ ๐ด2โ„Ž = 0 Again, let ๐‘ž2 = ๐ด2๐‘’๐‘–๐œ”๐‘ก . Putting this value in equation (iii) we get, โˆ’๐ด1โ„Ž + ๐ด2(๐‘˜ โˆ’ ๐œ”2 ๐‘š) = 0 For non-zero solution, we must have the determinant, |๐‘˜ โˆ’ ๐œ”2 ๐‘š โˆ’โ„Ž โˆ’โ„Ž ๐‘˜ โˆ’ ๐œ”2 ๐‘š | = 0 ๐‘œ๐‘Ÿ, (๐‘˜ โˆ’ ๐œ”2 ๐‘š)2 โˆ’ โ„Ž2 = 0 ๐‘œ๐‘Ÿ, ๐‘˜ โˆ’ ๐œ”2 ๐‘š = ยฑโ„Ž Therefore, ๐œ”2 = (๐‘˜ โˆ“ โ„Ž) So, ๐œ”1 = โˆš (๐‘˜โˆ’โ„Ž) ๐‘š , ๐œ”2 = โˆš (๐‘˜+โ„Ž) ๐‘š Now, ๐ด2 ๐ด1 = (๐‘˜โˆ’๐œ”1 2 ๐‘š) โ„Ž ๐‘œ๐‘Ÿ, (๐‘˜โˆ’๐œ”2 2 ๐‘š) โ„Ž (iii) Let the normal coordinates are ๐‘„๐‘– = ๐ด๐‘–๐‘’๐‘–๐œ”๐‘–๐‘ก Differentiating with respect to t we get, ๐‘„ฬˆ๐‘– + ๐œ”๐‘– 2 ๐‘„๐‘– = 0, ๐‘– = 1,2. Thus Lagrangeโ€™s equation is, ๐ฟ๐‘– = 1 2 ๐‘„ฬ‡๐‘– 2 โˆ’ 1 2 ๐œ”๐‘–๐‘„๐‘– 2 Exercise- 1. The potential energy of a particle is given by ๐‘‰(๐‘ฅ) = ๐‘ฅ4 โˆ’ 4๐‘ฅ3 โˆ’ 8๐‘ฅ2 + 48๐‘ฅ Find the points of stable and unstable equilibrium. (KNU-2019) 2. Discuss the general theory of small oscillation of a system to obtain the equation of motion near its equilibrium position. How the eigen frequencies of the system can be obtained for such a system. (KNU-2019) 3. What is normal mode and normal frequency? (KNU-2019) 4. Discuss the stability of a simple pendulum and show that it can oscillate only about the position of its stable equilibrium. 5. Establish the relation ๐‘‡๐œ‚ฬˆ + ๐‘‰๐œ‚ = 0,for small oscillations of a system, the symbols having their usual meanings. 6. A particle moves in potential energy given by
  • 12. ๐‘‰(๐‘ฅ) = ๐‘๐‘ฅ2 + ๐‘Ž ๐‘ฅ2, a,b>0. Show that its frequency of oscillation is โˆš 8๐‘ ๐‘š . 7. What is meant by equilibrium, stable and unstable equilibrium? Show that oscillations can occur only about a stable equilibrium. 8. Write down the differences between stable and unstable equilibrium. References- 1) S.N.Maithi & D.P.Raychaudhuri, Classical Mechanics and General Properties of Matter, New Age International Publishers, 2015 2) A.B.Gupta, Fundamentals of Classical Mechanics, 2nd Edition, Books And Allied (P) Ltd. (2019) 3) A. Beiser, Perspective of Modern Physics, 3rd Edition, New York, McGraw Hill (1969). AJAY KUMAR SHARMA Assistant Professor (Physics) B.C.College, Asansol Email-id- ajay888sharma@yahoo.co.in